2013年湖南岳阳中考数学试卷及解析

合集下载

【解析版】2013年湖南省岳阳市中考数学试卷及答案

【解析版】2013年湖南省岳阳市中考数学试卷及答案

湖南省岳阳市2013年中考数学试题一、选择题1.-2013的相反数是( )A .-2013B 、2013C 、12013D 、-12013答案:B解析:-2013的相反数是2013,简单题。

2.计算a 3·a 2的结果是( ) A 、a 5 B 、a 6 C 、a 3+a 2 D 、3a 2 答案:A解析:根据同底数幂相乘,底数不变,指数相加,得:32325a a a a +==g ,选A 。

3.一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是( )A 、建B 、设C 、和D 、谐 答案:C 解析:以“岳”作底面,则前后面分别为“阳、建”,左右面分别为“谐、设”,上面是“和”,所以,选C 。

4.不等式2x <10的解集在数轴上表示正确的是( )DCBA答案:D解析:解不等式,得x <5,没有等号,5这个点有空心表示,故选D 。

5.关于x 的分式方程7x-1+3=mx-1有增根,则增根为( )A 、x =1B 、x =-1C 、x =3D 、x =-3答案:A解析:当x =1时,分母为零,没有意义,所以是增根。

6.两圆半径分别为3cm 和7cm ,当圆心距d =10cm 时,两圆的位置关系为( ) A 、外离 B 、内切 C 、相交 D 、外切 答案:D解析:因为10=3+7,即,圆心距等于两圆的半径之和,此时,两圆外切。

7.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )A 、12,13B 、12,14C 、13,14D 、13,16 答案:B解析:12出现两次,其它数据都只出现一次,故众数为12;数据由小到大排列为:12、12、13、14、16、17、18,所以,中位数为14。

阳岳谐和设建8.二次函数y =ax 2+bx +c 的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④b +2a =0;⑤a +b +c <0.其中正确的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个 答案:C解析:由图可知,抛物线开口向下,故a <0,①正确;对称轴为:2bx a=-=1>0,而a <0,故b >0,②错误; 抛物线与y 轴交点在正半轴,故c >0,③正确; 又2bx a=-=1,得b =-2a ,即b +2a =0,④正确;选C 。

2013年湖南长沙中考数学试卷及答案(word解析版)

2013年湖南长沙中考数学试卷及答案(word解析版)

湖南长沙2013年初中毕业学业水平测试数学卷一、选择题:1.(2013湖南长沙 第1题 3分)下列实数是无理数的是( ) A.-1 B.0 C 。

21D.3 【答案】D.2.(2013湖南长沙 第2题 3分)小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为( )A 。

617×105 B.6.17×106 C.6。

17×107 D 。

0.617×108【答案】C 。

3。

(2013湖南长沙 第3题 3分)如果一个三角形的两边长分别是2和4,则第三边可能是( )A 。

2 B.4 C 。

6 D 。

8 【答案】B 。

4.(2013湖南长沙 第4题 3分)已知⊙O 1的半径为1cm,⊙O 2的半径为3cm,两圆的圆心距O 1O 2为4cm ,则两圆的位置关系是( )A 。

外离B 。

外切 C.相交 D 。

内切 【答案】B. 5。

(2013湖南长沙 第5题 3分)下列计算正确的是( )A 。

a 6÷a 3=a 3 B.(a 2)3=a 8 C 。

(a —b)2=a 2—b 2 D.a 2+a 2=a 4【答案】A 。

6。

(2013湖南长沙 第6题 3分)某校篮球队12名同学的身高如下表:则该校篮球队12名同学的身高的众数是(单位:cm ) A.192 B 。

188 C.186 D 。

180 【答案】B.7.(2013湖南长沙 第7题 3分)下列个图中,∠1大于∠2的是( )【答案】D8.(2013湖南长沙 第8题 3分)下列多边形中,内角和与外角和相等的是( )ABCA 1 2 (AB=AC)1 2 abB12 a bcCABCD 2 1 DA.四边形 B 。

五边形 C 。

六边形 D.八边形 【答案】A 。

9。

(2013湖南长沙 第9题 3分)在下列某品牌T 恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( )【答案】C.10.(2013湖南长沙 第10题 3分)二次函数y=ax 2+bx+c 的图像如图所示,则下列关系式错误..的是( ) A 。

初中毕业升学考试(湖南岳阳卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(湖南岳阳卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(湖南岳阳卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】下列各数中为无理数的是()A.﹣1 B.3.14 C.π D.0【答案】C【解析】试题分析:π是圆周率,是无限不循环小数,所以π是无理数考点:无理数【题文】下列运算结果正确的是()A.a2+a3=a5 B.(a2)3=a6 C.a2•a3=a6 D.3a﹣2a=1【答案】B【解析】试题分析:利用幂的有关运算性质逐一计算后即可确定正确的选项.A、a2与a3不是同类项,不能合并,故错误;B、(a2)3=a6,正确,符合题意;C、a2•a3=a5,故错误;D、3a﹣2a=a,故错误,考点:(1)幂的乘方与积的乘方;(2)合并同类项;(3)同底数幂的乘法【题文】函数y=中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥4【答案】D【解析】试题分析:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,根据二次根式有意义的条件可得出x﹣4≥0,解该不等式即可得出结论考点:(1)函数自变量的取值范围;(2)二次根式有意义的条件【题文】某小学校足球队22名队员年龄情况如下:年龄(岁)1211109人数41062则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,11【答案】B【解析】试题分析:根据中位数和众数的定义分别进行解答即可.年龄是11岁的人数最多,有10个人,则众数是11;把这些数从小到大排列,中位数是第11,12个数的平均数,则中位数是=11;考点:(1)众数;(2)中位数【题文】如图是某几何体的三视图,则该几何体可能是()A.圆柱 B.圆锥 C.球 D.长方体【答案】A【解析】试题分析:根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.∵几何体的主视图和俯视图都是宽度相等的长方形,∴该几何体是一个柱体,又∵俯视图是一个圆,∴该几何体是一个圆柱.考点:由三视图判断几何体【题文】下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【答案】D【解析】试题分析:依据三角形任意两边之和大于第三边求解即可.A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.考点:三角形三边关系【题文】下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【答案】C【解析】试题分析:A:根据角平分线的性质,可得角平分线上的点到角的两边的距离相等.B:根据直角三角形斜边上的中线的性质,可得直角三角形斜边上的中线等于斜边的一半.C:根据菱形的性质,菱形的对角线互相垂直,但是不一定相等.D:根据中心对称图形的性质,可得常见的中心对称图形有:平行四边形、圆形、正方形、长方形,据此判断即可.∵角平分线上的点到角的两边的距离相等,∴选项A正确;∵直角三角形斜边上的中线等于斜边的一半,∴选项B正确;∵菱形的对角线互相垂直,但是不一定相等,∴选项C不正确;∵平行四边形是中心对称图形,∴选项D正确.考点:(1)中心对称图形;(2)角平分线的性质;(3)直角三角形斜边上的中线;(4)菱形的性质.【题文】对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a ,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4【答案】B【解析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,ymin=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴ymin=2,考点:分段函数【题文】如图所示,数轴上点A所表示的数的相反数是.【答案】2【解析】试题分析:根据相反数的定义,即可解答.数轴上点A所表示的数是﹣2,﹣2的相反数是2考点:(1)相反数;(2)数轴【题文】因式分解:6x2﹣3x=.【答案】3x(2x﹣1)【解析】试题分析:根据提公因式法因式分解的步骤解答即可.6x2﹣3x=3x(2x﹣1),考点:因式分解-提公因式法【题文】在半径为6cm的圆中,120°的圆心角所对的弧长为 cm.【答案】4π【解析】试题分析:直接利用弧长公式求出即可.半径为6cm的圆中,120°的圆心角所对的弧长为:=4π(cm).考点:弧长的计算【题文】为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.【答案】1.24×109【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.考点:科学记数法—表示较大的数【题文】如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=度.【答案】70【解析】试题分析:根据圆内接四边形的对角互补求∠BAD的度数即可.∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠BAD=180°(圆内接四边形的对角互补);又∵∠BCD=110°,∴∠BAD=70°.考点:(1)圆内接四边形的性质;(2)圆周角定理【题文】如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.【答案】100【解析】试题分析:根据坡比的定义得到tan∠A=,∠A=30°,然后根据含30度的直角三角形三边的关系求解.根据题意得tan∠A===,所以∠A=30°,所以BC=AB=×200=100(m).考点:解直角三角形的应用-坡度坡角问题【题文】一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.【答案】1<x<4【解析】试题分析:先根据图形得出A、B的坐标,根据两点的坐标和图形得出不等式的解集即可.∵由图象可知:A(1,4),B(4,1),x>0,∴不等式<kx+b的解集为1<x<4,考点:反比例函数与一次函数的交点问题【题文】如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.【答案】(504,-504)试题分析:根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.考点:(1)规律型;(2)点的坐标【题文】计算:.【答案】2【解析】试题分析:原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果.试题解析:原式=3﹣2+2﹣1=2.考点:(1)实数的运算;(2)零指数幂;(3)负整数指数幂;(4)特殊角的三角函数值【题文】已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD .【答案】证明过程见解析【解析】试题分析:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.试题解析:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.考点:(1)矩形的性质;(2)全等三角形的判定与性质【题文】已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.【答案】(1)﹣1,0,1,2;(2)试题分析:(1)首先分别解不等式①②,然后求得不等式组的解集,继而求得它的所有整数解;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积为正数的情况,再利用概率公式即可求得答案.试题解析:(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:.考点:(1)列表法与树状图法;(2)解一元一次不等式组;(3)一元一次不等式组的整数解【题文】我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.【答案】3千米【解析】试题分析:设学生步行的平均速度是每小时x千米,服务人员骑自行车的平均速度是每小时2.5x千米,根据学校与君山岛距离为24千米,服务人员所花时间比学生少用了3.6小时,可列方程求解.试题解析:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时2.5x千米,根据题意:﹣=3.6,解得:x=3,经检验,x=3是所列方程的解,且符合题意.答:学生步行的平均速度是每小时3千米.考点:分式方程的应用【题文】某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50优m良44101﹣150轻度污染n151﹣200中度污染4201﹣300重度污染2300以上严重污染2(1 )统计表中m= ,n= .扇形统计图中,空气质量等级为“良”的天数占 %;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.【答案】(1)20,8,55;(2)答案见解析;292天;(3)答案见解析【解析】试题分析:(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案;(3)提出合理建议,比如不燃放烟花爆竹或少燃放烟花爆竹等.试题解析:(1)∵m=80×25%=20,n=80﹣20﹣44﹣4﹣2﹣2=8,∴空气质量等级为“良”的天数占:×100%=55%.(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:(3)建议不要燃放烟花爆竹.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图.【题文】已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).【答案】(1)证明过程见解析;(2)5.【解析】试题分析:(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证;(2)把x=0代入方程即可求m的值,然后将其整体代入所求的代数式并求值即可.试题解析:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,把m=0或m=﹣1代入(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,可得:(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=5,或(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=3﹣3+5=5.考点:(1)根的判别式;(2)一元二次方程的解【题文】数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)【答案】(1)65°;(2)切线;证明过程见解析;;(3)当α+β=180°时,直线BB′、是⊙A′的切线;【解析】试题分析:(1)根据∠A′B′B=∠A′B′C﹣∠BB′C,只要求出∠A′B′B即可;(2)(Ⅰ)结论:直线BB′、是⊙A′的切线.只要证明∠A′B′B=90°即可.(Ⅱ)在RT△ABB′中,利用勾股定理计算即可;(3)如图③中,当α+β=180°时,直线BB′、是⊙A′的切线.只要证明∠A′B′B=90°即可解决问题.在△CBB′中求出BB′,再在RT△A′B′B中利用勾股定理即可.试题解析:(1)如图①中,∵△A′B′C是由△ABC旋转得到,∴∠A′B′C=∠ABC=130°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=50°,∴∠CBB′=∠CB′B=65°,∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.(2)(Ⅰ)结论:直线BB′、是⊙A′的切线.理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=60°,∴∠CBB′=∠CB′B=60°,∴∠A′B′B=∠A′B′C﹣∠BB′C=90°.∴AB′⊥BB′,∴直线BB′、是⊙A′的切线.(Ⅱ)∵在RT△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,∴A′B==.(3)如图③中,当α+β=180°时,直线BB′、是⊙A′的切线.理由:∵∠A′B′C=∠ABC=α,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=2β,∴∠CBB′=∠CB′B=,∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.∴AB′⊥BB′,∴直线BB′、是⊙A′的切线.在△CBB′中∵CB=CB′=n,∠BCB′=2β,∴BB′=2•nsinβ,在RT△A′BB′中,A′B==.考点:圆的综合题【题文】如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC 和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2﹣x+4;(2)最大值为;M(﹣,5);(3)(2,0)或(﹣,0)【解析】试题分析:(1)利用一次函数的解析式求出点A、C的坐标,然后再利用B点坐标即可求出二次函数的解析式;(2)由于M在抛物线F1上,所以可设M(a,﹣a2﹣a+4),然后分别计算S四边形MAOC和S△BOC,过点M作MD⊥x轴于点D,则S四边形MAOC的值等于△ADM的面积与梯形DOCM的面积之和;(3)由于没有说明点P的具体位置,所以需要将点P的位置进行分类讨论,当点P在A′的右边时,此情况是不存在;当点P在A′的左边时,此时∠DA′P=∠CAB′,若以A′、D、P为顶点的三角形与△AB′C相似,则分为以下两种情况进行讨论:①=;②=.试题解析:解:(1)令y=0代入y=x+4,∴x=﹣3,A(﹣3,0),令x=0,代入y=x+4,∴y=4,∴C(0,4),设抛物线F1的解析式为:y=a(x+3)(x﹣1),把C(0,4)代入上式得,a=﹣,∴y=﹣x2﹣x+4,(2)如图①,设点M(a,﹣a2﹣a+4)其中﹣3<a<0∵B(1,0),C(0,4),∴OB=1,OC=4∴S△BOC=OB•OC=2,过点M作MP⊥x轴于点P,∴MP=﹣a2﹣a+4,AP=a+3,OP=﹣a,∴S四边形MAOC=AP•MP+(MP+OC)•OP=AP•MP+OP•MP+OP•OC=+=+=×3(﹣a2﹣a+4)+×4×(﹣a)=﹣2a2﹣6a+6∴S=S四边形MAOC﹣S△BOC=(﹣2a2﹣6a+6)﹣2=﹣2a2﹣6a+4=﹣2(a+)2+∴当a=﹣时,S有最大值,最大值为此时,M(﹣,5);(3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0)∴AB′=2,设直线A′C的解析式为:y=kx+b,把A′(3,0)和C(0,4)代入y=kx+b,得:,∴∴y=﹣x+4,令x=代入y=﹣x+4,∴y=2∴由勾股定理分别可求得:AC=5,DA′=设P(m,0)当m<3时,此时点P在A′的左边,∴∠DA′P=∠CAB′,当=时,△DA′P∽△CAB′,此时,=(3﹣m),解得:m=2,∴P(2,0)当=时,△DA′P∽△B′AC,此时,=(3﹣m)m=﹣,∴P(﹣,0)当m>3时,此时,点P在A′右边,由于∠CB′O≠∠DA′E,∴∠AB′C≠∠DA′P∴此情况,△DA′P与△B′AC不能相似,综上所述,当以A′、D、P为顶点的三角形与△AB′C相似时,点P的坐标为(2,0)或(﹣,0).考点:二次函数综合题。

岳阳中考数学习题分析

岳阳中考数学习题分析

岳阳中考数学试卷分析一、总体概括2014年:8选择(24分)+8填空(32分)+8解答(64分)=120分2013年:8选择(24分)+8填空(24分)+8解答(72分)=120分2012年:8选择(24分)+8填空(24分)+10解答(72分)=120分其它地方的选择填空也是3分为主。

二、具体题型2014年:选择:有理数+代数式+三视图+科学计数法+不等式+扇形公式+因式分解+函数综合填空:实数+二次方程+统计+概率+相似+几何+找规律+几何综合解答:计算+分式方程+一次函数+应用题+统计+几何证明+规律探究+二次函数动态问题2013年:选择:有理数+代数式+展图+不等式+分式方程+圆+统计+二次函数填空:因式分解+整式+实数+科学计数法+坐标系+概率+相似+几何解答:实数计算+化简求值+反比例函数+方程应用+统计+三角函数+规律探究+二次函数动态问题2012年:选择:图形对称+代数式+统计+命题+三视图+函数+动态函数简图+几何综合填空:有理数+代数式+扇形公式+二次方程+概率+相似+找规律+几何解答:计算+不等式+化简求值+三角函数+圆+统计+函数+方程应用+规律探究+二次函数动态问题三、题型与频率:选择填空有理数代数式二次方程(分式方程)统计(数据特征+概率+频率+抽样)概率相似几何三视图科学计数法不等式扇形公式因式分解函数(一次+反比+二次)实数找规律(难点)几何展图圆二次函数坐标系图形对称命题综合(动态函数综合+几何问题综合)解答题计算+化简求值+解分式方程(不等式组)2—3题(6分)统计(8分—10分)方程应用(8分—10分)函数(8分—10分)三角函数(8分—10分)圆(8分—10分)几何证明(8分—10分)规律探究(12分)二次函数动态问题(12分)四、对应知识易:中:难=7:2:1。

湖南省岳阳市中考数学试卷及答案

湖南省岳阳市中考数学试卷及答案

岳阳市2016年初中毕业学业考试数学试卷、选择题(本题共 32分,每小题4分)下面各题均有四个选项,其中只有一个 是符合题意的.A. 圆柱 B .圆锥 C.球 D .长方体()6.下列长度的三根小木棒能构成三角形的是A . 2cm , 3cm , 5cmB . 7cm , 4cm , 2cmC . 3cm , 4cm , 8cmD. 3cm , 3cm , 4cm()7 .下列说法错误的是A. 角平分线上的点到角的两边的距离相等B. 直角三角形斜边上的中线等于斜边的一半C. 菱形的对角线相等D. 平行四边形是中心对称图形()&对 于实数a , b ,我们定义符号max{a , b}的意 义为:当a > b 时,max{a , b}=a ;当 a V b 时,max{a , b]=b ;女口 : max{4 , - 2}=4 , max{3 , 3}=3 ,若关于 x 的函数为y=max{x+3 , - x+1},则该函数的最小值是 A . 0B . 2C. 3D . 4、填空题(本大题共 8小题,每小题4分,共32分)9. _______________________________________________________________ 如图所示,数轴上点A 所表示的数的相反数是 _____________________________________________________________210. __________________________________________ 因式分解:6x - 3x= .11 .在半径为6cm 的圆中,120°的圆心角所对的弧长为 _______________________________ cm . 12. 为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为 ________________________________ 元. 13. 如图,四边形ABCD 为O O 的内接四边形,已知/ BCD=110 , 贝U / BAD= __________________ 度.(((((1.下列各数中为无理数的是B .C. nD. 02. 3.下列运算结果正确的是八235L /2\36—A . a +a =aB . ( a ) =aC . 函数y=中自变量x 的取值范围是A . x > 0B . x > 4a 2?a 3=a 6C. x V 44 .某小学校足球队22名队员年龄情况如下: 年龄(岁)人数1211 10则这个队队员年龄的众数和中位数分别是 A . 5.如 D . 3a - 2a=1D . x > 41011, 10B . 11 , 11C . 10 , 9 图是某几何体的三视图,则该几何体可能是D . 10 , 11414. 如图,一山坡的坡度为i=1 :,小辰从山脚A 出发,沿山坡向上走了 200米到达点B , 则小辰上升了 米. 15 .如图,一次函数y=kx+b ( k 、b 为常数,且k 丰0)和反比例函数y= ( x > 0)的图象交 于A 、B 两点,利用函数图象直接写出不等式v kx+b 的解集是 ___________________________________________________________ .16. 如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P i , P 2, P 3,…, 均在格点上,其顺序按图中“ T ”方向排列,如:P ( 0, 0) , P 2 ( 0, 1) , P 3 ( 1 , 1 ), P 4 ( 1 , - 1 ) , P 5 ( - 1 , - 1 ) , P 6 ( - 1 , 2 )•••根据这个规律,点 P 2016 的坐标为 ________________________________________________ .三、解答题(本大题共 8小题,共64分) 17. ( 6 分)计算:()-1 - +2tan60 ° -18. (6分)已知:如图,在矩形 ABCD 中,点E 在边 AB 上,点F 在边BC 上,且BE=CF , EF 丄DF, 求证:BF=CD .19. ( 8分)已知不等式组(1 )求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的 方法求积为正数的概率.20. ( 8分)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足 活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人 员骑自行车的平均速度是学生步行平均速度的倍,服务人员与学生同时从学校出发, 到达君山岛时,服务人员所花时间比学生少用了小时,求学生步行的平均速度是多少 千米/小时.21. ( 8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机 抽取了 80天的空气质量指数(AQI )数据,绘制出三幅不完整的统计图表.请根据图 表中提供的信息解答下列问题:201 - 300 重度污染 2 300以上严重污染2(1 )统计表中m= ___________ , n= _______ .扇形统计图中,空气质量等级为“良”的天数 占 ________ %;(2 )补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良” 的天数共多少天 (2 -)AQI 指数 0 - 50 51 - 100 101 - 150151 - 200 质量等级优 良 轻度污染 中度污染 天数(天)m 44 n(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22. (8 分)已知关于x 的方程x2- ( 2m+1) x+m ( m+1) =0 .(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m- 1) 2+ ( 3+m) ( 3 - m) +7m - 5的值(要求先化简再求值).23. ( 10分)数学活动-旋转变换(1 )如图①,在△ ABC中,/ ABC=130 , 将△ ABC绕点C逆时针旋转50°得至U△ A B' C, 连接BB',求/ A B' B的大小;(2 )如图②,在△ ABC中,/ ABC=150 , AB=3 , BC=5,将△ ABC绕点C逆时针旋转60°得到△ A B' C,连接BB ,以A'为圆心,A B'长为半径作圆.(I )猜想:直线BB 与O A的位置关系,并证明你的结论;(n )连接A B,求线段A B的长度;(3)如图③,在△ ABC 中,/ ABC a ( 90°v a v 180°) , AB=m, BC=n ,将△ ABC 绕点C逆时针旋转23角度(0°v 23 v 180°)得到△ A B' C,连接A B和BB , 以A'为圆心,A B'长为半径作圆,问:角a与角3满足什么条件时,直线BB'与O A 相切,请说明理由,并求此条件下线段A B的长度(结果用角a 或角3的三角函数及字母m、n所组成的式子表示)24. ( 10分)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F i交x轴于另一点B ( 1 , 0).(1 )求抛物线F i所表示的二次函数的表达式;(2)若点M是抛物线F i位于第二象限图象上的一点,设四边形MAOC和△ BOC的面积分别为S四边形MAOC和S A BOC,记S = S四边形MAOC - S^ BOC ,求S最大时点M的坐标及S的最大值;(3 )如图②,将抛物线F i沿y轴翻折并"复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A' 、B' 、M ,过点M作M E丄x轴于点E,交直线A C于点D,在x轴上是否存在点P,使得以A、D、P为顶点的三角形与厶AB C相似若存在,请求出点P的坐标;若不存在,请说明理由.参考答案、选择题(共8个小题,每小题3分,共24 分)三、解答题(共6道小题,每小题5分,共30分)17. 解:原式=3 - 2+2 - 1=218. 证明:•/四边形ABCD是矩形,••• / B=Z C=9C° ,•/ EF丄DF, •/ EFD=90 ,•/ EFB+/ CFD=90 ,•/ / EFB+/ BEF=90 ,•/ BEF=/ CFD在△ BEF和△ CFD中,•△ BEF^ △ CFD( ASA) , • BF=CD19. 解:(1 )由①得:x > - 2,由②得:x w 2,•不等式组的解集为:-2 v x< 2,•它的所有整数解为:-1 , 0 , 1 , 2 ;(2)画树状图得:•••共有12种等可能的结果,积为正数的有2种情况,•积为正数的概率为:=•20. 解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时千米,根据题意:-=,解得:x=4 ,经检验,x=3是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.21. 解:(1) 20 , 8 , 55 ;2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365X( 25%+55%) =292 (天)(3)建议不要燃放烟花爆竹.22. 解:(1) •••关于x 的一元二次方程x - ( 2m+1 ) x+m ( m+1) =0 .• △ = ( 2m+1) 2- 4m ( m+1) =1 > 0 , •方程总有两个不相等的实数根;(2) •/ x=0是此方程的一个根,•把x=0代入方程中得到m ( m+1) =0 , • m=0或m=- 1,2 2 2 2(2m- 1) + ( 3+m) ( 3 - m) +7m - 5=4m - 4m+1+9 - m +7m - 5=3m +3m+5 ,3) 如图②, 由 题意知: M (), B (- 1, 0), A ( 3, 0) • AB =2,设直线A ' C 的解析式为:y=kx+b ,把 A ( 3, 0) 和 C ( 0 , 4)代 入 y=kx+b , 得 :, • • y=- x+4 ,令 x= 代 入 y= - x+4 , • y=2 •由 勾股定理分 别可求 得: AC=5,DA =设 P ( m , 0) 当 m v 3 时 , 此 时 点P 在 A 的左边, • Z DA P=Z CAB ,当=时,△ DA 2 △ CAB ,此时,=(3 - m ), 解得: m=2, • P ( 2, 0)当=时,△ DA P ^ △ B' AC , 此时,=(3 - m ) m=- , • P ( - , 0)当m > 3时,此时,点P 在A 右边,由于/ CB 0^ Z DA E ,• Z AB 8 Z DA P•••此情况,△ DA P 与△ B ' AC 不能相似, 综上所述,当以A ' 、D 、P 为顶点的三角形与△ AB C 相似时,点P 的坐标 为( 2, 0) 或 ( - , 0).23. 解 :1) 22把 m=0 代 入 3m 2+3m+5 得 : 3m 2+3m+5=5 ; 22把 m=- 1 代入 3m +3m+5 得:3m +3m+5=3< 1 - 如 图①中 , • /3+5=5 .• Z CBB =Z CB B,- Z BCB =50°,•Z CBB =Z CBB=65°•Z A B B=Z A B C - Z BB C=65°.(I ) 结论 : 直 线BB 与O A 相 切.理由 : 如图②中, •/ Z A B C=Z ABC=15°0 , CB=CB•Z CBB =Z CB B,- Z BCB =60°, • Z CBB =Z CB B=60°,•Z A B B=Z A B C - Z BB C=90°.• AB 丄 BB , 直线 BB 与O A '相切.(n )•/ 在 Rt △ ABB 中, •/ Z AB B=90° , BB =BC=5, AB =AB=3,•A B==.( 3) 如图 ③中, 当 a - +3 =180°时 , 直 线BB 与O A 相切.理由 :•/ Z A B 'C=Z ABC=a , CB=CB ,•Z CBB =Z CB B,- Z BCB =23 ,•Z CBB =Z CB B=,•Z A B B=Z A BC - Z BB C=a - 90° +3 =180° -90° =90°.• AB 丄 BB , •直线 BB 与O A '相切.=n , B==24. 解 :1) y=0 代 入 y=x+4 , x=0 , 代 入 y=x+4x= - 3 , • y=4, 令 令设 抛 物 线 F 1 的 解 析 式 为 : y=a 把 C (0, 4)代入上式得, a= 2) A ( - 3, 0),• C ( 0, 4), x+3 )( x - 1 )2, • y=- x - -3 v a v 0 0C=4 •• S △ BOC =OB?OC=2 x+4 ,如图①,设点M ( a ,- a 2 - a+4 )其中 ••• B ( 1 , 0), C ( 0, 4) , • 0B=1 (过点M 作MPL x 轴于点P ,2• MP=- a - a+4 , AP=a+3 , OP=- a ,二 S 四边形 MAOC =AP?MP ( MP+0C ) ?OP =AP ?MP +OP ?MP +OP ?OC =+=+22=x 3 ( - a - a+4 ) +x 4X( - a ) = - 2a - 6a+6 22•• S=S 四边形 MAOC - S △ BOC = ( - 2a - 6a+6 ) - 2= - 2a - 6a+4=• 当 a= - 时 , S 有 最 大 值 , 最 大 值 为 此 时 , M ( - , 5 );a+)2+2) / BCB =23 , ••• BB =2? nsinRt △ A BB 中,A AB •/ △ A ' B 'C 是由△ ABC 旋转得到C=Z ABC=130 ,在△ CBB 中,•/ CB=CB 在CB=CB ,。

2013年全国中考数学(169套)选择填空解答压轴题分类解析汇编 专题15:几何三大变换问题之平移

2013年全国中考数学(169套)选择填空解答压轴题分类解析汇编 专题15:几何三大变换问题之平移

编辑一、选择题1. (2013年湖北荆门3分)如下图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是【】2. (2013年湖北荆州3分)如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线kyx(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是【】A.1 B.2 C.3 D.43. (2013年湖北荆州3分)如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形;④)2s 2x =-(0<x <2); 其中正确的是 ▲ (填序号).4. (2013年浙江湖州3分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是【 】A .16B .15C .14D .135. (2013年山东聊城3分)如图,在平面直角坐标系中,抛物线2y 1x 2=经过平移得到抛物线21x 2y 2x =-,其对称轴与两段抛物线所围成的阴影部分的面积为【 】A.2 B.4 C.8 D.166. (2013年广西南宁3分)如图,直线1y x2=与双曲线kyx=(k>0,x>0)交于点A,将直线1y x2=向上平移4个单位长度后,与y轴交于点C,与双曲线kyx=(k>0,x>0)交于点B,若OA=3BC,则k的值为【】A、3B、6C、94D、92【答案】D。

湖南岳阳2013年中考数学试题(word版)

湖南岳阳2013年中考数学试题(word版)

湖南岳阳2013年中考数学试题(word版)
中考网为您提供中考试题及答案:《2014年中考真题》《2014年中考试题答案》
2013年中考数学考试已经圆满结束,2014年中考即将来临,()小编已为大家整理出湖南岳阳2013年中考数学试题(word版),帮助各位同学们对自己的数学成绩进行预估,敬请各位考生关注()中考频道其他科目的试题及答案的公布。

点击下载:湖南岳阳2013年中考数学试题(word版).doc
点击下载:湖南岳阳2013年中考数学试题(word版).doc
以上是()小编已为大家整理出的湖南岳阳2013年中考数学试题(word版),更多内容请查看精品2013年中考试卷及答案专题。

2013中考数学真题及答案汇编相当经典不用花钱(八)

2013中考数学真题及答案汇编相当经典不用花钱(八)

【答案】B 【解析】方差小的比较稳定,故选 B。 5.(2013 山西,5,2 分)下列计算错误的是( )
A.x3+ x3=2x3
B.a6÷a3=a2
C.
12 2
3
1 1 D. 3
3
【答案】B
【解析】a6÷a3= a63 a3 ,故 B 错,A、C、D 的计算都正确。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年岳阳市中考试题数学(满分120分,考试时间90分钟)一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(2013湖南岳阳,1,3分)—2013的相反数是( )A.-2013B.2013C.12003D.12003-【答案】B2.(2013湖南岳阳,2,3分)计算a3﹒a2的结果是( )A.a5B.a3C.a3+a2 D.3a2【答案】A3.(2013湖南岳阳,3,3分)一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的汉字是( )A.建B.设C.和D.谐【答案】C4. (2013湖南岳阳,4,3分)不等式2<10x的解集在数轴上表示正确的是( )A.B.C.D.【答案】D5.(2013湖南岳阳,5,3分)关于x的分式方程7311+=--mx x有增根,则增根为( ) A.x=1 B.x=-1 C.x=3 D.x=-3【答案】A6.(2013湖南岳阳,6,3分)两圆半径分别是3cm和7cm,当圆心距d=10cm时,两圆的位置关系为( )A.外离B.内切C.相交D.外切【答案】D7.(2013湖南岳阳,7,3分)某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )A.12,13 B.12,14 C.13,14 D.13,16【答案】B8.(2013湖南岳阳,8,3分)二次函数2=++y ax bx c的图象如图所示,对于下列结论:①<0;a②<0;b③0;>c④20;+=b a⑤0++<a b c.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C二、填空题(本大题共8个小题,每小题4分,满分32分)9.(2013湖南岳阳,9,3分)分解因式:3-=xy x.【答案】x(y-5)10. (2013湖南岳阳,10,3分)单项式35-x y的系数是.【答案】-511. (2013湖南岳阳,11,3分)函数2=+y x中,自变量x的取值范围是.【答案】x≥-212.(2013湖南岳阳,12,3分)据统计,今年我市参加初中毕业学业考试的九年级学生近47500人,数据47500用科学计数法表示为.【答案】4.75×10413.(2013湖南岳阳,13,3分)如图,点P(-3,2)处一只蚂蚁沿水平方向向右爬行了5个单位后的坐标为.【答案】(2,2)14.(2013湖南岳阳,14,3分)如图所示的3⨯3方格形地面上,阴影部分是草地,其余部分是空地,一只自由飞翔的小鸟飞下来落在草地上的概率为.【答案】1 315.(2013湖南岳阳,15,3分)同一时刻,物体的高与影长成比例.某一时刻,高1.6m的人影长1,22,21,2,12, 1.==+==+===+k A y y x b x k b k b y x x把()分别代入和得,所以, 1.所以,y=是1.2m,一电线杆的影长为9m,则电线杆的高为 m . 【答案】1216. (2013湖南岳阳,16,3分)夏季荷花盛开,为了便于游客领略“人从桥上过,如在荷中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽...略不计...,则小桥总长为 .【答案】140m二、解答题(本大题共8个小题,满分64分.解答应写出文字说明、证明过程或演算步骤) 17.(2013湖南岳阳,17,6分)计算:201302(1)(π-+-- 【答案】18.(2013湖南岳阳,18,6分)先化简,再求值:2121--+-a a a ,其中a=3.【答案】19.(2013湖南岳阳,19,8分)如图,反比例函数=ky x与一次函数=+y x b 的图象都经过点A(1,2).(1)请确定反比例函数和一次函数的解析式; (2)求一次函数图象与两坐标轴的交点坐标. 【答案】(1)0011,1,1,0,0,1.===+==-x y y x y x x y (2)把和分别代入得,所以,与轴的交点坐标为(-)与轴的交点坐标为()20.(2013湖南岳阳,20,8分)某天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和土豆共2(1)12110=+--=--=原式[]22121(2)(1)(1)(1)=211111(1)(2)(1)(1)(21)21113,231 5.-----+--+=+=+------++--===---==⨯-=a a a a a a a a a a a a a a a a a a a a a 原式把代入,得原式(1) 他当天购进了黄瓜和土豆各多少千克? (2) 如果黄瓜和土豆全部卖完,他能赚多少钱? 【答案】(1).40102.43114.30.10kg 30kg.(2)10(4 2.4)30(53)76().+==⎧⎧⎨⎨+==⎩⎩⨯-+⨯-=设购进黄瓜千克,购进土豆千克,,由题意得,解,得所以,他购进黄瓜,购进土豆元x y x y x x y y21.(2013湖南岳阳,21,8分)某市为了更好地加强城市建设,实现美丽梦想,就社会热点问题广泛征求市民意见.方式是发放调查表:要求每位被调查人员写一个最关心的有关城市建设问题的建议,经统计整理绘制出(a)、(b)两幅不完整统计图,请根据统计图提供的信息解答下列问题:(1) 本次上交调查表的总人数为多少?(2) 求关心“道路交通”部分的人数,并补充完整条形统计图. 【答案】 (1)900÷30%=3000(人) (2)3000×(1-30%-20%-25%-5%)=3000× 20%=600(人)房屋建设项目其他道路交通环境保护绿化(a)(b)22.(2013湖南岳阳,22,8分)某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角45∠=ABC,坡长AB=2m.为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修建新楼梯AD,使30∠=ADC.(1)求舞台的高AC(结果保留根号);(2)在楼梯口B左侧正前方距离舞台底部C点3m处有一株大树,修新楼梯AD时底端D是否会触到大树?并说明理由.【答案】(1)在(m)(2) 在 3.=所以不会触到大树.23.(2013湖南岳阳,23,10分)某数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合,三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:DP=DQ;(2)如图②,小明在图①的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE 和QE存在一定的数量关系,请猜测他的结论并证明.(3)如图③,固定三角板直角顶点在D点不动,转到三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC的延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出DEP的面积.③②①【答案】24.(2013湖南岳阳,24,10分)如图,已知以E (3,0)为圆心,以5为半径的E 与x 轴交于A ,B 两点,与y 轴交于C 点,抛物线2=++y ax bx c 经过A ,B ,C 三点,顶点为F .(1)求A ,B ,C 三点的坐标;(2)求抛物线的解析式及顶点F 的坐标;(3)已知M 为抛物线上的一动点(不与C 点重合),试探究:①使得以A ,B ,M 为顶点的三角形面积与ABC 的面积相等,求所有符合条件的点M 的坐标;②若探究①中的M 点位于第四象限,连接M 点与抛物线顶点F ,试判断直线MF 与E 的位置关系,并说明理由.2M 1图1 图2【答案】22(1)(20),(80),(04).13,, 4.4225253,.44-=++=--==--A B C y ax bx c A B C y x x x y F ,,,(2)设解析式为,把点的坐标分别代入,构成方程组,可得把代入解析式得,所以点的坐标为(3,) 222222(1).(2).(3)108.,8-,6(8-)14-.50(14),.71=2=========+=+=+=+-==ADP CDQ DP DQ PE QE PDE QDE PDE QDE PE QE PD CQ PE EQ x CE x BE BC CE x x Rt BEP BP BE PE x x x DEP E 通过证明和全等可得证明和全等即可.证明和全等,可得.由勾股定理可得,设则在中,由勾股定理得,,即,2解,得所以,的面积1501506.277⨯=⨯⨯=Q CD11232231111(3)24134(3,4).421525.5,,,44=--===M C EF M M M y x x M M M E M F M E M F EF 如图,根据二次函数图象的轴对称性和等底等高的三角形面积相等可知,符合条件的点有3个.点和点关于直线对称,所以,的坐标为(6,-4).和的纵坐标都是,把y=4代入就可以分别求出横坐标,易得),(4)如图2,连接和根据点的坐标,易知由勾股定理的逆定理1190.∠=FM E M F E 可知,所以,直线和相切.。

相关文档
最新文档