电流检测的一般方式

合集下载

直流电流检测综述

直流电流检测综述

直流检测的原理及方法目录直流检测的原理及方法 (1)1.直接式测量 (1)2.非直接式测量 (2)2.1.霍尔传感器 (2)2.2.直流电流互感器 (5)2.3.电流比较仪 (8)3.总结 (9)测量电流的方法一般分为直接式和飞直接式两种。

直接式一般通过串联电阻进行,根据欧姆定律电流的大小和电压成正比,因此可以测量一个小电阻的电压差得到所经过电流的大小。

非直接式测量一般通过监控电流产生的磁场得到,由于电流周围本身会产生磁场,电流的大小和它自身产生的磁场成正比,因此可以通过测量磁场的大小得到经过电流的大小。

比较:直接式用于电压不高,电流相对较小的情况;非直接式不带有任何导电关系,可用于电压较高,电流较大的情况。

1.直接式测量如前所述,直接式测量一般都是通过测量串接在电路中电阻两端的电压信号来计算得到所测的电流的大小,测量电流的上限一般为十几安培。

直接得到的电信号是模拟信号,一般都比较微弱,还会外接放大电路将信号放大,再通过A/D 转换电路将其转换为数字信号。

这一类电流传感器对串接的测量电阻和外接的信号放大电路有一定的要求。

首先,这一电阻要有较高的精度和较好的温漂特性。

测量电阻的电阻值在一定的环境下是不变的,可以通过使用一些较好的测量仪器及较先进的测量方法得到所需的精度要求;但是温度漂移不可预测,补偿也比较困难。

因此,对于电流传感器而已,温漂特性是最应该关注的问题之一。

如:一个电阻R=1mΩ,精度为1%,电阻的温漂系数TCR=±200ppm/℃,当输出电流I=33A,输出功率P=1W;当I=45A 时输出功率P=2W,这种情况下电阻温度会有所改变。

假设温度漂移是75℃,如果TCR=20 ppm/℃,输出精度改变=(75℃)×(20 ppm/℃)×(0.0001%/ppm)=0.15%;如果是普通电阻,温漂特性达800ppm/℃,则输出精度改变=(75℃)×(800ppm/℃)×(0.0001%/ppm)=6%,可见,传感器中电阻的温漂系数对测量精度影响还是比较大的,要尽可能地选电阻温度系数小的材料。

检测导体和绝缘体的一般方法

检测导体和绝缘体的一般方法

检测导体和绝缘体的一般方法
检测导体和绝缘体的一般方法包括以下几种:
1.针尖测试:用尖细的导体(如金属针)轻轻接触待测物体表面,如果发生放电或电流流过,则表明该物体是导体,如果没有反应,则表明该物体是绝缘体。

2.电流检测:使用电流表或万用表测量电流。

将待测物体作为
电路的一部分,通过对其施加电压来测量电流。

如果电流流过,则表明该物体是导体,如果没有电流流过,则是绝缘体。

3.电阻检测:使用电阻表或万用表测量电阻。

将待测物体与一
个已知的电阻相连接,在施加电压的情况下测量整个电路的电阻。

如果电阻很小,则表明该物体是导体,如果电阻很大,则是绝缘体。

4.电容检测:使用电容表或万用表测量电容。

将待测物体与一
个已知的电容相连接,在施加电压或交流电的情况下测量整个电路的电容。

如果电容很小,则表明该物体是导体,如果电容很大,则是绝缘体。

5.材料特性检测:通过测试材料的导电性和绝缘性的特性来判断。

例如,导电材料具有良好的导电性,能够传导电流;而绝缘材料则能够有效阻止电流的传导。

这些方法都是基于电学性质的检测方法,对于大多数情况下可以有效地区分导体和绝缘体。

但需要注意的是,一些材料可能
具有介于导体和绝缘体之间的特性,例如半导体。

在这种情况下,可能需要更专门的测试方法来鉴定。

变频器常用检测方法

变频器常用检测方法

1 引言控制系统反馈量检测的精确程度,从某种意义上说,很大程度上决定了控制系统所能达到的控制品质。

检测电路是变频调速系统的重要组成部分,它相当于系统的“眼睛和触觉”。

检测与保护电路设计的合理与否,直接关系到系统运行的可靠性和控制精度。

2 变频器常用检测方法和器件2.1 电流检测方法图1 电流互感示意图电流信号检测的结果可以用于变频器转矩和电流控制以及过流保护信号。

电流信号的检测主要有以下几种方法。

(1) 直接串联取样电阻法这种方法简单、可靠、不失真、速度快,但是有损耗,不隔离,只适用于小电流并不需要隔离的情况,多用于只有几个kva的小容量变频器中。

(2) 电流互感器法这种方法损耗小,与主电路隔离,使用方便、灵活、便宜,但线性度较低,工作频带窄(主要用来测工频),且有一定滞后,多用于高压大电流的场合。

如图1所示。

图1中,r为取样电阻,取样信号为:us=i2r=i1r/m (1)式中,m为互感器绕组匝数。

电流互感器测量同相的脉冲电流ip时,副边也要用恢复二极管整流,以消除原边复位电流对取样信号的影响,如图2(a)所示。

在这种电路中,互感器磁芯单向磁化,剩磁大,限制了电流测量范围,可以在副边加上一个退磁回路,以扩展其测量范围,如图2(b)所示。

电流互感器检测后一般要通过整流后再用电阻取样,如图2(a)。

由于主回路电流会有尖峰,如图3(a),这种信号用于峰值电流控制和保护都会有问题。

图2 电流互感器及范围扩展随着脉宽的减小,前沿后斜坡峰值可能比前沿尖峰还低,就会造成保护电路误动作,所以要对电流尖峰进行处理。

处理的方法见图3(b),和rs并联一个不大的电容cs,再加一个合适的rc参数,就能有效地抑制电流尖峰。

如图3(c)所示。

图3 电流取样信号的处理(3) 霍尔传感器法它具有精度高、线性好、频带宽、响应快、过载能力强和不损失测量电路能量等优点。

其原理如图4所示。

图4中,ip为被测电流,这是一种磁场平衡测量方式,精度比较高,若lem的变流比为1:m,则取得电压us也符合式(1)。

浅谈电流检测方式(Allegro电流传感器简介)

浅谈电流检测方式(Allegro电流传感器简介)

一、检测电阻+运放优势:成本低、精度较高、体积小劣势:温漂较大,精密电阻的选择较难,无隔离效果。

分析:这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。

检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。

运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。

二、电流互感器CT/电压互感器 PT在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。

而CT 和PT就是特殊的变压器。

基本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。

PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。

CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。

它的工作原理和变压器相似。

也称作TA或LH(旧符号)工作特点和要求:1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。

2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。

3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。

4、变换的准确性。

PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。

电磁式电压互感器的工作原理和变压器相同。

也称作TV或YH(旧符号)。

工作特点和要求:1、一次绕组与高压电路并联。

2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。

3、二次绕组有一点直接接地。

4、变换的准确性三、模块型霍尔电流传感器模块型霍尔电流传感器分开环模式与闭环模式。

各种电流检测方式的比较

各种电流检测方式的比较
ACS758
ACS758的原理是一样的。与ACS712、ACS710相比,其特点是:量程大,分为50A、100A、150A、200A四个等级。内置路径内阻小,为100uΩ.温度等级,50A、100A量程的等级为L级,即-40~150℃;150A量程的为K级,即-40~125℃;200A量程的为E级,即-40~85℃.带宽为120KHz,响应时间为4us。25℃时,原边1200A大电流时,可承受时间为1秒。85℃时,原边900A大电流时,可承受时间为1秒。150℃时,原边600A大电流时,可承受时间为1秒。以上介绍的为Allegro的三颗代表型芯片级霍尔电流传感器,我介绍的均为双向的霍尔电流传感器(可测交直流),输出加载于0.5Vcc上。Allegro也有单向的霍尔传感器,其单向的霍尔电流传感器(可测正电流),输出加载于0.1Vcc上。芯片级的霍尔电流传感器,目前其最大量程为200A,对于大于200A的电流,可用Allegro线性霍尔做成塻块型霍尔电流传感器。事实上,国内有部份品牌的模块型霍尔电流传感器,就是应用Allegro的线性霍尔做为核心做成的。六.小结各种电流检测的方式原理各不同。检测电阻+运放与电流互感器属于低成本的方案,其可靠性与安全性较差,主要用于低端方案。模块式霍尔电流传感器,其体积较大,双电源供电,成本较高。隔离放大器,其原边,副边均需电源供电,在消除干扰方面的设计难度更大,成本比模块式霍尔电流传感器要低,比Allegro的成本高。外围电路较复杂,需加检测电阻。Allegro的霍尔电流传感器,量程相对于每一个型号来说,是固定的,最高量程为200A。小量程(50A以下)的霍尔电流传感器成本低,ACS758的成本比模块型霍尔电流传感器低。输出加载于0.5Vcc,输出信号为正电压。
闭环模式又称为零磁通模式或磁平衡模式,其输入与输出端均为电流信号。原理见下图

重要的富士变频器中常见的检测与保护电路

重要的富士变频器中常见的检测与保护电路

富士变频器中常见的检测与保护电路标签:杂谈1 引言控制系统反馈量检测的精确程度,从某种意义上说,很大程度上决定了控制系统所能达到的控制品质。

检测电路是变频调速系统的重要组成部分,它相当于系统的“眼睛和触觉”。

检测与保护电路设计的合理与否,直接关系到系统运行的可靠性和控制精度。

2 变频器常用检测方法和器件2.1 电流检测方法图1 电流互感示意图电流信号检测的结果可以用于变频器转矩和电流控制以及过流保护信号。

电流信号的检测主要有以下几种方法。

(1) 直接串联取样电阻法这种方法简单、可靠、不失真、速度快,但是有损耗,不隔离,只适用于小电流并不需要隔离的情况,多用于只有几个kva的小容量变频器中。

(2) 电流互感器法这种方法损耗小,与主电路隔离,使用方便、灵活、便宜,但线性度较低,工作频带窄(主要用来测工频),且有一定滞后,多用于高压大电流的场合。

如图1所示。

图1中,r为取样电阻,取样信号为:us=i2r=i1r/m (1)式中,m为互感器绕组匝数。

电流互感器测量同相的脉冲电流ip时,副边也要用恢复二极管整流,以消除原边复位电流对取样信号的影响,如图2(a)所示。

在这种电路中,互感器磁芯单向磁化,剩磁大,限制了电流测量范围,可以在副边加上一个退磁回路,以扩展其测量范围,如图2(b)所示。

电流互感器检测后一般要通过整流后再用电阻取样,如图2(a)。

由于主回路电流会有尖峰,如图3(a),这种信号用于峰值电流控制和保护都会有问题。

图2 电流互感器及范围扩展随着脉宽的减小,前沿后斜坡峰值可能比前沿尖峰还低,就会造成保护电路误动作,所以要对电流尖峰进行处理。

处理的方法见图3(b),和rs并联一个不大的电容cs,再加一个合适的rc参数,就能有效地抑制电流尖峰。

如图3(c)所示。

图3 电流取样信号的处理(3) 霍尔传感器法它具有精度高、线性好、频带宽、响应快、过载能力强和不损失测量电路能量等优点。

其原理如图4所示。

图4中,ip为被测电流,这是一种磁场平衡测量方式,精度比较高,若lem的变流比为1:m,则取得电压us也符合式(1)。

ACS712电流检测

ACS712电流检测

电流检测方法介绍一、串电阻检测优点:电路结构清晰,成本低,实时性好,精度较高;缺点:温漂较大,无隔离效果,量程较大时,需要分多个挡来处理结果,容易受GND地的干扰;总结:一般的产品都可以用该方案解决。

实际调试过程中,信号容易受地线干扰,通过PCB合理的布局跟软件的滤波处理,能解决干扰的问题。

另外,当电流量程较大时,需要做两级甚至两级以上的处理(原因:采样电阻小,小电流的时候,信号很难采集到;采样电阻曾大时,大电流的时候超过运放的电压)二、电流互感器检测电磁式电流互感器优点:结构简单可靠,寿命较长,便于维护。

价格较低。

电磁式电流互感器缺点:重量大。

不能用于高频检测。

精度较低。

三、其他检测方式(这里不做详细介绍)AVAGO的光耦隔离放大器。

TI的电容式隔离放大器ADI的西格玛德尔塔式隔离放大器。

四、基于霍尔感应原理的电流检测专用芯片(ACS712为例讲解)1)命名说明:ACS712ELCTR-20A-T为例A AllegroCS current sensor712 part numberE 温度等级, Allegro温度等级常用的S(-20~85) E(-40~85) K(-40~125) L(-40~150) LC 封装TR 包装,TR为卷带盘装20A 量程T 符合环保要求2)ACS712主要特点●80KHZ带宽●总输出误差为1.5%●采用小型贴片SOIC8封装● 1.2mΩ内部电阻●左侧大电流引脚(PIN1-4)与右侧低电压引脚(PIN5-8)最小绝缘电压为2100V●5V单电压工作●出厂时精准校准●该器件不可应用于汽车领域3)原理与应用领域原理与简介:该芯完全基于霍尔感应的原理设计,由一个精确的低偏移线性霍尔传感器电路与位于接近IC表面的铜箔组成(如下图所示),电流流过铜箔时,产生一个磁场,霍尔元件根据磁场感应出一个线性的电压信号,经过内部的放大、滤波、斩波与修正电路,输出一个电压信号,该信号从芯片的第七脚输出,直接反应出流经铜箔电流的大小。

变频器电流故障的检测方法

变频器电流故障的检测方法

此故障相对比较简单,一般都是电流检测电路发生故障导致。

目前公司主要使用的电流检测电路有两种形式:霍尔传感器检测和7840光耦隔离检测。

(1)霍尔传感器检测:对于使用霍尔传感器的电流检测电路上电跳ITE故障只需测试关键点电压即可判断出故障部位。

【霍尔好坏判断】在霍尔±15V供电正常的情况下,霍尔的信号输出脚静态(不带载)电压应为零,如异常则说明霍尔损坏。

【运放电路检测】目前公司所采用的运放IC型号为TL082,其内部包含两路独立运算放大器,1脚,7脚为输出脚,4脚,8脚为±15V供电脚,2,3,5,6脚为信号输入脚。

正常情况下,TL082输出脚静态(不带载)电压为零。

(2)7840光耦隔离检测:7840光耦隔离检测后级同样使用TL082,检测方法同前。

【光耦7840的检测】7840光耦热冷端分别有一组5V供电,实际检修中发现热端的5V供电较容易出现故障导致跳ITE。

该5V电源是由相应相的驱动电源通过78L05稳压后加到7840的1,4脚。

其中7840的2,3脚为检测信号输入脚。

5,8脚为冷端5V供电脚(跟控制板5V为同一电源)。

6,7脚为信号输出脚,静态电压(不带载)为2.5V。

若检测到5,6脚电压输出不平衡,一般都为热端5V供电异常或7840本身损坏。

值得注意的是:7840热,冷端的5V 供电非开关电源开关变压器同一绕组提供,所以在检测电压时注意正确选择接地点。

(3)主控板问题导致的ITE故障:主控板上涉及ITE故障的电路较简单,元器件较少。

维修时只需测试相关检测点的静态电压即可判断。

正常情况下,主控板上的Iu,Iv,Iw三个检测点的静态电压为零,若不为零则检测排线是否开路。

CPU的73脚,79脚,80脚分别为IU-AD,IV- AD,IW-AD。

该三点电压正常为1.6V左右。

如检测电压正常但仍跳ITE则判为CPU 本身损坏。

如若某脚电压异常则只需检测相应脚外部阻容元件是否有损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流检测的一般方式
电流检测的一般方式
电流检测常用的方式为电阻直接取样、利用霍尔元件(LEM)取样和利用电流互感器取样。

用电阻取样易于实现,电路设计简单,但损耗大,检测信号易受干扰,适用于小功率转换电路,电路如图1所示,其中R1为电流检测电阻。

以源端平均电流1A为例,常用的电流控制型PWM控制器UC1845的电流保护检测电压为1V,这样需要的电阻为1Ω,功耗为1W,按照航天器元器件降额要求(GJB/Z 35-93《元器件降额准则》),至少选用2W的电阻。

而一个2W电阻的封装对于模块电源来说体积较大。

相关文档
最新文档