(完整版)微电子技术发展现状与趋势
微电子制造技术的新进展与发展趋势

微电子制造技术的新进展与发展趋势微电子制造技术是当今信息时代的重要支撑之一。
随着信息技术的高速发展,微电子制造技术也在不断进步和发展。
本文将从微电子制造技术的新进展和未来发展趋势两个方面进行探讨。
一、微电子制造技术的新进展随着国内外市场对高品质电子产品需求的日渐增加,微电子制造技术在整个电子产业链中的作用越来越明显。
与此同时,随着人工智能、物联网、云计算等新技术的不断涌现,微电子制造技术也在不断革新和升级。
1、新型晶体管的涌现在微电子制造技术中,晶体器件是非常重要的一环。
传统的CMOS(互补金属氧化物半导体)技术,在达到4nm左右时遇到了困境。
但随着新型晶体管的涌现,这一限制得到了很大程度的突破。
例如,半金属半绝缘体场效应晶体管(FinFET)和多峰形蜗牛晶体管(MBCFET)等,在提高晶体管性能的同时,降低了功耗和散热问题,有望成为未来计算机芯片制造的新选择。
2、3D打印技术的应用3D打印技术的出现,为微电子制造技术带来了全新的突破。
该技术可以用于制造传统的电子元器件,也可以用于制造微纳米制造模板,甚至可以用于直接打印出基于碳纳米管和石墨烯等材料的电子元件。
这些技术对于微电子制造的材料和器件研究,带来了更为广阔的空间。
3、高清晰度显示器的生产高清晰度(High-Definition,简称HD)显示器可以提供更加清晰明晰的显示效果,已经成为移动设备、电视机等电子产品市场的主流趋势。
为了满足市场需求,微电子制造技术也在不断加强高清晰度显示器的制造技术。
例如,在制造宽色域显示器时,采用了类似于“白色LED + 红绿蓝荧光粉”的方式,提高了显示器的亮度和色彩还原度。
二、微电子制造技术的发展趋势除了新型晶体管、3D打印和高清晰度显示器等技术的突破,微电子制造技术在未来的发展趋势中还有以下几个方面的重点发展:1、低功耗和高信噪比低功耗和高信噪比是微电子制造技术需要持续发展的一个方向。
随着物联网的兴起,各种传感器的应用日益广泛。
微电子技术发展趋势及未来发展展望

微电子技术发展趋势及未来发展展望论文概要:本文介绍了穆尔定律及其相关内容,并阐述对微电子技术发展趋势的展望。
针对日前世界局势紧张,战争不断的状况,本文在最后浅析了微电子技术在未来轻兵器上的应用。
由于这是我第一次写正式论文,恳请老师及时指出文中的错误,以便我及时改正。
一.微电子技术发展趋势微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。
微电子技术的发展,大大推动了航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术及家用电器产业的迅猛发展。
微电子技术的发展和应用,几乎使现代战争成为信息战、电子战。
在我国,已经把电子信息产业列为国民经济的支拄性产业。
如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。
集成电路(IC)是微电子技术的核心,是电子工业的“粮食”。
集成电路已发展到超大规模和甚大规模、深亚微米(0.25μm)精度和可集成数百万晶体管的水平,现在已把整个电子系统集成在一个芯片上。
人们认为:微电子技术的发展和应用使全球发生了第三次工业革命。
1965年,Intel公司创始人之一的董事长Gorden Moore在研究存贮器芯片上晶体管增长数的时间关系时发现,每过18~24个月,芯片集成度提高一倍。
这一关系被称为穆尔定律(Moores Law),一直沿用至今。
穆尔定律受两个因素制约,首先是事业的限制(business Limitations)。
随着芯片集成度的提高,生产成本几乎呈指数增长。
其次是物理限制(Physical Limitations)。
当芯片设计及工艺进入到原子级时就会出现问题。
DRAM的生产设备每更新一代,投资费用将增加1.7倍,被称为V3法则。
目前建设一条月产5000万块16MDRAM的生产线,至少需要10亿美元。
据此,64M位的生产线就要17亿美元,256M位的生产线需要29亿美元,1G位生产线需要将近50亿美元。
至于物理限制,人们普遍认为,电路线宽达到0.05μm时,制作器件就会碰到严重问题。
微电子技术发展趋势及我国发展战略

陆剑侠王效平李正孝东北微电子研究所1引言微电子技术是当今世界发展最快的技术之一,是信息化产业的基础和核心技术。
90年代以来,由于微电子技术的突破和微电子新产品的不断问世和广泛应用,使信息化产业以惊人的速度发展,信息化产业在国民生产总值(GNP)中所占份额不断提高,已成为全球主流产业。
专家预测,不久的将来,以微电子技术及其产品为主导的信息化产业将超过钢铁工业,成为世界的支柱性产业。
现在,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。
2国外微电子技术发展概况2.1集成电路(IC))技术现状与发展趋势集成电路(IC)出现于60年代,根据摩尔定律,每经过18~24个月,IC的集成度增长一倍;人们也发现IC的特征尺寸每隔3年减小30%,IC芯片面积增加1.5倍,Ic芯片的速度增加1.5倍,同时硅晶圆片的直径也逐渐增加,集成电路每代间隔三年。
1994年美国半导体工业协会(sIA)根据美国半导体公司的主流生产线技术发展的情况,制定了美国半导体技术发展蓝图,1997年美国SIA又根据情况变化制定了美国半导体公司先进水平生产线技术发展蓝图,如表1所示。
墨!羞垦主曼签夔莶垄垦壁圉年代1997199920012003200620092012最小特征尺寸(Ⅲ)2501801501301007050臻篇赫c)256M1G一4G16G64G256G舞蒜善曩瑟11M21M40M76M200M500M1400M溜甚昌籀釜产750120014001600200025003000金属化最多层数66.777.88.999最低供电电压(v)1.8.2.51.5.1.81.2.1.51.2.1.5o.9.1.2o6.o.9o5.o.6茎在勰尹片200300300300300450450人们正在研究摩尔定律能沿用多久,实际上它受两个因素制约:首先是商业限制,随着芯片集成度的提高,特征尺寸的缩小,生产成本几乎呈指数增长;其次是物理限制,当芯片特征尺寸进到原子量级时就会遇到统计学的问题。
微电子技术的发展现状与未来趋势

微电子技术的发展现状与未来趋势随着科技的迅猛发展,微电子技术作为电子领域的重要组成部分,正以令人瞩目的速度不断发展。
在今天的社会中,微电子技术已经无处不在,从我们日常使用的手机、电脑到各种智能设备,都离不开微电子技术的应用。
本文将从多个角度来探讨微电子技术的发展现状和未来趋势。
首先,我们来看看微电子技术的现状。
目前,微电子技术在各个领域都发挥着重要作用。
在通信领域,微电子技术使得无线通信更加便捷和高效,推动了移动互联网的迅猛发展。
在医疗领域,微电子技术被广泛应用于生物传感器、医疗设备等方面,为医疗行业带来了巨大的进步。
另外,在能源领域,微电子技术也有重要作用,例如太阳能电池、高效节能的微处理器等。
总之,微电子技术的广泛应用使得我们的生活变得更加便利和高效。
然而,我们也应该认识到,微电子技术发展中存在一些挑战和问题。
首先,尽管微电子技术已经取得了巨大的进步,但是其制造成本仍然较高,这限制了其应用范围的扩大。
其次,由于微电子技术对环境的敏感性,电子废弃物的增加成为了一个难题。
此外,微电子技术的安全性问题也备受关注。
随着互联网的普及,网络安全问题对于微电子技术的发展具有重要影响。
因此,在微电子技术的发展过程中,我们需要找到解决这些问题的方法,以推动其向更高水平发展。
接下来,我们来探讨一下微电子技术的未来趋势。
可以预见的是,随着人工智能和物联网技术的不断发展,微电子技术将会在更多领域得到应用。
例如,在智能家居领域,微电子技术可以实现设备之间的互联互通,使得家居设备更加智能化和便捷。
此外,随着可穿戴设备的普及,微电子技术也将在健康监测、运动追踪等方面发挥作用。
更重要的是,微电子技术的应用将会渗透到更广泛的生活领域,从而改变我们的生活方式。
未来,微电子技术的发展还将面临新的挑战和机遇。
首先,研发更先进的微电子器件和材料将是发展的关键。
例如,研究新型半导体材料、设计更小尺寸的集成电路等将推动微电子技术向更高级别发展。
中国微电子技术发展现状及发展趋势

中国微电子技术发展现状及发展趋势论文概要:介绍了中国微电子技术的发展现状,并阐述对微电子技术发展趋势的展望。
针对日前世界局势紧张,战争不断的状况,本文在最后浅析了微电子技术在未来轻兵器上的应用。
【关键词】:微电子技术生产微电子产品技术发展政策微电子产业统计指标体系发展与应用制造企业数据采集高技术产业政策研究一.我国微电子技术发展状况1956年7月,国务院科学专业化规划委员会正式成立,组织数百各科学家和技术专家编制了十二年(1965—1967年)科学技术远景规划,这个著名的《十二年规划》中,明确地把发展计算机技术、半导体技术、无线电电子学、自动化和遥感技术放到战略的重点上,我国半导体晶体管是1957年研制成功的,1960年开始形成生产;集成电路始于1962年,于1968年形成生产;大规模集成电路始于70年代初,80年代初形成生产。
但是,同世界先进水平相比较,我们还存在较大的差距。
在生产规模上,目前我国集成电路工业还没有实现高技术、低价格的工业化大生产,而国外的发展却很快,美国IBM公司在日本的野洲工厂生产64K动态存贮器,1983年秋正式投产后,每日处理硅片几万片,月产量为上百万块电路,生产设备投资约8000万美元。
日本三菱电机公司于1981年2月开始动土兴建工厂,1984年投产,计划生产64K动态存贮器,月产300万块,总投资约为1.2亿美元。
此外,在美国和日本,把半导体研究成果形成工业化生产的周期也比较短。
在美国和日本,出现晶体观后,形成工业生产能力是3年;出现集成电路后形成工业生产能力是1—3年;出现大规模集成电路后形成工业生产能力是1—2年;出现超大规模集成电路后形成工业生产能力是4年。
我国半导体集成电路工业长期以来也是停留在手工业和实验室的生产方式上。
近几年引进了一些生产线,个别单位才开始有些改观,但与国外的差距还是相当大的。
从产品的产值和产量方面来看,目前,全世界半导体与微电子市场为美国和日本所垄断。
微电子技术发展现状与未来趋势分析

微电子技术发展现状与未来趋势分析随着科技的不断进步,微电子技术已经成为了现代社会中不可或缺的一部分。
从计算机到智能手机,从家电到汽车,微电子技术的应用无处不在。
本文将从微电子技术的发展现状以及未来趋势两方面进行分析。
首先,我们来看微电子技术的发展现状。
近年来,微电子技术在多个领域取得了巨大的进展。
在计算机领域,微电子技术的快速发展推动了计算机性能的大幅提升。
从最初的大型机到个人电脑,再到如今的云计算和人工智能,微电子技术的进步使得计算能力呈指数级增长。
在通信领域,微电子技术的应用使得信息传输更加快捷和稳定。
无线网络的发展以及5G技术的推动,都离不开微电子技术的支持。
此外,微电子技术在医疗、能源、航空航天等领域也有着广泛的应用,不断创造了各种奇迹。
然而,微电子技术的发展并不是一帆风顺的。
随着集成电路规模逐渐缩小,遇到了一系列的挑战。
首先是材料的选择。
传统的硅材料已经无法满足微电子技术对更高性能和更低功耗的需求,因此研究人员开始寻找新的替代材料,如石墨烯、硅基上部分极和氮化镓等。
其次是工艺的突破。
微电子器件的制造需要高精度的加工和控制技术,这对制造工艺提出了更高的要求。
再次是集成度的提升。
随着技术的进步,集成电路上的晶体管数量不断增加,但是其面积却有限。
如何在有限的空间内安置更多的晶体管成为了一个难题。
最后是功耗和散热问题。
随着晶体管数量的增加,功耗和散热都会变得更加复杂。
如何保持微电子器件的稳定运行成为了一项重要的研究领域。
接下来,让我们来探讨一下微电子技术未来的发展趋势。
首先是人工智能和物联网的大力推动。
随着人工智能和物联网的兴起,对计算能力的需求将进一步增大,这将推动微电子技术更加快速地发展。
其次是可穿戴设备的普及。
随着人们对健康的关注日益增加,可穿戴设备将会成为一个重要的市场。
微电子技术的发展将为可穿戴设备提供更高效、更稳定的性能。
再次是能源领域的突破。
微电子技术的应用将推动能源领域的创新,例如太阳能电池、燃料电池等。
微电子发展趋势

微电子发展趋势微电子是指尺寸在纳米至微米级别的电子器件和系统。
在过去几十年中,微电子领域取得了巨大的发展,并且其发展趋势也在不断变化和演进。
以下是微电子发展的一些趋势:1. 小型化和集成化:微电子器件逐渐实现小型化和集成化的发展。
其尺寸不断缩小,功能不断增加。
例如,原本需要多个电子器件才能实现的功能现在可以集成到一个芯片中,减小了体积和功耗。
2. 低功耗和高性能:随着移动设备和物联网的发展,对微电子器件的功耗和性能要求也越来越高。
微电子技术不断提升功耗效率,同时提高性能和稳定性,以满足不同应用的需求。
3. 高集成度和3D技术:为了满足多功能和高性能的需求,微电子器件的集成度也越来越高。
通过3D技术,可以在三维空间中布置电子器件,提高了空间利用率,同时降低了电路布线的复杂性。
4. 新材料和制造工艺:微电子器件的发展还受益于新材料的引入和制造工艺的改进。
例如,石墨烯、碳纳米管等新材料的应用使得器件性能得到了提升。
同时,新的制造工艺也使得器件的制造成本和周期得到了降低。
5. 医疗和生物应用:微电子技术在医疗和生物领域的应用也越来越广泛。
例如,微机械系统(MEMS)可以用于制造微型传感器和生物芯片,用于监测人体健康状况和进行基因研究等。
6. 量子计算和量子通信:微电子领域还涌现出了量子计算和量子通信等新兴技术。
量子计算利用量子叠加和量子纠缠等性质,可以进行超快速计算,并且具有极高的安全性。
量子通信则利用量子纠缠实现了绝对安全的通信。
7. 人工智能和边缘计算:随着人工智能的兴起,微电子领域也在努力满足人工智能的需求。
边缘计算技术可以在网络边缘进行数据处理和决策,减少了数据传输的延迟和压力。
微电子器件和系统的发展将进一步推动人工智能的应用。
总之,微电子领域的发展趋势是小型化、集成化、功耗和性能的提升、新材料和制造工艺的引入、医疗和生物应用的拓展、量子技术的发展以及与人工智能的结合等。
这些趋势将不断推动微电子技术的创新和应用,为我们的生活和工作带来更多的便利和可能性。
2023年微电子行业市场发展现状

2023年微电子行业市场发展现状随着科技的不断发展,微电子行业已经变得越来越重要。
现在,微电子行业已经成为电子行业的一个关键组成部分。
在微电子行业中,通过微型工艺技术制造微型芯片,从而将电子元器件制造得更小更精密。
随着各种新的技术的引入,微电子行业市场发展现状已经发生了很大变化,下面是详细介绍。
一、市场规模微电子行业是一个庞大且不断发展壮大的市场。
全球微电子市场规模不断扩大,2019年市场规模为4486.48亿美元,预计到2025年将达到7480.85亿美元。
这一规模的增长主要是因为必须将制造过程更精细化和自动化,同时,不断提高芯片性能要求也对市场规模的增长有贡献。
二、行业竞争微电子行业是一个很有竞争力的行业,核心的厂商数量非常少。
这些核心厂商拥有非常深厚的技术实力,并且可以通过不断的研发来获得市场领先地位。
例如,英特尔、三星、华为、高通等公司拥有丰富的技术积累和资金实力,能够研制出各种高价值的芯片产品,从而保持其在市场中的优势地位。
三、5G技术的发展5G技术的发展对微电子行业的发展起到了重大的推动作用,市场规模也因此得到了迅速的扩大。
5G技术是一种高速、高效、安全的通信技术,是目前通信领域最新的技术,它需要大量的微电子芯片来支撑其系统的稳定运行。
目前,5G技术已经得到全球各大国家和地区的广泛应用,其需求量不断增加,对微电子行业产生了积极的影响。
四、人工智能的发展人工智能是提高微电子芯片性能的关键技术之一,其发展对微电子行业产生了深远的影响。
人工智能技术可以让芯片更加智能化,从而使它可以更好地适应各种不同的应用场景。
随着人工智能技术不断发展,微电子芯片的性能得到了快速提升,这也为微电子行业未来的发展带来了许多机遇。
五、新兴市场的增长随着新兴市场的增长,微电子行业也迎来了新的机遇。
例如,中国是一家非常重要的市场,其规模已经成为全球最大的市场之一。
与此同时,印度、东南亚和中南美洲等新兴市场也蓬勃发展,为微电子行业的发展创造了更多的机会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文由jschen63贡献ppt文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
微电子技术的发展主要内容微电子技术概述;微电子发展历史及特点;微电子前沿技术;微电子技术在军事中的应用。
2010-11-26北京理工大学微电子所22010-11-26北京理工大学微电子所3工艺流程图厚膜、深刻蚀、次数少多次重复去除刻刻蚀牺牲层,释放结构多工艺工工艺2010-11-26工5微电子技术概述微电子技术是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。
微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺技术的总和;微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向;衡量微电子技术进步的标志要在三个方面:一是缩小芯片中器件结构的尺寸,即缩小加工线条的宽度;二是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。
2010-11-26 北京理工大学微电子所 6微电子技术的发展历史1947年晶体管的发明;到1958年前后已研究成功以这种组件为基础的混合组件; 1962年生产出晶体管——晶体管逻辑电路和发射极耦合逻辑电路;由于MOS电路在高度集成和功耗方面的优点,70 年代,微电子技术进入了MOS电路时代;随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。
实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。
2010-11-26 北京理工大学微电子所 7微电子技术的发展特点超高速:从1958年TI研制出第一个集成电路触发器算起,到2003年Intel推出的奔腾4处理器(包含5500 万个晶体管)和512Mb DRAM(包含超过5亿个晶体管),集成电路年平均增长率达到45%;辐射面广:集成电路的快速发展,极大的影响了社会的方方面面,因此微电子产业被列为支柱产业。
2010-11-26 北京理工大学微电子所 82010-11-26北京理工大学微电子所9摩尔定律1965年,美国硅谷仙童半导体公司的戈登.摩尔,研究了1959到1965年半导体工业发展的数据,发现:如果将能够集成在一块芯片上的晶体管数量画在一个半对数坐标上,可以得到一条直线;归纳出:集成电路上可容纳的晶体管数量,大约每隔 18~24个月就会翻一番;此后半导体工业的发展也进一步地证实了这一结论: 1969年Intel 4位微处理器4004有2300只晶体管,时钟频率104KHz。
1998年Intel推出的奔腾II,32位的处理器,有750 万只晶体管,CPU 时钟450MHz,集成度提高了 260倍,而时钟频率提高了4326倍。
2010-11-26 北京理工大学微电子所 102010-11-26北京理工大学微电子所11微电子前沿技术微电子制造工艺,包括元器件的生产、测试和封装等;微电子材料的研究;超大规模集成电路/混合信号/射频集成电路设计技术; MEMS技术等。
2010-11-26北京理工大学微电子所12微电子制造工艺微加工技术(Microfabrication)是制造MEMS的主要手段。
微加工技术包括IC制造技术(如光刻、薄膜淀积、注入扩散、干法和湿法刻蚀等)、微机械加工技术(Micromachining)(如牺牲层技术、各向异性刻蚀、反应离子深刻蚀(DRIE)、 LIGA、双面光刻、键合,以及软光刻技术等)和特殊微加工技术。
目前微电子制造的主要方法也是“自上而下”的微型化过程,即采用光刻和刻蚀等微加工方法,将大的材料制造为小的结构和器件,并与电路集成,实现系统微型化。
2010-11-26 北京理工大学微电子所 13光刻工艺示意图2010-11-26北京理工大学微电子所14光刻工艺面临的技术问题由于工艺尺寸的减小,必须使用波长更短的光源,实现越来越困难,从早期的水银灯直到现在使用的远紫外线,甚至研发中的粒子束;导致光刻设备以及掩模成本急剧上升;光刻时小尺寸图形所产生的干涉和衍射效应使得光刻图案失真越来越严重,严重影响制造出的电路的性能以及一致性;必须加以矫正,甚至在设计阶段就必须考虑这一影响,加大了投入。
2010-11-26 北京理工大学微电子所 15氧化/扩散示意图2010-11-26北京理工大学微电子所16等离子刻蚀示意图2010-11-26北京理工大学微电子所17离子注入示意图2010-11-26北京理工大学微电子所18MEMS的典型工艺过程的典型工艺过程淀积牺牲层PECVD SiO2 2μm 光刻牺牲层(a)刻蚀牺牲层(RIE) 刻蚀牺牲层(b)淀积结构层LPCVD poly-Si 1 μm(c)MEMS的典型工艺过程的典型工艺过程光刻结构层(d)刻蚀结构层(RIE) 刻蚀结构层(RIE)(e)去除牺牲层,去除牺牲层,释放结构层HF(f)半导体材料元素半导体:锗、硅、硒、硼、碲、锑等;化合物半导体:砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等;有机半导体:萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等;无定形半导体:氧化物玻璃和非氧化物玻璃两种。
2010-11-26北京理工大学微电子所21晶体半导体材料的制备2010-11-26北京理工大学微电子所22元素半导体元素半导体是指由单一元素晶体组成的衬底材料;如锗、硅、硒、硼、碲、锑等;硅是当前使用最广泛、工艺最成熟的半导体材料;硅材料的禁带宽度、载流子漂移率等指标适中,制备成本低;在电路指标要求较高的场合,硅材料有其缺陷。
2010-11-26北京理工大学微电子所23化合物半导体由化合物组成的半导体材料;种类繁多、特性各异;如:砷化镓主要用来制作高频电路和器件;碳化硅主要用于制作大功率、耐高温和特种环境下工作的器件;存在制作成本高昂,工艺稳定性和兼容性,设计环境缺乏等问题;对其研究和认识程度不如硅材料。
2010-11-26 北京理工大学微电子所 24有机半导体和无定形半导体有机半导体主要用于发光器件和生物芯片;无定形半导体主要用于生物芯片;这两种半导体材料是近年来的研究热点。
2010-11-26北京理工大学微电子所25集成电路设计集成电路设计面临主要问题可以分为以下三个方面:超大规模集成电路设计;高精度模拟、混合信号集成电路设计;射频集成电路设计。
目的是设计出速度更快、功耗更低、面积更小、功能更多的芯片。
2010-11-26 北京理工大学微电子所 26超大规模集成电路设计超大规模集成电路设计主要难点在于如何在最短的时间内完成千万门级电路的设计任务,并进行有效的验证;主要的技术问题如下:自动布局、布线算法;行之有效的验证方法;日益严格的功耗要求;面积和成本的考虑等。
2010-11-26 北京理工大学微电子所 27混合信号集成电路设计技术混合信号即数字信号和模拟信号的统称;将处理上述两种信号的电路集成在同一个芯片中必须解决相互的干扰问题,尤其是数字信号对于模拟信号的干扰;如果此类芯片能够完成以前一个电子系统才能完成的任务,又可以将其称为SOC(片上系统)。
此时,模数、软硬协同验证问题就必须加以解决。
2010-11-26北京理工大学微电子所28射频集成电路设计技术射频集成电路是近几年研究的热点,过去使用 AsGa等宽禁带材料实现;近几年随着硅工艺的改进,越来越多的设计者使用硅材料设计射频集成电路;因此,对于射频集成电路,芯片测试、多芯片封装、不同制造工艺的融合等都成为比较棘手的问题。
2010-11-26北京理工大学微电子所29设计方法学的变迁随着微电子技术的发展,集成电路设计方法学也发生了变迁;从纯手工设计到自动综合、布局布线;从“自底向上”的设计方式发展到“自顶向下”的设计方式,直至“中间相遇”的设计方式;从单纯的仿真验证到多种验证方式相结合;从单一平台到数模、软硬协同等。
宏单元2010-11-26北京理工大学微电子所30SOCSOC(System On Chip)是一类复杂芯片,其功能涵盖一个电子系统全部的功能;上图是一个软件无线电的示意图,包含射频、 ADC以及软件控制的数字部分。
北京理工大学微电子所2010-11-2631FPGA2010-11-26北京理工大学微电子所32MEMS技术MEMS (Microelectromechancial Systems) :微电子机械系统也称微系统或微机械,是利用集成电路制造技术和微加工技术把微结构、微传感器、微执行器、控制处理电路,甚至接口、通讯和电源等制造在一块或多块芯片上的微型集成系统。
MEMS的出现使芯片远远超越了以处理电信号为目的的集成电路,其功能拓展到机、光、热、电、化学、生物等领域。
2010-11-26 北京理工大学微电子所 33MEMS的定义MEMS是尺寸在微米到毫米量级的集成系统;典型MEMS包括微机械结构、传感器、执行器和控制电路,可以实现测量、信息处理和执行功能。
光声模拟传感字器号转换理处信号数信-字数数字-模拟信号转换器行执机械能电能电机械光/电2010-11-26电典型微系统的功能组成34MEMS的特点MEMS的一般特点尺寸结构微小:微米到毫米多能量域系统:力、热、电、光、生、化无所不包基于但不限于集成电路技术和微加工技术制造不完全是宏观对象的按比例缩小宏观物理学规律仍旧成立,但是控制因素发生了变化MEMS的衍生特点可以大批量生产成本低、功耗小多样性、复杂性、难度大2010-11-26北京理工大学微电子所35MEMS的分类信息领域光开关及其阵列、RF MEMS开关、数字微镜器件(DMD)、MEMS可调电容、电感等传感器领域压力、流量、温度、湿度、气体传感器微加速度计、微机械陀螺生物领域生物芯片、微型流体通道分析系统、毛细管电泳、芯片实验室(LOC)2010-11-26北京理工大学微电子所36集成电路的老化、测试技术由于制造工艺的偏差和变化,制造出来的产品会偏离设计指标,因此必须对批量产品进行测试;同时为了减小芯片在正常使用过程中的失效概率,还需对芯片进行老化工艺;由于芯片的功能和复杂程度日益提高,测试和老化的难度也在提高;例如,对于一个CPU来说,进行一次完整的老化、测试流程可能耗时数月之久,花费数百万美元。
2010-11-26 北京理工大学微电子所 37微电子技术在军事领域中的应用微电子技术的发展及应用,不仅提升了军事装备和作战平台的性能,而且导致了新式武器以及新兵种的产生。
微电子技术的出现改变了传统战争的模式,即从面对面的战斗演变成当今及未来的超视距作战;战争发展的需求和军事系统的发展,促使军事电子产品向着小型化、轻量化和智能化的方向发展,并对微电子技术提出了高性能、高集成度、高可靠等越来越高的技术要求;军用集成电路将在进一步缩小线宽、增大集成度的基础上,寻求在改进集成技术、采用新型材料、研制新概念器件上的突破。