函数的解析式练习题
高三复习题型专题训练《函数的解析式》(含答案)

高三复习题型专题训练《函数的解析式》(含答案)考查内容:主要涉及求函数的解析式(换元法,待定系数法,配凑法,方程组法等)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知()2145f x x x -=+-,则()f x 的表达式是( )A .223x x +-B .2610x x +-C .26x x +D .287x x ++2.已知函数)12fx =+,则A .()221f x x x =++ B .()()2231f x x x x =-+≥C .()221f x x x =-+D .()()2231f x x x x =++≥3.已知1)3f x =+,则(1)f x +的解析式为( ) A .4(0)x x +≥ B .23(0)x x +≥C .224(1)x x x -+≥D .23(1)x x +≥4.已知()1f x +=()21f x -的定义域为( ) A .1,12⎛⎤⎥⎝⎦B .13,22⎡⎫⎪⎢⎣⎭C .1,12⎡⎤⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦5.设函数()(0)f x kx b k =+>,满足(())165f f x x =+,则()f x =( )A .543x --B .543x -C .41xD .41x +6.已知()f x 满足()12()3f x f x x+=,则()f x 等于( )A .12x x --B .12x x -+C .12x x +D .12x x-7.设()()2log 20xf x x =>,则()3f 的值是( )A .128B .256C .512D .10248.若(cos )cos2f x x =,则(sin 60)f ︒等于( )A .BC .12D .12-9.已知定义在R 上函数()f x 为单调函数,且对任意的实数x ,都有()21213x f f x ⎛⎫+= ⎪+⎝⎭,则()2log 3f = ( )A .0B .12C .23D .110.若函数()()3af x m x =-是幂函数,且图象过点()2,4,则函数()()2log a g x m x =-的单调增区间为( )A .()2,0-B .(),0-∞C .()0,∞+D .()0,211.已知函数()y f x =对任意x ∈R ,都有2()3()5sin 2cos2f x f x x x --=+,将曲线()y f x =向左平移4π个单位长度后得到曲线()y g x =,则曲线()y g x =的一条对称轴方程为( ) A .8x π=-B .4πx =-C .8x π=D .4x π=12.设函数:f R R →满足(0)1,f =且对任意,x y R ∈都有(1)()()()2,f xy f x f y f y x +=--+则(2019)f =( )A .0B .1C .2019D .2020二.填空题13.已知二次函数()()20f x ax bx c a =++≠,其图象过点()1,1-,且满足()()244f x f x x +=++,则()f x 的解析式为______.14.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21x f x g x e x +=++,则()g x =______.15.已知2()(1)()2f x f x f x +=+,(1)1f =,(x N +∈),()f x =__________.16.()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x y ,都有()()(21)f x y f x y x y -=--+,则()f x 的解析式_______三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.(1)已知3311f x x x x⎛⎫+=+ ⎪⎝⎭,求()f x ; (2)如果11x f x x ⎛⎫=⎪-⎝⎭,则当0x ≠且1x ≠时,求()f x ; (3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知函数()f x 的定义域为(0,)+∞,且1()21f x f x ⎛= ⎝,求()f x .18.已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)求()f x 在区间[]1,2-上的最大值;(3)若函数()f x 在区间[],1a a +上单调,求实数a 的取值范围.19.一次函数()f x 是R 上的增函数,[()]43f f x x =+,41()()() (0)2m g x f x x m -=+>. (1)求()f x ;(2)对任意12[1,3]x x ∈,,恒有12()()24g x g x -≤,求实数m 的取值范围.20.已知函数()f x 对一切实数x ,y 都有()()()21f x y f y x x y +-=++成立,且()10f =.(1)求()0f 的值; (2)求()f x 的解析式;(3)已知a R ∈,设P :当01x <<时,不等式()42f x x a +<+恒成立;Q :当[]2,2x ∈-时,()()g x f x ax =-是单调函数.如果满足P 成立的a 的集合记为A ,满足Q 成立的a 的集合记为B ,求R A C B ⋂(R 为全集).21.已知函数()21ax bf x x +=+定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)判断函数()f x 的单调性,并证明; (3)解关于x 的不等式()()210f x f x -+<.22.已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log 2(1−x). (1)求f(x)及g(x)的解析式及定义域;(2)如函数F(x)=2g(x)+(k +2)x 在区间(−1,1)上为单调函数,求实数k 的范围. (3)若关于x 的方程f(2x )−m =0有解,求实数m 的取值范围.《函数的解析式》解析1.【解析】由于()()()22145161f x x x x x -=+-=-+-,所以()26f x x x =+.故选:C 2.【解析】设1t =,则1t ≥且()21x t =-()()221223f t t t t ∴=-+=-+ ()()2231f x x x x ∴=-+≥,本题正确选项:B3.【解析】()11t t =≥,反解得:()21x t =-回代得:()()213f t t =-+,即:()()()2131f x x x =-+≥, 故:()()2130f x x x +=+≥.故选:B.4.【解析】由题意可知,令1x t ,则1x t =-,()f t ∴==220t t -+≥,解得02t ≤≤,令0212x ≤-≤,解得1322x ≤≤∴函数()21f x -的定义域为13,22⎡⎤⎢⎥⎣⎦,故选:D5.【解析】由题意可知()()2165f f x k kx b b k x kb b x =++=++=+⎡⎤⎣⎦所以21650k kb b k ⎧=⎪+=⎨⎪>⎩,解得:4,1k b ==,所以()41f x x =+.故选:D6.【解析】把()12()3f x f x x+=①中的x 换成1x,得()132()f f x x x +=②由①2⨯-②得()()31362f x x f x x x x=-⇒=-.故选:D7.【解析】设log 2x =t ,则x =2t ,所以f (t )=22t ,即f (x )=22x, 则f (3)=32822256==.故选:B 8.【解析】(cos )cos2f x x =,化简变形可得2(cos )2cos 1f x x =-,令[]cos ,1,1t x t =∈-,所以2()21f t t =-,[]1,1t ∈-,所以()21sin 6021222f f ⎛⎛︒==⨯-= ⎝⎭⎝⎭,故选:C.9.【解析】根据题意,()f x 是定义域为R 的单调函数,且对任意实数x 都有()21213x f f x ⎛⎫+= ⎪+⎝⎭,则()221xf x ++为常数, 设2()21x f x t +=+,则2()21xf x t =-++, 又由()21213x f f x ⎛⎫+= ⎪+⎝⎭,即21()321t f t t =-+=+, 解可得1t =,则2()121xf x =-++,则()22lo 3g 13122log 12f +=-+=,故选:B . 10.【解析】因为函数()()3af x m x =-是幂函数,且图象过点()2,4所以3124a m -=⎧⎨=⎩解得42m a =⎧⎨=⎩,所以()()()222log log 4a g x m x x =-=-则240x ->解得22x -<<,令()24t x x =-,()2log g t t =因为()t x 在()2,0-上单调递增,()0,2上单调递减,且()2log g t t =在定义域上单调递增,故()()()222log log 4a g x m x x =-=-在()2,0-上单调递增,()0,2上单调递减,故选:A 11.【解析】由2()3()5sin 2cos 22()3()5sin 2cos 2f x f x x x f x f x x x --=+⎧⎨--=-+⎩①②,①×2+②×3,得5()5sin 25cos2f x x x -=-+,即()sin 2cos 224f x x x x π⎛⎫=-=- ⎪⎝⎭,则()22444g x x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令242x k πππ+=+,k Z ∈,则对称轴方程为82k x ππ=+,k Z ∈,故选:C 12.【解析】(1)()()()2f xy f x f y f y x +=--+,(0)1,f = 取0x = 得到(1)(0)()()22f f f y f y =-+=取0y = 得到(1)()(0)(0)22f f x f f x =--+=得到()1f x x =+(2019)2020f =,故答案选D13.【解析】根据题意可知1a b c ++=-,又()()222244a x b x c ax bx c x ++++=++++恒相等,化简得到()()44244a b x a b c b x c ++++=+++恒相等,所以444241a b b a b c c a b c +=+⎧⎪++=+⎨⎪++=-⎩,故1a =,0b =,2c =-,所以()f x 的解析式为22f xx .故答案为:22f x x .14.【解析】∵()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21x f x g x e x +=++,∴()()()21x f x g x e x --+-=+-+,即()()21xf xg x ex --=++,两式相减可得()2xxg x e e -=-,即()()12x x g x e e -=-.故答案为:()12x x e e --. 15.【解析】()()()212f x f x f x +=+11111111(1)1(1)(1)()2()(1)222x x x f x f x f x f +⇒=+⇒=+-⨯=+-⨯=⇒+()2 1f x x =+16.【解析】令0x =,代入()()(21)f x y f x y x y -=--+得()(0)(1)f y f y y -=--+,又(0)1f =,则22()1(1)1()()1f y y y y y y y -=--+=-+=-+-+,∴2()1f x x x =++,故答案为:2()1f x x x =++.17.【解析】(1) 33311113f x x x x x x x x ⎛⎫⎛⎫⎛⎫+=+=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当0x >时,12x x +≥=, 当0x <时,12x x +≤-=-, ∴3()3f x x x =-(2x -或2x ≥).(2)∵11111x f x x x⎛⎫==⎪-⎝⎭-,∴1()(10)1且f x x x x =≠≠-. (3)设()(0)f x ax b a =+≠则3(1)2(1)3[(1)]2[(1)]217f x f x a x b a x b x +--=++--+=+,5217ax a b x ++=+,故2517a ab =⎧⎨+=⎩,∴2a =,7b =,∴()27f x x =+.(4)∵1()21f x f x ⎛=⎝ ①用1x替换①式中的x 得12(1f f x x ⎛⎫= ⎪⎝⎭②把②代入①式可得()2(2(1)1f x f x =,即1()(0)3f x x =>. 18.【解析】(1)由()02f =,得2c =,由()()121f x f x x +-=-,得221ax a b x ++=-,故221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()222f x x x =-+.(2)由(1)得:()()222211f x x x x =-+=-+, 则()f x 的图象的对称轴方程为1x =, 又()15f -=,()22f =,所以当1x =-时()f x 在区间[]1,2-上取最大值为5. (3)由于函数()f x 在区间[],1a a +上单调, 因为()f x 的图象的对称轴方程为1x =, 所以1a ≥或11a +≤,解得:0a ≤或1a ≥, 因此a 的取值范围为:(][),01,-∞⋃+∞.19.【解析】(1)∵一次函数()f x 是R 上的增函数,∴设() (0)f x ax b a =+>,2([()]43)a ax b b a x ab b f f x x =++=+++=,∴243a ab b ⎧=⎨+=⎩,解得21a b =⎧⎨=⎩, ∴()21f x x =+.(2)对任意12[1,3]x x ∈,,恒有12()()24g x g x -≤等价于()g x 在[1,3]上的最大值与最小值之差24M ≤,由(1)知24141()()()2422m m g x f x x x mx --=+=++, ()g x 的对称轴为0x m =-<且开口向上,()g x ∴在[1,3]上单调递增,max 41()(3)12182m g x g m -∴==++,min 41()(1)422m g x g m -∴==++, (3)(1)81624M g g m =-=+≤,解得1m ≤,综上可知,(0,1]m ∈.20.【解析】(1)令1x =-,1y =,则由已知得,()()()011121f f -=-⨯-++,()10f =,()02f ∴=-(2)令0y =,则()()()01f x f x x -=+,又()02f =-,()22f x x x ∴=+-;(3)不等式()42f x x a +<+,即2242x x x a +-+<+,即22x x a -+<,当01x <<时,222x x -+<.又22a x x >-+恒成立,{}|2A a a =≥.()()22212g x x x ax x a x =+--=+--,又()g x 在[]22-,上是单调函数,故有122a -≤-,或122a -≥, {}|35B a a a ∴=≤-≥或,{}|25R A C B a a ∴=≤<.21.【解析】(1)函数()21ax bf x x +=+是定义在()1,1-上的奇函数,()00f ∴=, 又1225f ⎛⎫= ⎪⎝⎭.0b ∴=,1a =,()21x f x x ∴=+. (2)()f x 在()1,1-上为增函数,理由如下.设1211x x -<<<,则1210x x -⋅>,120x x ->,2110x +>,2210x +>,()()()()()()1212121222221212101111x x x x x x f x f x x x x x --∴-=-=<++++()()12f x f x ∴<()f x ∴在在()1,1-上为增函数,(3)()()210f x f x -+<,()()()21f x f x f x ∴-<-=-,又()f x 在在()1,1-上为递增的奇函数,1211x x ∴-<-<-<,103x ∴<<,∴不等式()()210f x f x -+<的解集为10,3⎛⎫⎪⎝⎭.22.【解析】(1)因为f(x)是奇函数,g(x)是是是是是 所以f(−x)=−f(x),g(−x)=g(x)是 ∵f(x)+g(x)=2log 2(1−x)是①∴令x 取−x 代入上式得f(−x)+g(−x)=2log 2(1+x)是 即−f(x)+g(x)=2log 2(1+x)是②联立①②可得,f(x)=log(1−x)−log 2(1+x)=log 21−x1+x (−1<x <1)是 g(x)=log(1−x)+log 2(1+x)=log 2(1−x 2)(−1<x <1). (2)因为g(x)=log 2(1−x 2),所以F(x)=−x 2+(k −2)x +1, 因为函数F(x)是是是(−1,1)是是是是是是,是是k−22≤−1是k−22≥1,所以所求实数k 的取值范围为:k ≤0或k ≥4.(3)因为f(x)=log 21−x1+x ,所以f(2x )=log 21−2x1+2x ,设t =1−2x1+2x 是 则t =1−2x 1+2x=−1+21+2x,因为f(x)是是是是是(−1,1)是2x >0 ,是是0<2x <1是1<1+2x <2,12<11+2x <1,0<−1+21+2x <1,即0<t <1是是log 2t <0 ,因为关于x 的方程f(2x )−m =0有解,则m <0, 故m 是是是是是是 (−∞,0) .。
函数解析式求法例题及练习

函 数 解 析 式 的 求 法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+xx x x f , 21≥+x x 2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥x.x x x x f 21)1()1(22+=-+=+∴ )0(≥x四、函数性质法:1. 已知函数奇偶性及部分解析式,求)(x f 解析式本类问题的解题思路是“一变”、“二写”、“三转化”。
“一变”是取相反数使自变量属于所给区间;“二写”是写出新变量的表达式;“三转化”就是利用函数的奇偶性将上述表达式转化为)(x f 的表达式。
例 已知定义在R 上的偶函数)(x f ,当0≥x 时,x x x f 2)(2-=,求)(x f 解析式。
(完整版)函数解析式的练习题兼答案

函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;1.已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=()A.x+1 B.2x﹣1 C.﹣x+1 D.x+1或﹣x﹣1【解答】解:f(x)是一次函数,设f(x)=kx+b,f[f(x)]=x+2,可得:k(kx+b)+b=x+2.即k2x+kb+b=x+2,k2=1,kb+b=2.解得k=1,b=1.则f(x)=x+1.故选:A.(2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;9.若函数f(x)满足f(3x+2)=9x+8,则f(x)是()A.f(x)=9x+8 B.f(x)=3x+2C.f(x)=﹣3﹣4 D.f(x)=3x+2或f(x)=﹣3x﹣4【解答】解:令t=3x+2,则x=,所以f(t)=9×+8=3t+2.所以f(x)=3x+2.故选B.(3)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的解析式;18.已知f()=,则()A.f(x)=x2+1(x≠0)B.f(x)=x2+1(x≠1)C.f(x)=x2﹣1(x≠1)D.f(x)=x2﹣1(x≠0)【解答】解:由,得f(x)=x2﹣1,又∵≠1,∴f(x)=x2﹣1的x≠1.故选:C.19.已知f(2x+1)=x2﹣2x﹣5,则f(x)的解析式为()A.f(x)=4x2﹣6 B.f(x)=C.f(x)=D.f(x)=x2﹣2x﹣5【解答】解:方法一:用“凑配法”求解析式,过程如下:;∴.方法二:用“换元法”求解析式,过程如下:令t=2x+1,所以,x=(t﹣1),∴f(t)=(t﹣1)2﹣2×(t﹣1)﹣5=t2﹣t﹣,∴f(x)=x2﹣x﹣,故选:B.(4)消去法:已知f(x)与f 或f(-x)之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).21.若f(x)对任意实数x恒有f(x)﹣2f(﹣x)=2x+1,则f(2)=()A.﹣ B.2 C.D.3【解答】解:∵f(x)对任意实数x恒有f(x)﹣2f(﹣x)=2x+1,∴用﹣x代替式中的x可得f(﹣x)﹣2f(x)=﹣2x+1,联立可解得f(x)=x﹣1,∴f(2)=×2﹣1=故选:C函数解析式的求解及常用方法练习题一.选择题(共25小题)2.若幂函数f(x)的图象过点(2,8),则f(3)的值为()A.6 B.9 C.16 D.273.已知指数函数图象过点,则f(﹣2)的值为()A.B.4 C.D.24.已知f(x)是一次函数,且一次项系数为正数,若f[f(x)]=4x+8,则f(x)=()A. B.﹣2x﹣8 C.2x﹣8 D.或﹣2x﹣85.已知函数f(x)=a x(a>0且a≠1),若f(1)=2,则函数f(x)的解析式为()A.f(x)=4x B.f(x)=2x C. D.6.已知函数,则f(0)等于()A.﹣3 B.C.D.37.设函数f(x)=,若存在唯一的x,满足f(f(x))=8a2+2a,则正实数a的最小值是()A.B.C.D.28.已知f(x﹣1)=x2,则f(x)的表达式为()A.f(x)=x2+2x+1 B.f(x)=x2﹣2x+1C.f(x)=x2+2x﹣1 D.f(x)=x2﹣2x﹣110.已知f(x)是奇函数,当x>0时,当x<0时f(x)=()A.B.C.D.11.已知f(x)=lg(x﹣1),则f(x+3)=()A.lg(x+1)B.lg(x+2)C.lg(x+3)D.lg(x+4)12.已知函数f(x)满足f(2x)=x,则f(3)=()A.0 B.1 C.log23 D.313.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.3x﹣1 B.3x+1 C.3x+2 D.3x+414.如果,则当x≠0且x≠1时,f(x)=()A.B.C.D.15.已知,则函数f(x)=()A.x2﹣2(x≠0)B.x2﹣2(x≥2)C.x2﹣2(|x|≥2)D.x2﹣216.已知f(x﹣1)=x2+6x,则f(x)的表达式是()A.x2+4x﹣5 B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣1017.若函数f(x)满足+1,则函数f(x)的表达式是()A.x2B.x2+1 C.x2﹣2 D.x2﹣120.若f(x)=2x+3,g(x+2)=f(x﹣1),则g(x)的表达式为()A.g(x)=2x+1 B.g(x)=2x﹣1 C.g(x)=2x﹣3 D.g(x)=2x+7 22.已知f(x)+3f(﹣x)=2x+1,则f(x)的解析式是()A.f(x)=x+ B.f(x)=﹣2x+C.f(x)=﹣x+D.f(x)=﹣x+ 23.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3+x2+1,则f(1)+g(1)=()A.﹣3 B.﹣1 C.1 D.324.若函数f(x)满足:f(x)﹣4f()=x,则|f(x)|的最小值为()A.B.C.D.25.若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为()A.1 B.﹣1 C.﹣D.二.解答题(共5小题)26.函数f(x)=m+log a x(a>0且a≠1)的图象过点(8,2)和(1,﹣1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)令g(x)=2f(x)﹣f(x﹣1),求g(x)的最小值及取得最小值时x的值.27.已知f(x)=2x,g(x)是一次函数,并且点(2,2)在函数f[g(x)]的图象上,点(2,5)在函数g[f(x)]的图象上,求g(x)的解析式.28.已知f(x)=,f[g(x)]=4﹣x,(1)求g(x)的解析式;(2)求g(5)的值.29.已知函数f(x)=x2+mx+n(m,n∈R),f(0)=f(1),且方程x=f(x)有两个相等的实数根.(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[0,3]时,求函数f(x)的值域.30.已知定义在R上的函数g(x)=f(x)﹣x3,且g(x)为奇函数(1)判断函数f(x)的奇偶性;(2)若x>0时,f(x)=2x,求当x<0时,函数g(x)的解析式.函数解析式的求解及常用方法练习题参考答案与试题解析一.选择题(共25小题)2.【解答】解:幂函数f(x)的图象过点(2,8),可得8=2a,解得a=3,幂函数的解析式为:f(x)=x3,可得f(3)=27.故选:D.3.【解答】解:指数函数设为y=a x,图象过点,可得:=a,函数的解析式为:y=2﹣x,则f(﹣2)=22=4.故选:B.4.【解答】解:设f(x)=ax+b,a>0∴f(f(x))=a(ax+b)+b=a2x+ab+b=4x+8,∴,∴,∴f(x)=2x+.故选:A.5.【解答】解:∵f(x)=a x(a>0,a≠1),f(1)=2,∴f(1)=a1=2,即a=2,∴函数f(x)的解析式是f(x)=2x,故选:B.6.【解答】解:令g(x)=1﹣2x=0则x=则f(0)===3 故选D7.【解答】解:由f(f(x))=8a2+2a可化为2x=8a2+2a或log2x=8a2+2a;则由0<2x<1;log2x∈R知,8a2+2a≤0或8a2+2a≥1;又∵a>0;故解8a2+2a≥1得,a≥;故正实数a的最小值是;故选B.8.【解答】解:∵函数f(x﹣1)=x2∴f(x)=f[(x+1)﹣1]=(x+1)2=x2+2x+1 故选A.10.【解答】解:当x<0时,﹣x>0,则f(﹣x)=﹣(1﹣x),又f(x)是奇函数,所以f(x)=﹣f(﹣x)=(1﹣x).故选D.11.【解答】解:f(x)=lg(x﹣1),则f(x+3)=lg(x+2),故选:B.12.【解答】解:函数f(x)满足f(2x)=x,则f(3)=f()=log23.故选:C.13.【解答】∵f(x+1)=3x+2=3(x+1)﹣1 ∴f(x)=3x﹣1故答案是:A 14.【解答】解:令,则x=∵∴f(t)=,化简得:f(t)=即f(x)=故选B15.【解答】解:=,∴f(x)=x2﹣2(|x|≥2).故选:C.16.【解答】解:∵f(x﹣1)=x2+6x,设x﹣1=t,则x=t+1,∴f(t)=(t+1)2+6(t+1)=t2+8t+7,把t与x互换可得:f(x)=x2+8x+7.故选:B.17.【解答】解:函数f(x)满足+1=.函数f(x)的表达式是:f(x)=x2﹣1.(x≥2).故选:D.20.【解答】解:用x﹣1代换函数f(x)=2x+3中的x,则有f(x﹣1)=2x+1,∴g(x+2)=2x+1=2(x+2)﹣3,∴g(x)=2x﹣3,故选:C.22.【解答】解:∵f(x)+3f(﹣x)=2x+1…①,用﹣x代替x,得:f(﹣x)+3f(x)=﹣2x+1…②;①﹣3×②得:﹣8f(x)=8x﹣2,∴f(x)=﹣x+,故选:C.23.【解答】解:由f(x)﹣g(x)=x3+x2+1,将所有x替换成﹣x,得f(﹣x)﹣g(﹣x)=﹣x3+x2+1,根据f(x)=f(﹣x),g(﹣x)=﹣g(x),得f(x)+g(x)=﹣x3+x2+1,再令x=1,计算得,f(1)+g(1)=1.故选:C.24.【解答】解:∵f(x)﹣4f()=x,①∴f()﹣4f(x)=,②联立①②解得:f(x)=﹣(),∴|f(x)|=(),当且仅当|x|=2时取等号,故选B.25.【解答】解:∵f(x)满足关系式f(x)+2f()=3x,∴,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.二.解答题(共5小题)26.【解答】解:(Ⅰ)由得,解得m=﹣1,a=2,故函数解析式为f(x)=﹣1+log2x,(Ⅱ)g(x)=2f(x)﹣f(x﹣1)=2(﹣1+log2x)﹣[﹣1+log2(x﹣1)]=,其中x>1,因为当且仅当即x=2时,“=”成立,而函数y=log2x﹣1在(0,+∞)上单调递增,则,故当x=2时,函数g(x)取得最小值1.27.【解答】解:设g(x)=ax+b,a≠0;则:f[g(x)]=2ax+b,g[f(x)]=a•2x+b;∴根据已知条件有:;∴解得a=2,b=﹣3;∴g(x)=2x﹣3.28.【解答】解:(1)∵已知f(x)=,f[g(x)]=4﹣x,∴,且g(x)≠﹣3.解得g(x)=(x≠﹣1).(2)由(1)可知:=.29.【解答】解:(Ⅰ)∵f(x)=x2+mx+n,且f(0)=f(1),∴n=1+m+n.…(1分)∴m=﹣1.…(2分)∴f(x)=x2﹣x+n.…(3分)∵方程x=f(x)有两个相等的实数根,∴方程x=x2﹣x+n有两个相等的实数根.即方程x2﹣2x+n=0有两个相等的实数根.…(4分)∴(﹣2)2﹣4n=0.…(5分)∴n=1.…(6分)∴f(x)=x2﹣x+1.…(7分)(Ⅱ)由(Ⅰ),知f(x)=x2﹣x+1.此函数的图象是开口向上,对称轴为的抛物线.…(8分)∴当时,f(x)有最小值.…(9分)而,f(0)=1,f(3)=32﹣3+1=7.…(11分)∴当x∈[0,3]时,函数f(x)的值域是.…(12分)30.【解答】解:(1)∵定义在R上的函数g(x)=f(x)﹣x3,且g(x)为奇函数,∴f(x)=g(x)+x3,故f(﹣x)=g(﹣x)+(﹣x)3=﹣g(x)﹣x3=﹣f(x),∴函数f(x)为奇函数;(2)∵x>0时,f(x)=2x,∴g(x)=2x﹣x3,当x<0时,﹣x>0,故g(﹣x)=2﹣x﹣(﹣x)3,由奇函数可得g(x)=﹣g(﹣x)=﹣2﹣x﹣x3.。
函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$先求分母的取值范围,$x+3\neq 0$,$x\neq -3$;$x-1\neq 0$,$x\neq 1$。
然后考虑分子的取值范围,$x^2-2x-15$的值域为$(-\infty,-16]\cup [3,\infty)$,$2x-1$的值域为$(-\infty,\infty)$,$4-x^2$的值域为$[-4,\infty)$。
因此,$y$的定义域为$(-\infty,-3)\cup (-3,1)\cup (1,3)\cup (3,\infty)$。
⑵ $y=1-\frac{1}{x-1}+\frac{2x-1}{x^2-4}$先求分母的取值范围,$x^2-4\neq 0$,$x\neq \pm 2$;$x-1\neq 0$,$x\neq 1$。
然后考虑分子的取值范围,$2x-1$的值域为$(-\infty,\infty)$。
因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。
⑶ $y=x+1-\frac{1}{1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}}$先求分母的取值范围,$x-1\neq 0$,$x\neq 1$;$4-x^2\neq 0$,$x\neq \pm 2$。
然后考虑分母的值域,$1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}>0$,即$\frac{2x-1}{x^2-4}>-\frac{1}{x-1}$。
因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。
4)$f(x)=\frac{x-3}{x^2-2}$的定义域为$(-\infty,-\sqrt{2})\cup (-\sqrt{2},3)\cup (3,\sqrt{2})\cup (\sqrt{2},\infty)$。
完整版)二次函数求解析式专题练习题

完整版)二次函数求解析式专题练习题1.已知抛物线经过点A(1,1),求这个函数的解析式。
解析式为y = ax^2 + bx + c,代入点A得1 = a + b + c。
因为抛物线是二次函数,所以需要三个点才能确定解析式。
无法确定解析式。
2.已知二次函数的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式。
设解析式为y = ax^2 + bx + c,代入顶点坐标得3 = 4a - 2b + c,代入过点(1,0)得0 = a + b + c。
解得a = -1,b = 1,c = 0,所以解析式为y = -x^2 + x。
3.抛物线过顶点(2,4)且过原点,求抛物线的解析式。
因为过顶点,所以解析式为y = a(x - 2)^2 + 4.因为过原点,所以代入(0,0)得0 = 4a - 4,解得a = 1.所以解析式为y = (x -2)^2 + 4.4.若一抛物线与x轴两个交点间的距离为8,且顶点坐标为(1,5),则它们的解析式为。
设解析式为y = ax^2 + bx + c,因为顶点坐标为(1,5),所以解析式为y = a(x - 1)^2 + 5.设两个交点的横坐标为p和q,且p < q,则有8 = |(p - 1)(q - 1)|/4,化简得4p + 4q = pq - 4.因为顶点在抛物线的对称轴上,所以p + q = 2.解得p = -2,q = 8.代入顶点坐标得a = 1/9.所以解析式为y = (x - 1)^2/9 + 5.5.已知二次函数当x = -1时有最小值-4,且图象在x轴上截得线段长为4,求函数解析式。
设解析式为y = ax^2 + bx + c,因为在x轴上截得线段长为4,所以有b^2 - 4ac = 16.因为当x = -1时有最小值-4,所以有a < 0.代入最小值得-4 = a - b + c。
解得a = -1,b = 4,c = -1.所以解析式为y = -x^2 + 4x - 1.6.抛物线经过(0,0)和(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式。
函数解析式的求法例题

函数解析式的求法练习一、换元法1.已知f(3x+1)=4x+3, 求f(x)的解析式.2.若x xx f -=1)1(,求)(x f .3.若x x x f 2)1(+=+,求)(x f .4.若x-23(,求)2(f.)2=f-xx5.知f(x-1)= 2x-4x,解方程f(x+1)=06.已知f(x+1 )= 2x+1 ,求f(x)解析式。
二、待定系数法7.已知)(x f 是一次函数,且64)]([+=x x f f ,求)(x f .8.已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17, 求f(x)的解析式。
9.设二次函数)(x f 满足)2()2(--=-x f x f ,且图象在y 轴上截距为1,在x 轴上截得的线段长为22,求)(x f 的表达式.三、配凑法10.若221)1(x x x x f +=-,求()f x .11.若x x x f 2)1(+=+,求)(x f .四、解方程组法12.已知()3()26,f x f x x --=+求()f x .13. 若,)(2)1(x x f xf =+求)(x f .14.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x xf x f 4)1(2)(3=+,求)(x f 的解析式.五.特殊值代入法15.对于一切实数y x ,有x y x x f y x f )12()()(+--=-都成立,且.1)0(=f求).(x f16.设函数F(x)=f(x)+g(x) 其中f(x)是x 的正比例函数,g(x)是2x 的反比例函数,又F(2)= F(3)=19,求F(x) 的解析式。
17.设)(x f 是定义在*N 上的函数,若1)1(=f ,且对任意的x,y 都有:xy y x f y f x f -+=+)()()(, 求)(x f . ()1(21)(2+=x x f )18.设)(x f 是定义在*N 上的函数,且2)1(=f ,21)()1(+=+x f x f ,求)(x f 的解析式.。
初三函数解析式练习题

初三函数解析式练习题解析题一:已知函数 $f(x)$ 的解析式为 $f(x)=\frac{2x-1}{x+3}$,求以下函数表达式的解析式。
1. $g(x)=f(x+1)$解析:将 $x+1$ 代入 $f(x)$ 中,得到 $g(x)=f(x+1)=\frac{2(x+1)-1}{(x+1)+3}=\frac{2x+1}{x+4}$。
2. $h(x)=f(2x)$解析:将 $2x$ 代入 $f(x)$ 中,得到 $h(x)=f(2x)=\frac{2(2x)-1}{(2x)+3}=\frac{4x-1}{2x+3}$。
3. $k(x)=f\left(\frac{1}{x}\right)$解析:将 $\frac{1}{x}$ 代入 $f(x)$ 中,得到$k(x)=f\left(\frac{1}{x}\right)=\frac{2\left(\frac{1}{x}\right)-1}{\left(\frac{1}{x}\right)+3}=\frac{2-\frac{1}{x}}{\frac{1}{x}+3}=\frac{2x-1}{x+3}$,与 $f(x)$ 的解析式相同。
解析题二:已知函数 $g(x)$ 的解析式为 $g(x)=\frac{3x^2-2}{x}$,求以下函数表达式的解析式。
1. $f(x)=g(2-x)$解析:将 $2-x$ 代入 $g(x)$ 中,得到 $f(x)=g(2-x)=\frac{3(2-x)^2-2}{2-x}=\frac{3(4-4x+x^2)-2}{2-x}=\frac{12-12x+3x^2-2}{2-x}=\frac{3x^2-12x+10}{2-x}$。
2. $h(x)=g\left(\frac{1}{x}\right)$解析:将 $\frac{1}{x}$ 代入 $g(x)$ 中,得到$h(x)=g\left(\frac{1}{x}\right)=\frac{3\left(\frac{1}{x}\right)^2-2}{\frac{1}{x}}=\frac{3\frac{1}{x^2}-2}{\frac{1}{x}}=\frac{3}{x^2}-2x$。
函数的解析式例题及答案

函数的解析式目标:掌握求函数解析式的几种常用方法:待定系数法、配凑法、换元法,能将一些简单实际问题中的函数的解析式表示出来;掌握定义域的常见求法及其在实际中的应用. 重点:能根据函数所具有的某些性质或所满足的一些关系,列出函数关系式;含字母参数的函数,求其定义域要对字母参数分类讨论;实际问题确定的函数,其定义域除满足函数有意义外,还要符合实际问题的要求.一、函数的解析式(一)、函数的表示:1、列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法2、图像法:如果图形F 是函数)(x f y =的图像,则图像上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图像上.这种由图形表示函数的方法叫做图像法.3、解析法:如果在函数)(x f y =)(A x ∈中,)(x f 是用代数式来表达的,这种方法叫做解析法(二)、函数的解析式求法题型1、代入法例1、()21f x x =+,求(1)f x +题型2、待定系数法例2、二次函数()f x 满足(3)(1)f x f x +=-,且()0f x =的两实根平方和为10,图像过点(0,3),求()f x 解析式题型3、换元法例3、已知:()12fx x x +=+,求()f x 。
练习:1、2134(31)x xf x +-+=,求()f x 解析式 2、2(31)965f x x x +=-+,求()f x 解析式题型4、消元法(构造方程组法)例4、已知函数()f x 满足()213f x f x x ⎛⎫-=⎪⎝⎭,求函数()f x 的解析式。
练习、()()1f x f x x +-=-,求()f x 解析式题型5、抽象函数的解析式的求法例5、(06·重庆)已知定义域为R 的函数f(x)满足ƒ(f(x)-x 2+x)=f(x)-x 2+x.(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);(Ⅱ)设有且仅有一个实数x 0,使得f(x 0)= x 0,求函数f(x)的解析表达式.解:(Ⅰ)因为对任意x ∈R ,有f(f(x)- x 2 + x)=f(x)- x 2 +x ,所以f(f(2)- 22+2)=f(2)- 22+2.又由f(2)=3,得f(3-22+2)-3-22+2,即f(1)=1.;若f(0)=a ,则f(a-02+0)=a-02+0,即f(a)=a.(Ⅱ)因为对任意x εR ,有f(f(x))- x 2 +x)=f(x)- x 2 +x.;又因为有且只有一个实数x 0,使得f(x 0)- x 0.所以对任意x ∈R ,有f(x)- x 2 +x= x 0.;在上式中令x= x 0,有f(x 0)-x 20 + x 0= x 0,又因为f(x 0)- x 0,所以x 0- x 20=0,故x 0=0或x 0=1.;若x 0=0,则f(x)- x 2 +x=0,即f(x)= x 2 –x.但方程x 2 –x=x 有两上不同实根,与题设条件矛质,故x 2≠0.若x 2=1,则有f(x)- x 2 +x=1,即f(x)= x 2 –x+1.易验证该函数满足题设条件.综上,所求函数为f(x)= x 2 –x+1(x ∈R ).题型6、实际应用问题例6、用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形底边长为x 2,求此框架围成的面积y 与x 的函数解析式.练习:.某市郊空调公共汽车的票价按下列规则制定:(1) 乘坐汽车5公里以内,票价2元;(2) 5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.解:设票价为y 元,里程为x 公里,同根据题意,如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),那么汽车行驶的里程约为19公里,所以自变量x 的取值范围是{x ∈N *| x ≤19}.由空调汽车票价制定的规定,可得到以下函数解析式:⎪⎪⎩⎪⎪⎨⎧=5432y 1915151010550≤<≤<≤<≤<x x x x (*N x ∈)(三)提高练习:★【题1】、已知函数f (x)=2x-1,2(()x g x ⎧≥=⎨⎩当x 0时)-1(当x<0时),求f[g(x)]和g[f(x)]之值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的解析式练习题一.选择题(共15小题)1.已知函数f(2x﹣1)=4x+3,且f(t)=6,则t=()A.B.C.D.2.已知,则函数f(x)的解析式为()A.f(x)=x2﹣1 B.f(x)=x2+1C.f(x)=x2﹣1(x≥0)D.f(x)=x2+1(x≥0)3.已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.x2+6x B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣104.如果f()=,则当x≠0时,f(x)等于()A.B.C.D.﹣15.已知函数f(x)=3x+4,则f(x+1)﹣f(x﹣1)等于()A.6 B.4 C.3 D.26.下列函数中,不满足f(3x)=3f(x)的是()A.f(x)=|x|B.f(x)=﹣x C.f(x)=x﹣|x| D.f(x)=x+3 7.设f(x)=2x+3,g(x)=f(x﹣2),则g(x)等于()A.2x+1 B.2x﹣1 C.2x﹣3 D.2x+78.设,则等于()A.f(x)B.﹣f(x)C.D.9.已知f()=,则f(x)的解析式可取为()A.B.﹣C.D.﹣10.已知f(x)是一次函数,且f(﹣2)=﹣1,f(0)+f(2)=10,则f(x)的解析式为()A.f(x)=3x+5 B.f(x)=3x+2 C.f(x)=2x+3 D.f(x)=2x﹣3 11.已知f()=x2﹣1,则f()=()A.﹣B.﹣C.8 D.﹣812.已知,则f(x)的解析式为()A.f(x)=B.f(x)=C.f(x)=1+x D.f(x)=(x≠0)13.已知函数f(x)满足f()+f(﹣x)=2x(x≠0),则f(﹣2)=()A.B.C.D.14.已知f()=2x+3,f(m)=6,则m等于()A.B.C.D.15.若函数f(x)满足关系式f(x)+2f()=4x﹣,则f()=()A.﹣B.﹣2 C.3 D.二.填空题(共12小题)16.若f(2x)=3x2+1,则函数f(x)的解析式是.17.函数f (x )=,g (x )=,则f (x)g (x )=.18.已知f(2x+1)=3x﹣4,f(a)=4,则a=.19.已知函数f(x)是二次函数且f(0)=2,f(x+1)﹣f(x)=x﹣1,则函数f(x)=.20.若函数,,则f(x)+g(x)=.21.已知f(x)=x2﹣1,则f(2x)=.22.已知y=f(x)是一次函数,且有f[f(x)]=16x﹣15,则f(x)的解析式为.23.已知函数f(x+1)=3x+2,则f(x)的解析式是.24.已知f(x﹣1)=2x2﹣8x+11,则函数f(x)的解析式为.25.已知函数满足2f(x)﹣f(﹣x)=3x,则f(x)的解析式为.26.已知,则函数f(x)的解析式为.27.已知函数f(x)满足f(+1)=x+3,则f(3)=.三.解答题(共3小题)28.(1)已知f(x)满足2f(x)+f()=3x,求f(x).(2)已知二次函数f(x)满足f(1+x)+f(2+x)=2x2+4x+3,求f(x)的解析式.29.已知函数f(x)=.(1)求f(x)的定义域.(2)若f(a)=2,求a的值;(3)求证:f()=﹣f(x)30.已知函数f(x)满足f(2x﹣1)=4x,求f(﹣1)值和f(x﹣1)解析式.2018年09月11日郁金香的高中数学组卷参考答案与试题解析一.选择题(共15小题)1.【分析】由换元法求出函数f(x)的解析式,令函数值为6,解出t值即可.【解答】解:令2x﹣1=u,则x=,由f(2x﹣1)=4x+3,可得f(u)=4×+3=2u+5,则f(t)=2t+5=6,解得t=,故选:A.【点评】本题考查函数解析式的求法,属于基础题.2.【分析】根据已知中f()=x+1,令t=,则x=t2,进而利用换元法,可得答案.【解答】解:令t=,则t≥0,则=t,x=t2,则由f()=x+1可得f(t)=t2+1,故函数f(x)的解析式为:f(x)=x2+1,(x≥0),故选:D.【点评】本题考查的知识点是函数解析式的求法﹣﹣换元法,解答时一定要注意中间元的范围,对函数定义域的影响.3.【分析】令x﹣1=t,得x=t+1,将已知表达式写成关于t的表达式,再将t换回x即可得到f(x)的表达式.【解答】解:令x﹣1=t,得x=t+1∵f(x﹣1)=x2+4x﹣5,∴f(t)=(t+1)2+4(t+1)﹣5=t2+6t,由此可得f(x)=x2+6x故选:A.【点评】本题给出函数f(x﹣1)的表达式,求f(x)的表达式.考查了函数的定义和解析式的求法等知识,属于基础题.4.【分析】由题意利用配凑法即可得到函数的解析式.【解答】解:函数的解析式:,∴.故选:B.【点评】本题考查函数解析式的求解,重点考查学生对基础概念的理解和计算能力,属于基础题.5.【分析】直接利用解析式计算即可.【解答】解:f(x+1)=3(x+1)+4=3x+7,f(x﹣1)=3(x﹣1)+4=3x+1,∴f(x+1)﹣f(x﹣1)=6.故选:A.【点评】本题考查了函数解析式的意义,属于基础题.6.【分析】逐一检验各个选项中的函数是否满足f(3x)=3f(x),从而得出结论.【解答】解:对于A,∵f(3x)=|3x|,3f(x)=3|x|,满足f(3x)=3f(x);对于B,f(3x)=﹣3x,3f(x)=3(﹣x)=﹣3x,满足f(3x)=3f(x);对于C,f(3x)=3x﹣|3x|,3f(x)=3(x﹣|x|),满足f(3x)=3f(x);对于D,f(3x)=3x+3,3f(x)=3(x+3)=3x+9,显然不满足f(3x)=3f(x),故选:D.【点评】本题主要考查求函数的解析式,属于基础题.7.【分析】先由f(x)=2x+3,g(x+2)=f(x)求得g(x+2)再利用换元法将x+2=t求得g(t),再令x=t 即得g(x).【解答】解:根据题意:f(x)=2x+3,g(x+2)=f(x),∴g(x+2)=2x+3,令x+2=t,则x=t﹣2∴g(t)=2t﹣1令x=t∴g(x)=2x﹣1故选:B.【点评】本题主要考查求函数的解析式,这里用到了换元法,常用方法还有配方法,待定系数法,方程法等等.8.【分析】根据已知中,求出的解析式,可得答案.【解答】解:∵,∴===﹣f(x),故选:B.【点评】本题考查的知识点是函数解析式的求解方法﹣﹣代入法,难度不大,属于基础题.9.【分析】利用换元法,设,则x=,代入从而化简可得.【解答】解:已知f()=,设,则x=,那么:f()=转化为g(t)==,∴f(x)的解析式可取为f(x)=,故选:C.【点评】本题考查了函数解析式的求法,利用了换元法,属于基础题.10.【分析】设出函数的解析式,待定系数法求解即可.【解答】解:设f(x)=ax+b,由f(﹣2)=﹣1,f(0)+f(2)=10,得,解得:a=2,b=3,故f(x)=2x+3,故选:C.【点评】本题考查了求一次函数的解析式问题,考查代入求值,是一道基础题.11.【分析】直接利用函数的解析式求解函数值即可.【解答】解:f()=x2﹣1,则f()=f()==.故选:B.【点评】本题考查函数的值的求法,函数的解析式的应用,考查计算能力.12.【分析】令(t≠0),得x=,代入原函数即可求得f(x)的解析式.【解答】解:令(t≠0),得x=,∴原函数化为f(t)=,(t≠0).∴f(x)的解析式为f(x)=(x≠0).故选:D.【点评】本题考查利用换元法求函数解析式,关键是注意函数定义域,是中档题.13.【分析】根据题意,将x=2和x=﹣代入f()+f(﹣x)=2x可得f()+f(﹣2)=4①,f(﹣2)﹣2f()=﹣1②,联立两式解可得f(﹣2)的值,即可得答案.【解答】解:根据题意,函数f(x)满足f()+f(﹣x)=2x(x≠0),令x=2可得:f()+f(﹣2)=4,①令x=﹣可得:f(﹣2)﹣2f()=﹣1,②联立①②解可得:f(﹣2)=,故选:C.【点评】本题考查函数的值的计算,注意利用特殊值法分析,关键是分析与(﹣x)的关系,确定x 的特殊值.14.【分析】设x﹣1=t,求出f(t)=4t+7,进而得到f(m)=4m+7,由此能够求出m【解答】解:设x﹣1=t,则x=2t+2,∴f(t)=4t+7,∴f(m)=4m+7=6,解得m=﹣.故选:D.【点评】本题考查函数值的求法,解题时要认真审题,仔细求解,注意公式的灵活运用;运用了换元的思想.15.【分析】由函数f(x)满足关系式f(x)+2f()=4x﹣,分别令x=2和x=,利用加减消元法,可得答案【解答】解:∵f(x)+2f()=4x﹣,∴f(2)+2f()=4×=7,…①;f()+2f(2)==﹣2,…②;①×2﹣②得:3f()=16,故f()=,故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数求值,难度中档.二.填空题(共12小题)16.【分析】直接利用配凑法求解函数的解析式即可.【解答】解:f(2x)=3x2+1=,可得.故答案为:.【点评】本题考查函数的解析式的求法,转化思想的应用,考查计算能力.17.【分析】根据f(x),g(x)的解析式,化简约分即可.【解答】解:f (x )=,g (x )=,∴f (x)⋅g (x )=•=2(x﹣1),故答案为:2(x﹣1).,(x≠﹣3,x≠0).【点评】本题考查了求函数的解析式问题,注意定义域的取值.18.【分析】由题意可得函数的解析式为f(x)=x﹣,可得关于a的方程,解方程可得.【解答】解:∵f(2x+1)=3x﹣4,∴f(2x+1)=3x﹣4=(2x+1)﹣,∴f(x)=x﹣,∵f(a)=4,∴a﹣=4,解得a=故答案为:【点评】本题考查函数解析式的求解,属基础题.19.【分析】设f(x)=ax2+bx+c,a≠0,且f(0)=c=2,从而f(x)=ax2+bx+2,a≠0,进而f(x+1)﹣f (x)=2ax+a+b=x﹣1,由此能求出函数f(x).【解答】解:∵函数f(x)是二次函数且f(0)=2,f(x+1)﹣f(x)=x﹣1,∴设f(x)=ax2+bx+c,a≠0,且f(0)=c=2,∴f(x)=ax2+bx+2,a≠0,f(x+1)﹣f(x)=a(x+1)2+b(x+1)+2﹣(ax2+bx+2)=2ax+a+b=x﹣1,∴,解得a=,b=﹣,∴f(x)=.故答案为:.【点评】本题考查查函数的表达式的求法,考查二次函数等基础知识,是基础题,解题时要认真审题,注意函数的性质的合理运用.20.【分析】根据f(x),g(x)的解析式求出f(x)+g(x)的解析式即可.【解答】解:函数,,则f(x)+g(x)=+x﹣=x,x≥0,故答案为:x,x≥0.【点评】本题考查了求函数的解析式问题,考查x的范围,是一道基础题.21.【分析】直接将f(x)=x2﹣1中x替换成2x即可.【解答】解:由题意:f(x)=x2﹣1则f(2x)=(2x)2﹣1=4x2﹣1故答案为:4x2﹣1.【点评】本题考查了函数带值计算问题,比较基本,属于基础题.22.【分析】由题意设f(x)=ax+b,代入f(f(x))=16x﹣15,化简后列出方程组,解出a,b的值即可.【解答】解:由题意设f(x)=ax+b,∴f(f(x))=a(ax+b)+b=a2x+ab+b=16x﹣15,则,解得或,∴f(x)=4x﹣3或f(x)=﹣4x+5,故答案为:f(x)=4x﹣3或f(x)=﹣4x+5.【点评】本题考查了求函数的解析式方法:待定系数法,以及方程思想,属于基础题.23.【分析】利用换元法即可得出.【解答】解:令x+1=t,则x=t﹣1,∴f(t)=3(t﹣1)+2=3t﹣1,∴f(x)=3x﹣1.故答案为f(x)=3x﹣1.【点评】熟练掌握换元法是解题的关键.24.【分析】设x﹣1=t,则x=t+1,由此能求出函数f(x)的解析式.【解答】解:f(x﹣1)=2x2﹣8x+11,设x﹣1=t,则x=t+1,∴f(t)=2(t+1)2﹣8(t+1)+11=2t2﹣4t+5,∴f(x)=2x2﹣4x+5.故答案为:f(x)=2x2﹣4x+5.【点评】本题考查函数的解析式的求法,是基础题,解题时要认真审题,注意换元法的合理运用.25.【分析】构造方程组,然后求出函数的解析式即可.【解答】解:根据题意2f(x)﹣f(﹣x)=3x,①用﹣x代替x可得2f(﹣x)﹣f(x)=﹣3x,②①②消去f(﹣x)可得:3f(x)=3x,∴f(x)=x,故答案为:f(x)=x.【点评】本题考查函数解析式的应用问题,解题时应值域x的任意性,方程组的思想的应用.26.【分析】换元法:令+1=t,可得=t﹣1,代入已知化简可得f(t),进而可得f(x)【解答】解:令+1=t,t≥1,可得=t﹣1,代入已知解析式可得f(t)=(t﹣1)2+2(t﹣1),化简可得f(t)=t2﹣1,t≥1故可得所求函数的解析式为:f(x)=x2﹣1,(x≥1)故答案为:f(x)=x2﹣1,(x≥1)【点评】本题考查函数解析式的求解方法,换元是解决问题的关键,属基础题.27.【分析】由已知中函数的解析式,令x=4,可得答案.【解答】解:∵函数f(x)满足f(+1)=x+3,令x=4,则f(3)=7,故答案为:7【点评】本题考查的知识点是函数求值,难度不大,属于基础题.三.解答题(共3小题)28.【分析】(1)构造方程组法,可得f(x)的解析式.(2)已知f(x)是二次函数,利用待定系数法求解即可【解答】解:(1)∵2f(x)+f()=3x,…①把①中的x换成,得2f()+f(x)=,…②①×2﹣②得3f(x)=6x﹣,∴f(x)=2x﹣(x≠0).(2)设f(x)=ax2+bx+c,∴f(1+x)+f(2+x)=a(1+x)2+b(1+x)+c+a(2+x)2+b(2+x)+c=2ax2+(6a+2b)x+5a++3b+2c=2x2+4x+3,∴,解得:,∴f(x)=x2﹣x;【点评】本题考查了利用构造方程组法,待定系数法求解函数解析式的问题,比较基础29.【分析】(1)根据分母不是0,求出函数的定义域即可;(2)令2=,解出即可;(3)令x=,带入f(x)的解析式,整理即可.【解答】解:(1)∵函数f(x)=,故1﹣x2≠0,解得:x≠±1,故函数的定义域是{x|x≠±1};(2)若f(a)=2=,即1+a2=2﹣2a2,解得:a=±;(3)f()===﹣f(x).【点评】本题考查了求函数的定义域问题,考查函数求值问题,考查等式的证明,是一道基础题.30.【分析】由已知的f(2x﹣1)=4x,令2x﹣1=t换元,求得f(t),则函数f(x)的解析式可求,则f(﹣1)值和f(x﹣1)解析式可求.【解答】解:由f(2x﹣1)=4x,令2x﹣1=t,得,∴f(t)=4×=2t+2.故f(x)=2x+2.则f(﹣1)=2×(﹣1)+2=0;f(x﹣1)=2(x﹣1)+2=2x.【点评】本题考查了函数解析式的求解及常用方法,考查了换元法求函数解析式,是基础题.。