数学竞赛专题讲座七年级第2讲创造的基石—
七年级下册第二课第二框-自信是成功的基石说

自信心和自我效能感共同影响个体的成长和发展。
提高自我效能感的方法
01
02
03
பைடு நூலகம்
04
积累成功经验
通过不断尝试和努力,积累个 人成功经验,提高自信心和自 我效能感。
寻求他人支持
与他人建立良好的关系,寻求 支持和鼓励,增强自我效能感 。
接受挑战和面对困难
情绪调节对心理健康的影响
情绪调节能力的高低对个体的心理健康有着重要的影响。具 有较强的情绪调节能力的人通常能够更好地处理情绪问题, 避免因情绪波动而产生焦虑、抑郁等心理问题。
THANK YOU
感谢聆听
自信是成功的基石
自信是成功的必要条件
01
自信是个人成功的基石,能够帮助个体克服困难、迎接挑战,
最终实现目标。
自信激发内在动力
02
自信的人通常更愿意尝试新事物,不畏失败,因为他们相信自
己的能力和价值。
自信有助于建立良好的人际关系
03
自信的人往往更受人欢迎,因为他们能够积极、真诚地与他人
交往,建立互信和合作的关系。
80%
害怕尝试新事物
缺乏自信的人往往害怕尝试新事 物和面对挑战,从而错失了许多 个人成长和发展的机会。
100%
容易放弃
缺乏自信的人在面对困难和挫折 时,往往容易放弃,不能坚持到 底。
80%
影响人际关系
缺乏自信的人往往在人际交往中 表现出不自信和退缩,影响自己 的人际关系和社交能力。
02
自信与成功的关系
自尊心对心理健康的影响
自尊心的高低对个体的心理健康有着重要的影响。高自尊心的人 通常更加乐观、积极,面对困难和挫折时能够更好地调节自己的 情绪,而低自尊心的人则更容易感到焦虑、沮丧,对生活缺乏热 情。
人教七年级上学期竞赛入门辅导讲义,共十讲,很实用

又如7007700-14=686,68-12=56(能被7整除)
能被11整除的数的特征:
①抹去个位数②减去原个位数③其差能被11整除
如1001100-1=99(能11整除)
又如102851028-5=1023102-3=99(能11整除)
二、例题
例1已知两个三位数328和2x9的和仍是三位数5y7且能被9整除.求x,y
第一讲数的整除
一、内容提要:
如果整数A除以整数(B≠0)所得的商A/B是整数,那么叫做A被B整除.
0能被所有非零的整数整除.
一些数的整除特征
除数
2或5
4或25
8或125
3或9
11
能被整除的数的特征
末位数能被2或5整除
末两位数能被4或25整除
末三位数能被8或125整除
各位上的数字和被3或9整除(如771,54324)
数和最犬的公约数.
6.公约数只有1的两个正整数叫做互质数(例如15与28互质).
7.在有余数的除法中,
被除数=除数×商数+余数若用字母表示可记作:
A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除
例如23=3×7+2则23-2能被3整除.
二、例题
例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以应用:
9从1到100这100个自然数中,能同时被2和3整除的共_____个,
能被3整除但不是5的倍数的共______个.
10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不
能被3整除的数共有几个?为什么?
11己知五位数1234A能被15整除,试求A的值.
初中数学竞赛辅导讲座19讲全套,推荐文档

第一讲 有理数一、 有理数的概念及分类。
二、 有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆 三、例题示范1、数轴与大小例1、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点0的距离为3, 那么满足条件的点B 与原点0的距离之和等于多少?满足条件的点 B 有多少 个? 例2、将 宓,匹,I998, 98这四个数按由小到大的顺序,用“”连结起来。
199898199999提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。
例3、观察图中的数轴,用字母 a 、b 、c 依次表示点A 、B 、C 对应的数。
试确定三个 数丄,丄丄的大小关系。
ab b a c分析:由点B 在A 右边,知b-a 0,而A 、B 都在原点左边,故ab 0,又c 1 0,故要比1 1 1 较丄,丄,丄的大小关系,只要比较分母的大小关系。
ab b a c例4、在有理数a 与b(b a)之间找出无数个有理数。
提示:P=a —(n 为大于是 的自然数)n注:P 的表示方法不是唯一的。
2、 符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得 简单。
例5、在数1、2、3、…、1990前添上“ +”和“一”并依次运算,所得可能的最小非 负数是多少?提示:造零:n-(n+1)-( n+2)+( n+3)=0注:造零的基本技巧:两个相反数的代数和为零。
3、 算对与算巧例& 计算 1 2 3 …2000 2001 2002提示:1、逆序相加法。
2、求和公式:S=(首项+末项)项数2。
例 7、计算 1+2 3 4+5+6 7 8+9+ …2000+2001+2002 提示:仿例5,造零。
结论:2003。
例 8、计算 99 9 99 9 199 9n 个9n 个9n 个9提示1:凑整法,并运用技巧: 199- •9=10n +99 … 9, 99- •9=10n 1。
2020-2021学年初一数学竞赛专题讲座含例题练习及答案⑵

2020-2021学年初一数学竞赛专题讲座(含例题练习及答案)第2讲数论的方法技巧(下)四、反证法反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的。
反证法的过程可简述为以下三个步骤:1.反设:假设所要证明的结论不成立,而其反面成立;2.归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾;3.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立。
运用反证法的关键在于导致矛盾。
在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的。
解:如果存在这样的三位数,那么就有100a+10b+c=(10a+b)+(10b+c)+(10a+c)。
上式可化简为 80a=b+c,而这显然是不可能的,因为a≥1,b≤9,c≤9。
这表明所找的数是不存在的。
说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾。
例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加。
试说明,得到的和中至少有一个数字是偶数。
解:假设得到的和中没有一个数字是偶数,即全是奇数。
在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9。
将已知数的前两位数字a,b与末两位数字c,d去掉,所得的13位数仍具有“将它的数字颠倒,得到的数与它相加,和的数字都是奇数”这一性质。
照此进行,每次去掉首末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾。
故和的数字中必有偶数。
说明:显然结论对(4k+1)位数也成立。
但对其他位数的数不一定成立。
如12+21,506+605等。
例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。
七年级下册第二课第二框自信是成功的基石说课稿

《自信是成功的基石》说课稿永年八中门胜强各位评委、老师:你们好!我是永年八中思想品德教师门胜强。
我今天说课的题目是:七年级下册第二课第二框《自信是成功的基石》。
我的说课内容包括8个部分:一.本节课的地位和作用:1、本课时在第二课三个框题中具有承上启下的作用,在前一课时让学生感悟什么是自信的基础上,分清自信、自负与自卑的区别,认识到只有自信才能有助于成功,自负自卑心理只能远离成功,这样才能更好的为下一课时‚培养自信的方法‛做好铺垫。
2、本节课由‘一对孪生子共有心态’和‘自信有助于成功’两目组成,分别介绍了自信、自负和自卑与成功的关系,同时向学生说明自负自卑的人会远离成功,只有自信才有助于成功。
使学生认识到增强自信的必要性。
根据课标对本学科的要求,我认为本节课要达到的教学目标是:a)知识目标:1、了解自负、自卑共同之处,引导学生认识自负、自卑必然导致失败。
2、让学生认识自信为什么有助于成功,理解自信的三种心理品质。
b)能力目标:学会正确认识自我,对自己作客观的评价,不自负不自卑。
c)情感、态度、价值观目标:帮助学生树立自信,培养正确的人生观和价值观。
根据课标的要求我确定本课的重、难点为:1、重点:自信者的哪些心理品质有助于成功。
2、难点:‚一对孪生子‛共有的心态。
学情分析:随着初中阶段科目的增多、学习任务的加大,许多学生对学习产生厌烦,学习上缺乏自信心,这种情况不利于学生成绩的提高。
从社会角度来说,当今社会竞争日益激烈,任何事业的成功都要有自信的心态。
因此培养其自信等非智力因素显得尤为重要。
五.教法:1、尝试教学法:充分激发学生主体意识和进取精神,利用自主、合作、探究的学习模式,给学生尝试的权利,为其创造尝试的机会。
本课时我根据内容的需要采取板块式尝试教学,将本课教学内容肢解为四个板块,每个版块均采用尝试教学模式,让学生从中体验成功的快乐。
2、事例归纳法:引导学生通过阅读事例等活动获取知识,培养和发展学生自学能力。
七年级培优竞赛讲义——第3讲:观察、归纳与猜想

第三讲:创造的基石----观察、归纳与猜想【知识纵横】当代著名科学家波普尔说过:我们的科学知识,是通过未经证明的和不可证明的语言,通过猜想,通过对问题的尝试性解决,通过猜想而进步的。
从某种意义上来说,一部数学史就是猜想与验证猜想的历史。
二十世纪数学发展中巨大成果是,1995年英国数学家维尔斯证明了困扰数学界长达三百五十多年的“费尔马大猜想”,而著名的哥德巴赫猜想,历经两个半世纪的探索,尚未被人证实猜想的正确性。
当一个问题涉及相当多的乃至无穷多的情形时,我们可以从问题的简单情形或特殊情况入手,通过对简单情形或特殊情况的试验,从中发现一般规律或作出某种猜想,从而找到解决问题的途径或方法,这种研究问题的方法叫归纳猜想法,是创造发明的基石。
【例题求解】例1.已知,22≥≥n m ,且n m ,均为正整数,如果将nm 进行如下方式的“分解”,那么下列三个叙述:①在52的“分解”中最大的数是11;②在34的“分解”中最小的数是13;③若3m 的“分解”中最小的数是23,则5=m ,其中正确的是。
思路点拨:明确对nm 进行“分解”的意义,是解本题的关键。
(太原市中考题)例2.将正偶数按下表排列5列。
根据上面的排列规律,则2000应在()。
(湖北省荆州市中考题)A.第125行,第1列 B.第125行,第2列 C.第250行,第1列 D.第250行,第2列思路点拨:注意每一行排四个数,奇数行空第1列,偶数行空第5列,只要计算出2000是第几个数即可。
例3.化简个个个n n n 9991999999+⨯(第十八届江苏省竞赛题)思路点拨:先考察3,2,1=n 时的简单情形,然后作出猜想,这样,化简的目标更加明确。
例4.一楼梯共有n 级台阶,规定每步可以迈1级或2级或3级,设从地面到台阶的第n 级,不同的迈法为n a 种,当8=n 时,求8a 。
(河南省竞赛题)思路点拨:先求出当43,2,1,=n 时,4321,,,a a a a 的值,解题的关键是,从某级开始,寻找n a 与321---n n n a a a 、、的联系。
数学竞赛专题讲座七年级第2讲 创造的基石—观察、归纳与猜想(含答案)

第二讲 创造的基石——观察、归纳与猜想当代著名科学家波普尔说过:我们的科学知识,是通过未经证明的和不可证明的预言,通过猜测,通过对问题的尝试性解决,通过猜想而进步的.从某种意义上说,一部数学史就是猜想与验证猜想的历史.20世纪数学发展中巨大成果是,1995年英国数学家维尔斯证明了困扰数学界长达350多年的“费尔马大猜想”,而著名的哥德巴赫猜想,已经历经了两个半世纪的探索,尚未被人证实猜想的正确性.当一个问题涉及相当多的乃至无穷多的情形时,我们可以从问题的简单情形或特殊情况人手,通过对简单情形或特殊情况的试验,从中发现一般规律或作出某种猜想,从而找到解决问题的途径或方法,这种研究问题的方法叫归纳猜想法,是创造发明的基石.“要想成为一个好的数学家,你必须是一个好的猜想家,数学家的创造性工作的结果是论证推理,是一个证明,但证明是由合情推理、由猜想来发现的.”______G .波利亚链接:G .波利亚,美籍匈牙利人,现代著名数学家,他的《怎样解题》等著作,被誉为第二次世界大战后的数学经典著作之一.观察、实验、猜想是科学技术创造过程中一个重要方法,通过观察和实验提出问题,再提出猜想和假设,最后通过推理去证明假设和猜想.举世瞩目的“数学皇冠上的明珠”——哥德巴赫(德国数学家)猜想,就是从下面这些等式:6=3+3,8=3+5,10=3+7,12=5+7,14=3+11.归纳得出:“任何不小于6的偶数均可以表示成两个奇质数的和.”我国数学家陈景润于1973年证明了“1+2”,离解决哥德巴赫问题,即“1+1”仅一步之遥.例题讲解 【例1】 (1)用●表示实圆,用○表示空心圆,现有若干实圆与空心圆按一定规律排列如下: ●○●●○●●●○●○●●○●●●○●○●●○●●●○…… 问:前2001个圆中,有 个空心圆. (江苏省泰州市中考题) (2)古希腊数学家把数1,3,6,10,15,2l ,…叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 . (舟山市中考题) 思路点拨 (1)仔细观察,从第一个圆开始,若干个圆中的实圆数循环出现,而空心圆的个数不变;(2)每个三角形数可用若干个数表示.【例2】观察下列图形,并阅读图形下面的相关文字:像这样,10条直线相交,最多交点的个数是( ).A .40个B .45个C .50个D .55个 (湖北省荆门市中考题) 思路点拨 随着直线数的增加,最多交点也随着增加,从给定的图形中,探讨每增加一条直线,最多交点的增加数与原有直线数的关系.是解本例的关键.......四条直线相交,最多有六个交点三条直线相交,最多有三个交点两条直线相交,最多只有一个交点【例3】化简个个个n n n 9991999999+⨯ (第18届江苏省竞赛题) 思路点拨 先考察=n 1,2,3时的简单情形,然后作出猜想,这样,化简的目标更加明确. 【例4】古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸;地支有12个:子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字分别循环排列成如下两行; .甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸……子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第l 列是甲子,第3列是丙寅…,问当第二次甲和子在同一列时,该列的序号是多少? ( “希望杯”邀请赛试题) 思路点拨 把“甲”、“子”在第一行、第二行出现的位置分别用相应的代数式表示,将实际问题转化为数学问题求解.链接:观察是解决问题的先导,发现往往是从观察开始的,归纳与猜想是建立在细致而深刻的观察基础上的,解题中的观察活动主要有三条途径:(1)数与式的特征观察;(2)图形的结构观察;(3)通过对简单、特殊情况的观察,再推广到一般情况.归纳总是与递推联系在一起的,所谓递推,就是在归纳的基础上,发现每一步与前一步或前几步之间的联系,更容易发现规律.然后证明通过归纳所猜测的规律的正确性.【例5】图)(a 、)(b 、)(c 、)(d 都称作平面图.(1)数一数每个图各有多少个顶点,多少条边,这些边围出了多少区域,将结果填人表中(其中(a)已填好).(2)观察表,推断一个平面图的顶点数、边数、区域数之间有什么关系?(3)现已知某一平面图有999个顶点和999个区域,试根据(2)中推断出的关系,确定这个图有多少条边? ( “华杯赛”决赛试题) 思路点拨 从特殊情况人手,仔细观察、分析、试验和归纳,从而发现其中的共同规律,这是解本例的关键.链接:历史上著名的数学家欧拉曾经研究过正多面体,惊奇地发现了正多面体的顶点数)(V 、面数)(F 、棱数)(E 存在一个奇妙的相等关系:2=-+E F V .史称“欧拉公式”,它不仅在数学方法上有所创新,而且推动了现代数学的重要分支——拓扑学的发展.【例6】已知2≥m ,2≥n ,且m ,n 均为正整数,如果将nm 进行如下方式的“分解”,那么下列三个叙述:①在52的“分解”中最大的数是11;②在34的“分解”中最小的数是13;③若3m 的“分解”中最小的数是23,则m 等于5.其中正确的是____________. (太原市中考题)思路点拨 明确对n m 进行“分解”的意义,是解本例的关键.【例7】观察图形寻找规律,在“?”处填上的数字是( ).A .128B .136C .162D .188 (南宁市中考题) 思路点拨 从探讨数字键的关系入手.【例8】一楼梯共有n 级台阶,规定每一步可以迈1级或2级或3级,设从地面到台阶的第n 级,不同的迈法为n a 种,当n =8时,求8a . (河南省竞赛题)思路点拨 先求出当n =1,2,3,4时,1a ,2a ,3a ,4a 的值,解题的关键是,从某级开始,寻找n a 与1-n a 、2-n a 、3-n a 的联系.9753343343332242322?884826148422基础训练一、基础夯实1.(1)如图的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,•根据图中的数构成的规律,a 所表示的数是________.(2001年浙江省绍兴市中考题)(1) (2)(2)观察一列数:3,8,13,18,23,28,…依此规律,在此数列中比2000•大的最小整数是_________. (2003年金华市中考题) 2.如图2是2002年6月份的日历.现用一矩形在日历中任意..框出4个数a b c d,•请用一个等式表示a 、b 、c 、d 之间的关系:__________.3.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成. 通过观察可以发现:(1)第4个图形中火柴棒的根数是________.(2)第n 个图形中火柴棒的根数是________. (2001年江西省中考题)n=1n=2n=34.小王利用计算机设计了一个计算程序,输入和输出的数据如下表,那么当输入数据是8时,输出的数据是( )A. 861B.863C.865D. 867(2003年重庆市中考题)5.在以下两个数串中:1,3,5,7,…,1991,1993,1995,1997,1999和1,4,7,10,…,1990,1993,1996,•1999同时出现在这两个数串中的数的个数共有( )个A.333B.334C.335D.336 (“希望杯”邀请赛试题)6.图①是一个水平摆动的小正方体木块,图②、•③是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,•小正方体木块总数应是( ). A.25 B.66 C.91 D.120 (2003年宁波市中考题)7.一串数排成一行,它们的规律是这样的:头两个数都是1,从第三个数开始,•每一个数都是前两个数的和,也就是1,1,2,3,5,8,13,21,34,55,…问:•这串数的前100个数中(包括第100个数),有多少个偶数? (“华杯”赛试题) 8.自然数按下列的规律排列:(1)求上起第10行,左起第13行的数;(2)数127应在上起第几行、左起第几列? (北京市“迎春杯”竞赛题)二、能力拓展9.(1)观察下列各式,你会发现什么规律? 3×5=15, 而15=42-1, 5×7=35, 而35=62-1, … …11×13=143, 而143=122-1, … …将你猜想到的规律用只含一个字母的式子表示出来_______.(2000年济南市中考题)(2)将1,-1,1,-1,1,-1…按一定规律排成下表:从表中可以看到第4行中,自左向右第3个数是9,第5行中从左向右第2个数是-112,•那么第199行中自左向右第8个数是________,第1998行中自左向右第11•个数是________. (“希望杯”邀请赛试题) 10.有一列数a 1,a 2,a 3,a 4,…,a n ,其中 a 1=6×2+1 a 2=6×3+2; a 3=6×4+3; a 4=6×5+4; ……则第n 个数a n =_______;当a n =2001时,n=________. (第15届江苏省竞赛题) 11.一个正方体,它的每一面上写有一个字,组成“数学奥林匹克”.有三个同学从不同的角度看到的结果依次如图所示,那么,“学”字对面的字为______.(重庆市竞赛题)(第11题) (第12题)12.用盆栽菊花摆在如图所示的大小相同的7个正方形花坛的边缘,•正方形每边都等距离地摆n(•n•≥3)••盆花,••那么所需菊花的总盆数s•与n•的关系可以表示为________. (第14届“希望杯”邀请赛试题)13. (新加坡数学竞赛题)如果一个序列{}i a 满足a 1=2,a n+1=a n +2n(n 为自然数),那么a 100是( )A.9900B.9902C.9904D.10100E.10102 14. (2001年湖北省荆州市中考题)将正偶数按下表排成5列: 第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10第3行 18 20 22 24 …… …… 28 26 根据上面排列规律,则2000应在( ).A.第125行,第1列B.第125行,第2列C.第250行,第1列D.第250行,第2列15.(1)设n 为自然数,具有下列形式11111n ⋅⋅⋅ 个5555n ⋅⋅⋅个5的数是不是两个连续奇数的积,说明理由.(2)化简333n ⋅⋅⋅ 个3×333n ⋅⋅⋅ 个3+1999n ⋅⋅⋅个9,并说明在结果中共有多少个奇数数字?16.(1)图①是正方体木块,把它切去一块,可能得到形如图②、③、④、•⑤的木块.我们知道,图①的正方体木块有8个顶点,12条棱,6个面,请你将图②、③、④、•⑤中木块的顶点数、(2)观察此表,数之间的数量关系是:____________________.(3)图⑥是用虚线画出的正方体木块,请你想象一种与图②~⑤不同的切法,•把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为________,棱数为 _________,面数为________. (第16届江苏省竞赛题)三、综合创新:17.怎样的两个数,它们的和等于它们的积?你大概马上就会想到2+2=2×2,其实这样的两个数还有很多,例如:3+32=3×32。
2023年数学竞赛专题讲座七年级跨越从算术到代数含答案

第一讲跨越——从算术到代数“加里宁曾经说过: 数学是锻炼思维的体操, 体操能使你身体健康, 动作灵敏;数学能使你的思想对的灵敏, 有了对的的思想, 你们才有也许爬上科学的大山. ” _______华罗庚。
华罗庚, 我国现代有世界声誉的数学家, 初中毕业后, 靠自学成才, 在数论、矩阵几何等许多领域中做出过卓越奉献.纵观历史, 数学的发展发明了数学符号, 新的数学符号的使用又反过来促进了数学的发展. 历史是这样一步一步走过来的, 并将这样一步一步地继续走下去, 数学的每一个进步都必须随着着新的数学符号的产生. 在文明和科学的发展过程中, 人类发明用符号代替语言、文字的方法, 这是由于符号比语言、文字更简练、更直观、更具一般性.“算术”可以理解为“计算的方法”, 而“代数”可以理解为“以符号替代数字”, 即“数学符号化”. 著名数学教育家玻利亚曾说: “代数是一种不用词句而只用符号所构成的语言. ”用字母表达数是数学发展史上的一件大事, 是由算术跨越到代数的桥梁, 是人类发展史上的一个奔腾, 也是代数与算术的最显著的区别.字母表达数使得数学具有简洁的语言, 能更普遍地说明数量关系, 在列代数式、求代数式的值、形成公式等方面有广泛的应用.例题讲解【例1】观测下列等式9—l=8, 16—4=12, 25—9=16, 36—16=20, ……这些等式反映出自然数间的某种规律, 设表达自然数, 用关于的等式表达出来:. (河南省中考题)思绪点拨在观测给定的等式基础上, 寻找数字特点, 等式的共同特性, 发现一般规律.链接:从个别事物中发现一般性规律. 这种研究问题的方法叫“归纳法”, 是由特殊到一般的思维过程, 是发明发明的基础.【例2】某商品2023年比2023年涨价5%, 2023年又比2023年涨价10%, 2023年比2023年降价12%, 则2023年比2023年( ).A. 涨价3%B. 涨价1. 64% C 涨价1. 2% D. 降价1. 2%思绪点拨 设此商品2023年的价格为 元, 把相应年份的价格用 的代数式表达, 由计算作出判断. 【例3】 计算)200113121)(20021211()2001131211)(200213121(++++++-+++++++ 思绪点拨 直接计算复杂而繁难, 注意括号内数式的联系, 引入字母, 将复杂的数值计算转化为简朴的式的计算.【例4】 有—张纸, 第1次把它分割成4片, 第2次把其中的1片分割成4片, 以后每一次都把前面所得的其中一片分割成4片, 如此进行下去, 试问: (1)经5次分割后, 共得到多少张纸片? (2)经 次分割后, 共得到多少张纸片?(3)能否经若干次分割后共得到2023张纸片?为什么? (江苏省竞赛题)【例5】在右图中有9个方格, 规定每个方格填入不同的的数列、每条对角线上三个数之和都相等, 问: 思绪点拨 虽然规定的只是右上角的数, 关, 因此, 需恰本地引进不同的字母表达数, 【例6】如图, 在图1中, 互补重叠的三角形共有4个, 在图的三角形共有7个, 在图3中, 互不重叠的三角形共有10个个图形中, 互不重叠的三角形共有______个(用含 达). (重庆市中考题)思绪点拨 从三角形个数规律或图形生成特点入手. 【例7】(1)计算:)200413121(+++⨯ ; (广西竞赛题)(2)设 = , 求 的整数部分. (2023年北京市竞赛题)思绪点拨 对于(1), 直接计算复杂而繁难, 字母, 将复杂的数值计算转化为简朴的式的计算;对于(2) 项 的特性入手.【例8】有这样的两位数, 个完全平方数. 例如, 29就是这样的两位数, 由于 , 位数.(1) 思绪点拨 设原数为 , 则新数为 , 发现 (2) 【例9】现有 根长度相同的火柴棒, 按如图1图2图1方形, 按如图2摆放时可摆成 个正方形.(3) 用含n 的代数式表达m ;当这 根火柴棒还能摆成如图3所示的形状时, 求 的最小值.思绪点拨 设图3中有3 个正方形(为什么这样设? ), 无论如何摆放, 火柴棒的总数相同, 这样可以建立含 、 、 的等式.链接:① 用字母表达数, 有助于运用代数式揭示问题中的数量关系, 便于找到数量的相依关系或相等不等关系, 具有设元意识, 会用代数式表达, 是由算术习惯向代数过渡的重要环节, 是突破算术方法的定势的关键.② 本例的3个小题, 反映了我们结识事物、探究问题的基本过程.第(1)小题是研究具体对象, 第(2)小题是归纳出一般规律, 第(3)小题是再运用这些规律去分析、研究、解决问题.有些问题涉及的量比较多, 关系复杂, 我们就需要引入不同的字母, 便于把数量关系表达出来, 在解题中我们不需(或不能)求出所有字母的值, 只需求出关键的字母的值, 这种方法我们称之为“设而不求”.基础训练1. 给出下列算式: , , , ……观测上面一列算式, 你能发现什么规律, 用代数式子表达这个规图3图2图1⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅律:.(福州市中考题) 2. 已知: , , , ……, 若( 为正整数), 则= .(2023年武汉市中考题)3.若人完毕一项工程需要天, 则个人完毕这项工程需要天.(假定每个人的工作效率相同) (江苏省竞赛题) 4. 某同学上学时步行, 回家时坐车, 路上一共要用90分钟, 若往返都坐车. 所有行程只需30分钟, 假如往返都步行, 那么需要的时间是. (河南省竞赛题) 5. 一项工程, 甲建筑队单独承包需要天完毕, 乙建筑队单独承包需要天完毕, 现两队联合承包, 完毕这项工程需要( )天.. A. ...B. ...C. ...D.6.某专卖店在记录2023年第一季度的销售额时发现, 二月份比一月份增长10%, 三月份比二月份减少10%, 那么三月份比一月份( ).A. 增长10%B. 减少10%C. 不增不减D. 减少1%(河南省中考题)7. 如图, 在长方形中, 横向阴影部分是长方形, 另一阴影部分是平行四边形, 依照图中标注的数据, 计算图中空白部分的面积, 其面积是( ).A. B.C. D. (河北省中考题)8.为了绿化环境、美化城市, 在某居民社区铺设了正方形和圆形两块草坪, 假如两块草坪的周长相同, 那么它们的面积S1.S2的大小关系是( ).A. S1>S2B. S1< S2C. S1=S2D. 无法比较9.从开始, 连续的奇数相加, 和的情况如下:21=;121=+;=2432=+1=+;935324167531==+++; 252597531==++++;(1)请你推测出, 从1开始, 个连续的奇数相加, 它们的和 的公式是什么? (2)计算:①191715131197531+++++++++; ② .(3)已知 , 求整数 的值.10.从小明的家到学校, 是一段长度为 的上坡路接着一段长度为 的下坡路(两段路的长度不等但坡度相同).已知小明骑自行车走上坡路时的速度比走平路时的速度慢20%, 走下坡路时的速度比走平路时的速度快20%, 又知小明上学途中花10分钟, 放学途中花12分钟. (1)判断a 与b 的大小;(2)求 与 的的比值. (江苏省竞赛题)11.观测下列各正方形图案, 每条边上有 ( )个圆点, 每个图案中圆点的总数是S .按此规律推断出S 与n 的关系式是 . (2023年广西中考题) 12.如图, 将面积为 的小正方形与面积为 的大正方形放在一起( > >0), 用 表达 的面积为 . (天津市竞赛题)13. 已知17个连续整数的和是306, 那么, 紧接在这17个数后面的那17个整数的和为 .14. 用黑白两种颜色的正六边形地面砖按如下所示的规律. 拼成若干个图案:(1)第4个图案中有白色地面砖块;(2)第个图案中有白色地面砖块. (2023年南昌市中考题)15. 下列四个数中可以写成100个连续自然数之和的是( ).A. B. C. D.(江苏省竞赛题) 16. 给出两列数: l, 3, 5, 7, 9, …, 2023和1, 6, 1l, 16, 21, …, 2023, 同时出现在两列数中的数的个数为( ).A. 199B. 200C. 201D. 202 (重庆市竞赛题) 17.—种商品每件进价为元, 按进价增长25%定出售价, 后因库存积压降价, 按售价的九折出售, 每件还能赚钱( ).A. 0.125B. 0.15C. 0.25D. 1.25 (山东泰安市中考题) 18.假如用名同学在小时内搬运块砖, 那么名同学以同样的速度搬运块砖所需的小时数是( ).A. B. C. D.19. 已知 ( =l, 2, 3, …2023).求当时, 的值.20. 在一次数学竞赛中, 组委会决定用NS公司的赞助款购买一批奖品, 若以1台NS计算器和3本《数学竞赛讲座》书为一份奖品. 则可买100份奖品;若以1台NS计算器和5本《数学竞赛讲座》书为一份奖品. 则可买80份奖品. 问这笔钱所有用来购买计算器或《数学竞赛讲座》书, 可各买多少? (湖北省黄冈市竞赛题)根据上述材料, 解答下列问题: 某校初三学生对我市一个乡的农民家庭进行抽样调查. 从1997年至2023年间, 该乡每户家庭消费支出总额每年平均增长500元, 其中食品消费支出总额每年平均增长200元, 1997年该乡农民家庭平均刚达成温饱水平, 已知该年每户家庭消费支出总额平均为8000元.求: (1)1997年该乡平均每户家庭食品消费支出总额为多少元?(2)设从1997年起m年后该乡平均每户的恩格尔系数为(为正整数). 请用的代数式表达该乡平均每户当年的恩格尔系数, 并运用这个公式计算2023年该乡平均每户的恩格尔系数(百分号前保存整数).(3)按这样的发展, 该乡将于哪年开始进入小康家庭生活?该乡农民能否实现十六大提出的2023年我国全面进入小康社会的目的? (桂林市中考题)答案:1.n2+n=n(n+1.2.10.3..4.150分.5..6..7..8.B9.(1)S=n 2 (2)①100 ②132-52=144 (3)n=15 10.(1)a<b,(2)把骑车走平路时的速度作为“1”,则 ,得0.8a +1.2b =56(1.2a +0.8b ),得a b =38. 11.S=4n-4 12.12b 213.595 14.(1)18;(2)4n+2 15.A 设自然数从a+1开始,这100个连续自然数的和为(a+1)+(a+2)+•…+(a+100)=100a+5050.16.C 第一列数可表达为2m+1,第二列数可表达为5n+1,由2m+1=5n+1,得n=25m,m=0,5,10…1000 17.A18.D 提醒:每一名同学每小时所搬砖头为cab块,c 名同学按此速度每小时搬砖头2c ab 块.19.提醒:a 1=1,a 2=12,a 3=13……,a n =1n ,原式=20022003. 20.设每台计算器x 元,每本《数学竞赛讲座》书y 元,则100(x+3y)=80(x+5y),解得x=5y,故可购买计算器100(3)10085x y y x y +⨯==160(台),书100(3)1008x y yy y+⨯==800(本).21.提醒:设所填表中每行、每列、每条对角线四数之和为S, 则 4S=1+2+3+…16=16172⨯,得S=34. 再设左上角所擦的数为x,则左下角擦的数为14-x,右下角擦掉的数为15+x,其余各格中擦掉的数都可以表达为x 的代数式,•再将主对角线上的数相加应得34,•即30+4x=34,解得x=1.于是可以依次算出被擦掉的各数,恢复后如图所示.22.(1)8000×60%=4800元.(2)n m =48002008000500m m ++,即n m =482805mm++当m=2023-1997=6时.n 6=48268056+⨯+⨯≈0.55=55%.(3)取n=0.5,即482805m m ++=12,解得m=16, 即1997+16=2023<2023年,所以,2023•年该村进入小康生活,并能实现十六大提出的目的.提高训练1. 用同样大小的黑棋子按如图所示的方式摆图形, 按照这样的规律摆下去, 则第 个图形需棋子_________枚(用含 的代数式表达). (2023年海南省中考题)2. 如图, 一块拼图卡片的长度为 , 两块相同的拼图卡片拼接在一起的长度为 , 则 块相同的拼图卡片拼接在一起的长度为______ (用含 的代数式表达).(2023年长春市中考题)3. 假如 是一个三位数, 现在把1放在它的右边得到一个四位数, 这个四位数是( ).A. B. C. D. (重庆市竞赛题)4.图中的三角形是有规律地从里到外逐层排列的.设 为第 层( 为正整数)三角形的个数, 则下列关系式中对的的是( ).A. B. C. D. (吉林省中考题)5.某商场经销一批电视机, 进价为每台 元, 原零售价比进价高 , 后根据市场变化, 把零售价调整为原零售价的 , 调整后的零售价为每台( )元.A. B. 图3图2图1●●●●●●●●●●●●●●●●●●●●●n 1块C. D. (2023年广东省竞赛题)6.已知 是整数, 现有两个代数式: (1) , (2) .其中, 能表达“任意奇数”的( ).A. 只有(1)B. 只有(2)C. 有(1)和(2)D. 一个也没有7. 有一张纸, 第1次把它分割成4片, 第2次把其中的1片分割成4片, 以后每一次都把前面所得的其中一片分割成4片, 如此进行下去, 试问:(1)经五次分割后, 共得到多少张纸片?(2)经 次分割后, 共得到多少张纸片?(3)能否经若干次分割后共得到2023张纸片? ? (第17届江苏省竞赛题)8.如图, 用同样规格的黑白两种正方形瓷砖铺设正方形地面, 观测图形并猜想填空:当黑色瓷砖为20块时, 白色瓷砖为______块;当白色瓷砖为 ( 为正整数)块时, 黑色瓷砖为______块. (宜昌市中考题)9. 在图甲中取阴影等边三角形各边的中点, 连成一个等边三角形, 将其挖去, 得到图乙;对图乙中的每个阴影等边三角形仿照先前的做法, 得到图丙, 如此继续. 假如图甲的等边三角形面积为1, 则第 个图形中所有阴影三角形面积的和为______.(第18届江苏省竞赛题)10. 已知 , ( =1, 2, 3, …), 则 =______. (重庆市竞赛题)11.老师报出一个5位数, 同学们将它的顺序倒排后得到的5位数减去原数, 学生甲、乙、丙、丁的结果分别是 34567, 34056, 23456, 34956.老师鉴定4个结果中只有一个对的, 答对的是( ).A. 甲B. 乙C. 丙D. 丁 (第16届“五羊杯”竞赛题)12.如图, 正方形和的边长分别为, , 那么△的面积的值().A. 只与的大小有关B. 只与的大小有关C. 与, 的大小都有关D.与, 的大小都无关(第19届江苏省竞赛题)13. 有四个互不相同的正整数, 从中任取两个数组成一组, 并在同一组中用较大的数减去较小的数, 再将各组所得的差相加, 其和恰好等于18. 若这四个数的乘积是23100, 求这四个数. (天津市竞赛题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 创造的基石——观察、归纳与猜想当代著名科学家波普尔说过:我们的科学知识,是通过未经证明的和不可证明的预言,通过猜测,通过对问题的尝试性解决,通过猜想而进步的.从某种意义上说,一部数学史就是猜想与验证猜想的历史.20世纪数学发展中巨大成果是,1995年英国数学家维尔斯证明了困扰数学界长达350多年的“费尔马大猜想”,而著名的哥德巴赫猜想,已经历经了两个半世纪的探索,尚未被人证实猜想的正确性.当一个问题涉及相当多的乃至无穷多的情形时,我们可以从问题的简单情形或特殊情况人手,通过对简单情形或特殊情况的试验,从中发现一般规律或作出某种猜想,从而找到解决问题的途径或方法,这种研究问题的方法叫归纳猜想法,是创造发明的基石.“要想成为一个好的数学家,你必须是一个好的猜想家,数学家的创造性工作的结果是论证推理,是一个证明,但证明是由合情推理、由猜想来发现的.”______G .波利亚链接:G .波利亚,美籍匈牙利人,现代著名数学家,他的《怎样解题》等著作,被誉为第二次世界大战后的数学经典著作之一.观察、实验、猜想是科学技术创造过程中一个重要方法,通过观察和实验提出问题,再提出猜想和假设,最后通过推理去证明假设和猜想.举世瞩目的“数学皇冠上的明珠”——哥德巴赫(德国数学家)猜想,就是从下面这些等式:6=3+3,8=3+5,10=3+7,12=5+7,14=3+11.归纳得出:“任何不小于6的偶数均可以表示成两个奇质数的和.”我国数学家陈景润于1973年证明了“1+2”,离解决哥德巴赫问题,即“1+1”仅一步之遥.例题讲解 【例1】 (1)用●表示实圆,用○表示空心圆,现有若干实圆与空心圆按一定规律排列如下: ●○●●○●●●○●○●●○●●●○●○●●○●●●○…… 问:前2001个圆中,有 个空心圆. (江苏省泰州市中考题) (2)古希腊数学家把数1,3,6,10,15,2l ,…叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 . (舟山市中考题) 思路点拨 (1)仔细观察,从第一个圆开始,若干个圆中的实圆数循环出现,而空心圆的个数不变;(2)每个三角形数可用若干个数表示.【例2】观察下列图形,并阅读图形下面的相关文字:像这样,10条直线相交,最多交点的个数是( ).A .40个B .45个C .50个D .55个 (湖北省荆门市中考题) 思路点拨 随着直线数的增加,最多交点也随着增加,从给定的图形中,探讨每增加一条直线,最多交点的增加数与原有直线数的关系.是解本例的关键.......四条直线相交,最多有六个交点三条直线相交,最多有三个交点两条直线相交,最多只有一个交点【例3】化简个个个n n n 9991999999+⨯ (第18届江苏省竞赛题) 思路点拨 先考察=n 1,2,3时的简单情形,然后作出猜想,这样,化简的目标更加明确. 【例4】古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸;地支有12个:子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字分别循环排列成如下两行; .甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸……子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第l 列是甲子,第3列是丙寅…,问当第二次甲和子在同一列时,该列的序号是多少? ( “希望杯”邀请赛试题) 思路点拨 把“甲”、“子”在第一行、第二行出现的位置分别用相应的代数式表示,将实际问题转化为数学问题求解.链接:观察是解决问题的先导,发现往往是从观察开始的,归纳与猜想是建立在细致而深刻的观察基础上的,解题中的观察活动主要有三条途径:(1)数与式的特征观察;(2)图形的结构观察;(3)通过对简单、特殊情况的观察,再推广到一般情况.归纳总是与递推联系在一起的,所谓递推,就是在归纳的基础上,发现每一步与前一步或前几步之间的联系,更容易发现规律.然后证明通过归纳所猜测的规律的正确性.【例5】图)(a 、)(b 、)(c 、)(d 都称作平面图.(1)数一数每个图各有多少个顶点,多少条边,这些边围出了多少区域,将结果填人表中(其中(a)已填好).(2)观察表,推断一个平面图的顶点数、边数、区域数之间有什么关系? (3)现已知某一平面图有999个顶点和999个区域,试根据(2)中推断出的关系,确定这个图有多少条边? ( “华杯赛”决赛试题)思路点拨 从特殊情况人手,仔细观察、分析、试验和归纳,从而发现其中的共同规律,这是解本例的关键.链接:历史上著名的数学家欧拉曾经研究过正多面体,惊奇地发现了正多面体的顶点数)(V 、面数)(F 、棱数)(E 存在一个奇妙的相等关系:2=-+E F V .史称“欧拉公式”,它不仅在数学方法上有所创新,而且推动了现代数学的重要分支——拓扑学的发展.【例6】已知2≥m ,2≥n ,且m ,n 均为正整数,如果将nm 进行如下方式的“分解”,那么下列三个叙述:①在52的“分解”中最大的数是11;②在34的“分解”中最小的数是13;③若3m 的“分解”中最小的数是23,则m 等于5.其中正确的是____________. (太原市中考题)思路点拨 明确对nm 进行“分解”的意义,是解本例的关键.【例7】观察图形寻找规律,在“?”处填上的数字是( ).A .128B .136C .162D .188 (南宁市中考题) 思路点拨 从探讨数字键的关系入手.【例8】一楼梯共有n 级台阶,规定每一步可以迈1级或2级或3级,设从地面到台阶的第n 级,不同的迈法为n a 种,当n =8时,求8a . (河南省竞赛题)思路点拨 先求出当n =1,2,3,4时,1a ,2a ,3a ,4a 的值,解题的关键是,从某级开始,寻找n a 与1-n a 、2-n a 、3-n a 的联系.975334333332242322?884826148422基础训练一、基础夯实1.(1)如图的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,•根据图中的数构成的规律,a所表示的数是________.(2001年浙江省绍兴市中考题)(1)(2)(2)观察一列数:3,8,13,18,23,28,…依此规律,在此数列中比2000•大的最小整数是_________. (2003年金华市中考题)2.如图2是2002年6月份的日历.现用一矩形在日历中任意..框出4个数a bc d,•请用一个等式表示a、b、c、d之间的关系:__________.3.下面由火柴棒拼出的一列图形中,第n个图形由n个正方形组成.通过观察可以发现:(1)第4个图形中火柴棒的根数是________.(2)第n个图形中火柴棒的根数是________. (2001年江西省中考题)n=1n=2n=34.小王利用计算机设计了一个计算程序,输入和输出的数据如下表,那么当输入数据是8时,输入… 1 2 3 4 5 …输出 (1)225310417526…A.61 B.63C.65D.67(2003年重庆市中考题)5.在以下两个数串中:1,3,5,7,…,1991,1993,1995,1997,1999和1,4,7,10,…,1990,1993,1996,•1999同时出现在这两个数串中的数的个数共有( )个A.333B.334C.335D.336 (“希望杯”邀请赛试题)6.图①是一个水平摆动的小正方体木块,图②、•③是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,•小正方体木块总数应是( ).A.25B.66C.91D.120 (2003年宁波市中考题)7.一串数排成一行,它们的规律是这样的:头两个数都是1,从第三个数开始,•每一个数都是前两个数的和,也就是1,1,2,3,5,8,13,21,34,55,…问:•这串数的前100个数中(包括第100个数),有多少个偶数? (“华杯”赛试题)8.自然数按下列的规律排列:(1)求上起第10行,左起第13行的数;(2)数127应在上起第几行、左起第几列? (北京市“迎春杯”竞赛题)二、能力拓展9.(1)观察下列各式,你会发现什么规律?3×5=15, 而15=42-1,5×7=35, 而35=62-1,……11×13=143, 而143=122-1,……将你猜想到的规律用只含一个字母的式子表示出来_______.(2000年济南市中考题)(2)将1,-12,13,-14,15,-16…按一定规律排成下表:第1行 1第2行-1213第3行-141516第4行17 -1819-110第5行111 -112113-114115……从表中可以看到第4行中,自左向右第3个数是9,第5行中从左向右第2个数是-112,•那么第199行中自左向右第8个数是________,第1998行中自左向右第11•个数是________. (“希望杯”邀请赛试题) 10.有一列数a 1,a 2,a 3,a 4,…,a n ,其中 a 1=6×2+1 a 2=6×3+2; a 3=6×4+3; a 4=6×5+4; ……则第n 个数a n =_______;当a n =2001时,n=________. (第15届江苏省竞赛题) 11.一个正方体,它的每一面上写有一个字,组成“数学奥林匹克”.有三个同学从不同的角度看到的结果依次如图所示,那么,“学”字对面的字为______.(重庆市竞赛题)(第11题) (第12题)12.用盆栽菊花摆在如图所示的大小相同的7个正方形花坛的边缘,•正方形每边都等距离地摆n(•n•≥3)••盆花,••那么所需菊花的总盆数s•与n•的关系可以表示为________. (第14届“希望杯”邀请赛试题)13. (新加坡数学竞赛题)如果一个序列{}i a 满足a 1=2,a n+1=a n +2n(n 为自然数),那么a 100是( )A.9900B.9902C.9904D.10100E.10102 14. (2001年湖北省荆州市中考题)将正偶数按下表排成5列: 第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10第3行 18 20 22 24 …… …… 28 26 根据上面排列规律,则2000应在( ).A.第125行,第1列B.第125行,第2列C.第250行,第1列D.第250行,第2列15.(1)设n 为自然数,具有下列形式11111n ⋅⋅⋅个5555n ⋅⋅⋅个5的数是不是两个连续奇数的积,说明理由.(2)化简333n ⋅⋅⋅个3×333n ⋅⋅⋅个3+1999n ⋅⋅⋅个9,并说明在结果中共有多少个奇数数字?16.(1)图①是正方体木块,把它切去一块,可能得到形如图②、③、④、•⑤的木块.我们知道,图①的正方体木块有8个顶点,12条棱,6个面,请你将图②、③、④、•⑤中木块的顶点数、图顶点数棱数面数①8 12 6②③④⑤(2)观察此表,____________________.(3)图⑥是用虚线画出的正方体木块,请你想象一种与图②~⑤不同的切法,•把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为________,棱数为_________,面数为________. (第16届江苏省竞赛题)三、综合创新:17.怎样的两个数,它们的和等于它们的积?你大概马上就会想到2+2=2×2,其实这样的两个数还有很多,例如:3+32=3×32。