高考数学二轮复习 导数的应用 最值与恒成立课件 理
高中数学理科专题讲解高考大题专项(一)《导数的综合应用》教学课件

题型二 讨论函数的单调性例2(2019湖北八校联考一,21)已知函数f(x)=x3+ x2-4ax+1(a∈R).(1)略;(2)若函数h(x)=a(a-1)ln x-x3+3x+f(x),讨论函数h(x)的单调性.
--
--
解题心得在判断函数f(x)的单调性时,若f'(x)中含有参数不容易判断其正负时,需要对参数进行分类讨论,分类的标准:(1)按导函数是否有零点分大类;(2)在大类中按导函数零点的大小分小类;(3)在小类中按零点是否在定义域中分类.
当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.所以f(x)在(-1,+∞)单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.
--
--
题型二 求函数的极值、最值例2(2019四川成都七中一模,21)已知函数f(x)=xsin x+2cos x+ax+2,其中a为常数.(1)略;(2)求函数f(x)在[0,π]上的最小值.
--
解: (2)对∀x∈[0,π],f'(x)=xcos x-sin x+a,令g(x)=xcos x-sin x+a,g'(x)=-xsin x≤0,所以f'(x)在区间[0,π]上单调递减.当a≤0时,f'(x)≤f'(0)=a≤0,∴f(x)在区间[0,π]上单调递减,故fmin(x)=f(π)=aπ.当a≥π时,f'(x)≥f'(π)=a-π≥0,∴f(x)在区间[0,π]上单调递增,故fmin(x)=f(0)=4.当0<a<π时,因为f'(0)=a>0,f'(π)=a-π<0,且f'(x)在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x0∈(0,π),使得f'(x0)=0,且f(x)在[0,x0]上单调递增,在[x0,π]上单调递减.故f(x)的最小值等于f(0)=4和f(π)=aπ中较小的一个值.
高考数学(理科)人教版二轮复习课件:专题四 导数及其应用第2讲导数的综合应用

导数及其应用
第2讲
导数的综合应用
专题四
导数及其应用
2016考向导航 历届高考考什 么? 1.导数在研究函 数单调性中的 应用 2.导数在证明不 等式中的应用 3.导数在求函数 参数范围中的 应用 4.导数在求函数 最值中的应用 2015 卷Ⅱ,T21(1) 卷Ⅰ,T21(2) 卷Ⅱ,T21(2) 卷Ⅱ,T21(2) 卷Ⅰ,T21(2) 卷Ⅱ,T21 卷Ⅱ,T21(2) 三年真题统计 2014 2013 卷Ⅰ, T21(2)
栏目 导引
专题四
导数及其应用
1.已知函数 f(x)= x2+ a(x+ ln x), a∈ R. (1)当 a=- 1 时,求 f(x)的单调区间; 1 (2)若 f(x)> (e+ 1)a,求 a 的取值范围. 2
解: (1)由题意得 x∈ (0,+∞ ), 当 a=-1 时, f(x)= x2- x- ln x, 2 2x - x- 1 ∴ f′(x)= . x 令 f′(x)<0,则 0<x<1; 令 f′(x)≥ 0,则 x≥ 1, ∴ f(x)的单调递减区间是(0, 1), 单调递增区间是 [1,+∞ ).
(1) 分离思想:将参数 ( 待定系数 ) 分离出来,研究函数的值 域; (2)数形结合思想:将原函数看作两个函数的“合成”,利用 图形关系求参数范围;
(3)分类讨论思想:根据导函数进行讨论.
栏目 导引
专题四
导数及其应用
e -e 设函数 f(x)= , g(x)= x. 2 (1)若 h(x)=f(x)- kg(x)在 R 上是增函数, 求实数 k 的取值范围; (2)设 H(x)是 f(x)的导函数, 若 H(3x)- tH(x)≥ 0, 求证: t≤ 4[f(x)]2 x -x + 1. e -e 解: (1)由题意知 h(x)= - kx 得 2 e x+e -x h′ (x)= - k(x∈ R), 2 ∵ h(x)在 R 上是增函数, e x+e -x 即 - k≥ 0 在 R 上恒成立. 2 e x+e -x ∴ k≤ , 2
高考数学复习考点知识专题讲解课件第18讲 导数与不等式 第2课时 利用导数研究恒成立问题

1<x≤e时,f'(x)>0,此时f(x)单调递增.∴f(x)的单调递减区间为(0,1),单调递增区间
为(1,e],f(x)的极小值为f(1)=1,无极大值.
课堂考点探究
变式题1 已知f(x)=ax-ln
ln
x,x∈(0,e],g(x)= ,x∈(0,e],其中e是自然对数的底数,
a∈R.
1
1
上的最大值为- ,f(x)在 ,2
2
2
上的最小值为ln 2-2.
课堂考点探究
变式题2 [2021·重庆八中模拟] 已知函数f(x)=ln
1 2
x- x .
2
(2)若不等式f(x)>(2-a)x2有解,求实数a的取值范围.
解:原不等式即为ln
1 2
ln
1
ln
1
x- x >(2-a)x2,可化简为2-a< 2 - .记g(x)= 2 - ,则原不等式
用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结
构特征构造一个可导函数是用导数证明不等式的关键.
课堂考点探究
(2)可化为不等式恒成立问题的基本类型:
类型1:函数f(x)在区间[a,b]上单调递增,只需f'(x)≥0在[a,b]上恒成立.
类型2:函数f(x)在区间[a,b]上单调递减,只需f'(x)≤0在[a,b]上恒成立.
值的过程中常用的放缩方法有函数放缩法、基本不等式放缩法、叠加不等式
放缩法等.
课堂考点探究
探究点一
恒成立与能成立问题
例1 [2022·南京调研] 设函数f(x)=(x2-a)ex,a∈R,e是自然对数的底数.
导数的最值、取值范围与恒成立问题(理科目标版含答案)

【例 2】 (2015 石景山一模理 18) 已知函数 f ( x) x a ln x , g ( x) (Ⅰ)若 a 1 ,求函数 f ( x) 的极值; (Ⅱ)设函数 h( x) f ( x) g ( x) ,求函数 h( x) 的单调区间; (Ⅲ)若存在 x0 1,e ,使得 f ( x0 ) g ( x0 ) 成立,求 a 的取值范围. 解: (Ⅰ) f ( x) x a ln x 的定义域为 0, . 当 a 1 时, f ( x)
1 x 2 并进一步转化为 a x
1 x 2 在区间上的最小值。 x
(6) 注意当无法想清逻辑关系时, 做示意图, 利用数形结合判断大小关系并转化; (7) 注意结果要判断是否与题设的区间端点或参数范围相吻合。 补充说明: 有些题目不是典型的恒成立问题, 但可以有多种解法, 掌握多种解法有利于避免卡题并 提高解决问题的灵活性与准确性。 在北京高考中,题设函数通常有几种类型:三次函数型,多项式+分式函数型,多项式 +对数函数型,多项式+指数函数型,含三角函数的表达式以及它们的乘、加、甚至复合。 为保证导数问题有效解决,一定要熟练掌握求导法则,首先保证求导结果的准确。
√
√ √ √ √ √ √
自检自查必考点
单调区间、 最值与取值范围问题是导数最常见的经典问题, 需重点掌握分类讨论模型 及参变分离模型。 (1) 单调区间。 作为前几年最经典的第二问, 单调区间问题须注意其基本模型是什 么?容易忽略的条件是什么?如何处理含参问题单调区间的讨论?前提与结 论该怎样规范书写?怎样做到不重不漏等等。 (2) 最值。最值问题该如何转化?该问题与经典的单调区间问题有什么联系?怎样
利用导数研究函数的零点专题课件-2025届高三数学二轮复习+++

f'(x),f(x)的变化情况如表所示.
x
(-∞,-2)
f'(x)
-
f(x)
单调递减
-2
0
1
− 2
所以f(x)在区间(-∞,-2)上单调递减,在区间(-2,+∞)上单调递增.
1
当x=-2时,f(x)有极小值f(-2)= − 2 .
(-2,+∞)
+
单调递增
(2)令f(x)=0,解得x=-1.
来求解.这类问题求解的通法是:
(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;
(2)求导数,得单调区间和极值点;
(3)数形结合,挖掘隐含条件,确定函数图象与x轴的交点情况进
而求解
【考点分类练】
命题点1
根据函数零点个数求参数
已知函数零点个数求参数的方法
(1)数形结合法:先根据函数的性质画出图象,再根据函数零点个数的要求数形结合
象的交点个数.
考点一
探究零点个数
例1(2024·河南郑州三模)已知函数f(x)=eax-x.
(1)若a=2,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)讨论f(x)的零点个数.
解 (1)若a=2,则f(x)=e2x-x,f'(x)=2e2x-1.
又f(1)=e2-1,切点为(1,e2-1),
此 f(x)在 R 上单调递减.当 a>0 时,f'(x)=2a e +
则 f(x)在
1
ln ,
+ ∞ 上单调递增;令 f'(x)<0,得
1
高考数学二轮复习 专题2 函数与导数 第3讲 导数的概念

第3讲导数的概念及其简单应用导数的几何意义及导数的运算1.(2015洛阳统考)已知直线m:x+2y-3=0,函数y=3x+cos x的图象与直线l相切于Ρ点,若l ⊥m,则Ρ点的坐标可能是( B )(A)(-错误!未找到引用源。
,-错误!未找到引用源。
) (B)(错误!未找到引用源。
,错误!未找到引用源。
)(C)(错误!未找到引用源。
,错误!未找到引用源。
)(D)(-错误!未找到引用源。
,-错误!未找到引用源。
)解析:由l⊥m可得直线l的斜率为2,函数y=3x+cos x的图象与直线l相切于Ρ点,也就是函数在P点的导数值为2,而y ′=3-sin x=2,解得sin x=1,只有B,D符合要求,而D中的点不在函数图象上,因此选B.2.(2014广东卷)曲线y=e-5x+2在点(0,3)处的切线方程为.解析:由题意知点(0,3)是切点.y′=-5e-5x,令x=0,得所求切线斜率为-5.从而所求方程为5x+y-3=0.答案:5x+y-3=0利用导数研究函数的单调性3.(2015辽宁沈阳市质检)若定义在R上的函数f(x)满足f(x)+f′(x)>1,f(0)=4,则不等式f(x)>错误!未找到引用源。
+1(e为自然对数的底数)的解集为( A )(A)(0,+∞) (B)(-∞,0)∪(3,+∞)(C)(-∞,0)∪(0,+∞) (D)(3,+∞)解析:不等式f(x)>错误!未找到引用源。
+1可以转化为e x f(x)-e x-3>0令g(x)=e x f(x)-e x-3,所以g′(x)=e x(f(x)+f′(x))-e x=e x(f(x)+f′(x)-1)>0,所以g(x)在R上单调递增,又因为g(0)=f(0)-4=0,所以g(x)>0⇒x>0,即不等式的解集是(0,+∞).故选A.4.(2014辽宁卷)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是( C )(A)[-5,-3] (B)[-6,-错误!未找到引用源。
高考数学二轮复习第3讲导数的简单应用课件理
1 2
,上3 单调递
减,∴f
'(x)≤0在区间
1 2
,上3 恒成立.
∴
f
f
'
1
即2
'( 3 )
0
0 ,
,
解得14 a≥12 a
9 3 a
.1∴ 实0 , 数a的取1 值0 范围为
1 0.
3
10 3
.1, 2/11/2021
考点三 利用导数研究函数的极值(最值)问题
可导函数的极值与最值 (1)若在x0附近左侧f '(x)>0,右侧f '(x)<0,则f(x0)为函数f(x)的极大值; 若在x0附近左侧f '(x)<0,右侧f '(x)>0,则f(x0)为函数f(x)的极小值. (2)设函数y=f(x)在[a,b]上连续,在(a,b)内可导,则f(x)在[a,b]上必有 最大值和最小值且在极值点或端点处取得.
12/11/2021
命题角度二 利用函数的单调性求参数的值(范围)
例2 若函数f(x)=x2-4ex-ax在R上存在单调递增区间,求实数a的取 值范围.
解析 因为f(x)=x2-4ex-ax,所以f '(x)=2x-4ex-a.由题意得,f '(x)=2x-4 ex-a>0,即a<2x-4exg(x)=2x-4ex,则g '(x)=2-4ex.令g '(x)=0,解 得xx∈(-∞,-ln 2)时,函数g(x)=2x-4ex单调递增;当x∈(-ln 2,+∞)时,函数g(x)=2x-4ex单调递减.所以,当x=-ln 2时,g(x)=2x-4ex 取得最大值-2-2ln 2,所以aa的取值范围为(-∞, -2-2ln2).
高考数学文(二轮复习)课件《导数的简单应用
b 又y′=2ax-x2, b 7 所以在点P处的切线斜率4a- =- .② 4 2 由①②解得a=-1,b=-2,所以a+b=-3.
(1)求曲线的切线要注意“过点P的切线”与“在点P处的切 线”的差异,过点P的切线中,点P不一定是切点,点P也不一 定在已知曲线上,而在点P处的切线,必以点P为切点. (2)利用导数的几何意义解题,主要是利用导数、切点坐 标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率 间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之 间的关系,进而和导数关联起来求解.
2.(2014· 湖南高考)若0<x1<x2<1,则( A.e -e >ln x2-ln x1 B.e -e <ln x2-ln x1 C.x2e >x1e D.x2e <x1e
x1 x1 x2 x2 x2 x1 x2 x1
)
答案:C
1 解析:构造函数f(x)=e -ln x,则f′(x)=e - ,故f(x)=ex x
2.应对策略 首先要理解导数的工具性作用;其次要弄清函数单调性与 导数符号之间的关系,掌握求函数极值、最值的方法步骤,对 于已知函数单调性或单调区间,求参数的取值范围问题,一般 先利用导数将其转化为不等式在某个区间上的恒成立问题,再 利用分离参数法求解.
基础记忆
试做真题
ห้องสมุดไป่ตู้
基础要记牢,真题须做熟
基础知识不“背死”,就不能“用活”! 1.导数的几何意义 (1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点 (x0,f(x0))处的切线的斜率,即k=f′(x0). (2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)= f′(x0)(x-x0). (3)导数的物理意义:s′(t)=v(t),v′(t)=a(t).
2020年高考二轮复习第3讲导数的基本应用
第3讲导数的简单应用1.导数的几何意义函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)(x-x0).[提醒]求曲线的切线方程时,要注意是在点P处的切线还是过点P的切线,前者点P 为切点,后者点P不一定为切点.2.四个易误导数公式(1)(sin x)′=cos_x;(2)(cos x)′=-sin_x;(3)(a x)′=a x ln a(a>0,且a≠1);(4)(log a x)′=1x ln a(a>0,且a≠1,x>0).3.利用导数研究函数的单调性(1)导数与函数单调性的关系.①f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.②f′(x)≥0是f(x)为增函数的必要不充分条件,如果函数在某个区间内恒有f′(x)=0时,则f(x)为常数函数.(2)利用导数研究函数单调性的方法.①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题来求解.4.利用导数研究函数的极值、最值(1)若在x0附近左侧f′(x)>0,右侧f′(x)<0,则f(x0)为函数f(x)的极大值;若在x0附近左侧f′(x)<0,右侧f′(x)>0,则f(x0)为函数f(x)的极小值.(2)设函数y=f(x)在[a,b]上连续,在(a,b)内可导,则f(x)在[a,b]上必有最大值和最小值且在极值点或端点处取得.热点一导数的几何意义——明切点,建方程(2018·全国卷Ⅰ)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x) 在点(0,0)处的切线方程为()A.y=-2x B.y=-xC.y=2x D.y=x解析:选D.解法一:因为函数f(x)=x3+(a-1)x2+ax为奇函数,所以f(-x)=-f(x),所以(-x)3+(a-1)(-x)2+a(-x)=-[x3+(a-1)x2+ax],所以2(a-1)x2=0,因为x∈R,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D. [一题多变]1.奇函数f (x )=x 3+(a -1)x 2+ax 与直线y =kx +2相切,则实数k 的值为________. 解析:由例1解析知a =1,即f (x )=x 3+x ,f ′(x )=3x 2+1. 设切点M 为(x 0,x 30+x 0),则点M 处的切线方程为y -(x 30+x 0)=(3x 20+1)(x -x 0),又切线y =kx +2 过定点(0,2),所以2-x 30-x 0=(3x 20+1)(-x 0)解得 x 0=-1,故k =3x 20+1=4. 答案:42.奇函数f (x )=x 3+(a -1)x 2+ax 与曲线y =2x 2交点处的公切线方程为y =kx +2,则实数k 的值为________.解析:由例1解析知f (x )=x 3+x ,设交点(x 0,2x 20),则⎩⎪⎨⎪⎧x 30+x 0=2x 203x 20+1=4x 0=k解得⎩⎪⎨⎪⎧x 0=1k =4答案:41.解题策略:与切线有关问题的处理策略(1)已知切点A (x 0,y 0)求斜率k ,即求该点处的导数值,k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)求过某点M (x 1,y 1)的切线方程时,需设出切点A (x 0,f (x 0)),则切线方程为y -f (x 0)=f ′(x 0)(x -x 0),再把点M (x 1,y 1)代入切线方程,求x 0. 2.常用结论①y =e x 在(0,1)处的切线方程为y =x +1;过原点的切线的切点为(1,e); ②y =ln x 在(1,0)处的切线方程为y =x -1;过原点的切线的切点为(e ,1). 热点二 利用导数研究函数的单调性(1)(2019·河北名校联考)函数f (x )=x 2-2ln x 的单调递减区间是________.解析:函数f (x )=x 2-2ln x 的定义域为(0,+∞),令f ′(x )=2x -2x =2(x +1)(x -1)x <0,得0<x <1,∴f (x )的单调递减区间是(0,1).(2)函数f (x )=13x 3-x 2+ax -5在区间(-1,2)内单调递减,则实数a 的取值范围是________.解析:f ′(x )=x 2-2x +a ,又f (x )在(-1,2)内单调递减, ∴x 2-2x +a ≤0在(-1,2)上恒成立. 解法一:分离参数法-a ≥x 2-2x 恒成立,又x 2-2x <3. 故-a ≥3,即a ≤-3. 解法二:构造函数法设g (x )=x 2-2x +a .由二次函数性质得:⎩⎪⎨⎪⎧g (-1)≤0g (2)≤0即⎩⎪⎨⎪⎧(-1)2+2+a ≤04-4+a ≤0,即a ≤-3. 答案:(-∞,-3](3)(2019·武汉模拟)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时, xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <c <a C .a <c <bD .c <a <b解析:选D.构造函数g (x )=f (x )x ,所以g ′(x )=xf ′(x )-f (x )x 2, 因为当x >0时,xf ′(x )-f (x )<0,所以g ′(x )<0,所以函数g (x )在(0,+∞)上单调递减. 因为函数f (x )为奇函数,所以g (x )=f (x )x是偶函数,所以c =f (-3)-3=g (-3)=g (3),因为a =f (e )e =g (e),b =f (ln 2)ln 2=g (ln 2),所以g (3)<g (e)<g (ln 2),所以c <a <b . [一题多变]1.本例(1)函数f (x )=x 2-2a ln x (a ∈R )的单调递增区间为________. 解析:定义域为(0,+∞),f ′(x )=2x -2a x =2(x 2-a )x当a ≤0时,f ′(x )>0,即f (x )的增区间为(0,+∞). 当a >0时,由f ′(x )>0即x 2>a ,又x >0即x >a . 故f (x )增区间为(a ,+∞). 综上当a ≤0时f (x )增区间为(0,+∞) 当a >0时,f (x )的增区间为(a ,+∞). 答案:当a ≤0时,f (x )增区间为(0,+∞) 当a >0时,f (x )的增区间为(a ,+∞).2.本例(2)若f (x )=13x 3-x 2+ax -5在区间(-1,2)内存在单调减区间,则实数a 的取值范围是________.解析:f ′(x )=x 2-2x +a =(x -1)2+a -1,当x ∈(-1,2)时,f ′(x )≥a -1, 依题意a -1<0即a <1. 答案:(-∞,1)3.本例(2)若函数f (x )=13x 3-x 2+ax -5在[-1,2]上不单调,则实数a 的取值范围是________.解析:f ′(x )=(x -1)2+a -1,若函数f (x )在[-1,2]上单调,则a -1≥0或⎩⎪⎨⎪⎧f ′(-1)≤0f ′(2)≤0解得a ≥1或a ≤-3,故满足条件的a ∈(-3,1). 答案:(-3,1)4.本例(3)变为:已知f (x )是定义在R 上的奇函数,且当x ∈(-∞,0)时,不等式f (x )+xf ′(x )<0成立,若a =3f (3),b =-2f (-2),c =f (1),则a ,b ,c 的大小关系是( ) A .a >b >c B .c >b >a C .c >a >bD .a >c >b解析:选A.令函数F (x )=xf (x ),则F ′(x )=f (x )+xf ′(x ),∵当x ∈(-∞,0)时,f (x )+xf ′(x )<0,∴F (x )=xf (x )在(-∞,0)上单调递减,∵f (x )是定义在R 上的奇函数,∴F (x )为偶函数.∵a =3f (3),b =-2f (-2),c =f (1),∴a =F (-3),b =F (-2),c =F (1)=F (-1),∴F (-3)>F (-2)>F (-1),即a >b >c .1.解题策略(1)利用函数的单调性求参数的取值范围的解题思路①由函数在区间[a ,b ]上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间[a ,b ]上恒成立列出不等式.②利用分离参数法或函数的性质求解恒成立问题.③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别处有f ′(x )=0,则参数可取这个值. (2)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式. 2.依据求导法则,常见的构造函数有: (1)xf ′(x )+f (x )联想[xf (x )]′;(2)xf ′(x )-f (x )联想⎣⎡⎦⎤f (x )x ′;(3)f ′(x )+f (x )联想[e x f (x )]′; (4)f ′(x )-f (x )联想⎣⎡⎦⎤f (x )e x ′;(5)f ′(x )±k 联想(f (x )±kx )′.热点三 利用导数研究函数的极值、最值(1)[母题](2019·唐山模拟)已知函数f (x )=23x 3-2ax 2-3x +1在(-1,2)内有且只有一个极值点,则实数a 的取值范围是________.解析:f ′(x )=2x 2-4ax -3,由函数f (x )在(-1,2)内有且只有一个极值点,知f ′(x )=0在(-1,2)上有且只有一根(不是重根),则①f ′(-1)·f ′(2)<0,解得a >58或a <14;②若f ′(-1)=0,a =14,则f ′(x )=0的另一根为32,32∈(-1,2),满足条件;③若f ′(2)=0,a =58,则f ′(x )=0的另一根为-34,-34∈(-1,2),满足条件.综上,a ≥58或a ≤14.答案:(-∞,14]∪[58,+∞)(2)[考题打磨]若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.解析:f ′(x )=6x 2-2ax =2x (3x -a )(x >0),①当a ≤0时,f ′(x )>0,在(0,+∞)上恒成立,则f (x )在(0,+∞)上单调递增,又f (0)=1,所以此时f (x )在(0,+∞)内无零点,不满足题意.②当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得0<x <a3,则f (x )在⎝⎛⎭⎫0,a 3上单调递减,在⎝⎛⎭⎫a 3,+∞上单调递增,又f (x )在(0,+∞)内有且只有一个零点,所以f ⎝⎛⎭⎫a 3=-a 327+1=0,得a =3,所以f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1),当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增,当x ∈(0,1)时,f ′(x )<0,f (x )单调递减,则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,所以f (x )在[-1,1]上的最大值与最小值的和为-3.(1)求函数f (x )的极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数符号. (2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在来求解. (3)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2019·昆明二模)已知函数f (x )=e xx 2+2k ln x -kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( ) A.⎝⎛⎦⎤-∞,e 24 B .⎝⎛⎦⎤-∞,e2 C .(0,2]D .[2,+∞)解析:选A.由题意得f ′(x )=e x (x -2)x 3+2k x -k =(x -2)(e x -kx 2)x 3,f ′(2)=0.令g (x )=e x-kx 2,g (x )在区间(0,+∞)恒大于等于0,或恒小于等于零,即e x x 2≥k 或k ≥e xx2在(0,+∞)上恒成立.设h (x )=e x x 2,h ′(x )=e 2(x -2)x 3,所以h (x )的最小值为h (2)=e 24,所以k ≤e 24,选A.限时训练一、选择题(本题共12小题,每小题5分,共60分)1.(2019·全国卷Ⅲ)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( )A .a =e ,b =-1B .a =e ,b =1C .a =e -1,b =1D .a =e -1,b =-1解析:选D.y ′=a e x +ln x +1,k =y ′|x =1=a e +1, ∴切线方程为y -a e =(a e +1)(x -1), 即y =(a e +1)x -1.又∵切线方程为y =2x +b ,∴⎩⎪⎨⎪⎧a e +1=2,b =-1,即a =e -1,b =-1. 故选D.2.(2019·太原二模)函数y =f (x )的导函数的图象如图所示,则下 列说法错误的是( ) A .(-1,3)为函数y =f (x )的单调递增区间 B .(3,5)为函数y =f (x )的单调递减区间 C .函数y =f (x )在x =0处取得极大值 D .函数y =f (x )在x =5处取得极小值解析:选C.由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f(x)在x=-1,5处取得极小值,在x=3处取得极大值,故选项C错误,选C. 3.(2019·武汉模拟)函数f(x)=ln x+ax存在与直线2x-y=0平行的切线,则实数a的取值范围为()A.(-∞,2] B.(-∞,2)C.(2,+∞) D.(0,+∞)解析:选B.f(x)=ln x+ax存在与直线2x-y=0平行的切线,即f′(x)=2在(0,+∞)上有解,而f′(x)=1x+a,即1x+a=2在(0,+∞)上有解,a=2-1x,因为x>0,所以2-1x<2,所以a的取值范围是(-∞,2).故选B.4.若函数f(x)=(x+a)e x在(0,+∞)上不单调,则实数a的取值范围是() A.(-∞,-1) B.(-∞,0)C.(-1,0) D.[-1,+∞)解析:选A.f′(x)=e x(x+a+1),由题意,知方程e x(x+a+1)=0在(0,+∞)上至少有一个实数根,即x=-a-1>0,解得a<-1.5.已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值为3,那么此函数在[-2,2]上的最小值为()A.0 B.-5C.-10 D.-37解析:选D.由题意知,f′(x)=6x2-12x,由f′(x)=0得x=0或x=2,当x<0或x>2时,f′(x)>0,当0<x<2时,f′(x)<0,∴f(x)在[-2,0]上单调递增,在[0,2]上单调递减,由条件知f(0)=m=3,∴f(2)=-5,f(-2)=-37,∴最小值为-37.6.若x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,则f(x)的极小值为()A.-1 B.-2e-3C.5e-3D.1解析:选A.由题意可得f′(x)=e x-1[x2+(a+2)x+a-1].∵x=-2是函数f(x)=(x2+ax -1)e x-1的极值点,∴f′(-2)=0,∴a=-1,∴f(x)=(x2-x-1)e x-1,f′(x)=e x-1(x2+x-2)=e x-1(x-1)(x+2),∴x∈(-∞,-2),(1,+∞)时,f′(x)>0,f(x) 单调递增;x∈(-2,1)时,f′(x)<0,f(x)单调递减.∴f(x)极小值=f(1)=-1.故选A.7.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是() A.(-1,2) B.(-∞,-3)∪(6,+∞)C.(-3,6) D.(-∞,-1)∪(2,+∞)解析:选B.∵f′(x)=3x2+2ax+(a+6),由已知可得f′(x)=0有两个不相等的实根.∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.8.(2019·宁波模拟)若不等式2x ln x ≥-x 2+ax -3对x ∈(0,+∞)恒成立,则实数a 的取值范围是( ) A .(-∞,0) B .(-∞,4] C .(0,+∞)D .[4,+∞)解析:选B.2x ln x ≥-x 2+ax -3, 则a ≤2ln x +x +3x ,设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2.当x ∈(0,1)时,h ′(x )<0,函数h (x )单调递减; 当x ∈(1,+∞)时,h ′(x )>0,函数h (x )单调递增, 所以h (x )min =h (1)=4,所以a ≤h (x )min =4. 9.(2019·吉林长春质检)已知函数f (x )=e xx2-k ⎝⎛⎭⎫2x +ln x ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围为( ) A .(-∞,e] B .[0,e] C .(-∞,e)D .(0,e]解析:选A.∵f (x )=e x x2-k ⎝⎛⎭⎫2x +ln x , ∴x ∈(0,+∞),∴f ′(x )=(e x -kx )(x -2)x 2.∵x =2是f (x )的唯一极值点,∴y =e x -kx 无其他变号零点. 令g (x )=e x -kx ,则g ′(x )=e x -k .①k ≤0时,g ′(x )>0恒成立,g (x )在(0,+∞)上单调递增,g (x )min =g (0)=1,∴g (x )=0无解.②k >0时,由g ′(x )=0得x =ln k .0<x <ln k 时,g ′(x )<0,g (x )单调递减;x >ln k 时,g ′(x )>0,g (x )单调递增. ∴g (x )min =g (ln k )=k -k ln k ,∴k -k ln k ≥0,∴0<k ≤e , 综上,k ≤e.故选A.11.(2019·长沙模拟)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( ) A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)解析:选B.因为f (x +2)为偶函数, 所以f (x +2)的图象关于x =0对称, 所以f (x )的图象关于x =2对称. 所以f (0)=f (4)=1. 设g (x )=f (x )ex (x ∈R ),则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x .又f ′(x )<f (x ),所以g ′(x )<0(x ∈R ), 所以函数g (x )在定义域上单调递减.因为f (x )<e x ⇔f (x )e x <1,而 g (0)=f (0)e 0=1,所以f (x )<e x ⇔g (x )<g (0),所以x >0.故选B. 12.(2019·浙江卷)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b 恰有3个零点,则( ) A .a <-1,b <0 B .a <-1,b >0 C .a >-1,b <0 D .a >-1,b >0解析:选C.由题意,b =f (x )-ax =⎩⎪⎨⎪⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0. 设y =b ,g (x )=⎩⎪⎨⎪⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0. 即以上两个函数的图象恰有3个交点,根据选项进行讨论. ①当a <-1时,1-a >0,可知g (x )在(-∞,0)上递增; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知g (x )在(0,+∞)上递增.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故A ,B 排除. ②当a >-1,即a +1>0时, 因为g ′(x )=x [x -(a +1)](x ≥0), 所以当x ≥0时,由g ′(x )<0可得0<x <a +1,所以当x ≥0时,g (x )在(0,a +1)上递减,g (x )在(a +1,+∞)上递增. 如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在有3个交点的情况,不合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在有3个交点的情况,不合题意,舍去.综上,-1<a <1,b <0. a>-1,b<0,故选C . 二、填空题13.(2019·浙江卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________. 解析:设A (m ,n ),则曲线y =ln x 在点A 处的切线方程为y -n =1m (x -m ).又切线过点(-e ,-1),所以有n +1=1m (m +e).再由n =ln m ,解得m =e ,n =1. 故点A 的坐标为(e ,1). 答案:(e ,1)14.(2019·南通调研)已知函数f (x )=2f ′(1)ln x -x ,则f (x )的极大值为________. 解析:因为f ′(x )=2f ′(1)x-1,所以f ′(1)=2f ′(1)-1,所以f ′(1)=1,故f (x )=2ln x -x ,f ′(x )=2x -1=2-x x ,则f (x )在(0,2)上为增函数,在(2,+∞)上为减函数,所以当x =2时f (x )取得极大值,且f (x )极大值=f (2)=2ln 2-2. 答案:2ln 2-215.(2019·天津卷改编)已知a ∈R .设函数f (x )=⎩⎪⎨⎪⎧x 2-2ax +2a ,x ≤1,x -a ln x ,x >1.若关于x 的不等式f (x )≥0在R 上恒成立,则a 的取值范围为________.解析:当x ≤1时,由f (x )=x 2-2ax +2a ≥0恒成立,而二次函数f (x )图象的对称轴为直线x =a ,所以当a ≥1时,f (x )min =f (1)=1>0恒成立, 当a <1时,f (x )min =f (a )=2a -a 2≥0,∴0≤a <1. ∴a ≥0.当x >1时,由f (x )=x -a ln x ≥0恒成立, 即a ≤xln x恒成立.设g(x)=xln x,则g′(x)=ln x-1(ln x)2.令g′(x)=0,得x=e,且当1<x<e时,g′(x)<0,当x>e时,g′(x)>0,∴g(x)min=g(e)=e,∴a≤e.综上,a的取值范围为[0,e].答案:[0,e]。
江苏省2014年高考数学(文)二轮复习简易通配套课件:常考问题4 导数的简单应用
所以 f(x)在区间[1,e]上为增函数. 1 所以当 x=1 时,f(x)取得最小值 ; 2 1 2 当 x=e 时,f(x)取得最大值2e +1. (2)证明 2 3 1 2 设 h(x)=g(x)-f(x)=3x -2x -ln x,x∈(1,+∞),
3 2 2 2 x - x - 1 x - 1 2 x +x+1 1 2 则 h′(x)=2x -x- x= = . x x
• 【训练2】 (2013·德州二模)设函数f(x)=x ln x. • (1)求函数f(x)在点M(e,f(e))处的切线方 程; • (2) 设 F(x) = ax2 - (a + 2)x + f′(x)(a>0) , 讨论函数F(x)的单调性.
解 (1)f′(x)=ln x+1(x>0),则函数 f(x)在点 M(e,f(e))处的切线 的斜率为 f′(e)=2,又 f(e)=e,所以切线方程为 y-e=2(x-e), 即 y=2x-e. 1 (2)F(x)=ax -(a+2)x+ln x+1(x>0),F′(x)=2ax-(a+2)+ x =
热点二
利用导数研究函数的单调性
1-a 【例 2】 已知函数 f(x)=ln x-ax+ -1,a∈R. x (1)当 a=-1 时,求函数的单调区间; 1 (2)当 0≤a<2时,讨论 f(x)的单调性.
2 解 (1)当 a=-1 时,f(x)=ln x+x+ x-1,x∈(0,+∞),所以 x-1x+2 f′(x)= ,x∈(0,+∞). x2 由 f′(x)=0, 得 x=1 或 x=-2(舍去), 所以当 x∈(0,1)时, f′(x)<0, 函数 f(x)单调递减;当 x∈(1,+∞)时,f′(x)>0,函数 f(x)单调递 增. 故当 a=-1 时,函数 f(x)的单调递增区间为(1,+∞),单调递减 区间为(0,1).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拓展:已知 ,函数 aR
f (x) (x2 ax
(2)函数 f (x)是否为 R 上的单调函数,若是,求出a 的范围,
若不是,请说明理由。
探究提升
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
最值与恒成立
课前准备
请拿出你的
“最值与恒成立”导学案 、
课本、双色笔、草稿纸和典题本.
全力投入会使你与众不同. 你是最优秀的,你一定能做得更好!
学习目标
1、理解函数的单调性与导数的关系;能利用导数研究函 数的单调性,掌握利用导数求简单函数最值的方法,掌握 求参数的取值范围的常用技巧与方法。 2、独立思考,合作学习,能够掌握不等式恒成立问题常 规转化方法。
3、以极度的热情投入到课堂学习中,体验学习的快乐。
导学案反馈
组 别
1
2
3 4 5 6 7 8 9 10 11 12
得分
▪ 存在的问题:
规范展示
展示内容
地点
(约5分钟)
展示
要求:
1.展示快速, 书写认真、 简洁。 2.非展示同 学迅速整理、 总结,准备 补充、质疑。
不等式恒成立问题 例 1、已知函数 f(x)=x3-ax-1. (1)若 f(x)在实数集 R 上单调递增,求实数 a 的取值范围; (2)是否存在实数 a,使 f(x)在(-1,1)上单调递减?若 存在,求出 a 的取值范围;若不存在,说明理由;