2018春高数期中试卷

合集下载

湖北省重点高中联考协作体2018届高三春季期中考试数学(理)试题word版含解析AKUUAK

湖北省重点高中联考协作体2018届高三春季期中考试数学(理)试题word版含解析AKUUAK

2018年春季湖北省重点高中联考协作体期中考试高三数学理科试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在复平面内,复数满足,则的共轭复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】由,得,则,即的共轭复数对应的点位于第一象限.故选A.2. 已知集合,集合,则()A. B. C. D.【答案】A【解析】,所以,选A.3. 根据如下样本数据:3 5 7 96 3 2得到回归方程,则()A. 变量与之间是函数关系B. 变量与线性正相关C. 线性回归直线经过上述各样本点D.【答案】D【解析】变量与之间不是函数关系,变量与线性负相关,线性回归直线不一定经过上述各样本点,因为,所以,选D.4. 《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布()A. 30尺B. 150尺C. 90尺D. 180尺【答案】C【解析】已知等差数列选C.5. 已知实数满足,则目标函数的最大值等于()A. -14B. -5C. 4D. 6【答案】C【解析】作可行域,如图,则直线过点A(1,0)时取最大值4,选C.6. 已知直线,平面,且,,下列命题:①;②③;④其中正确的序号是()A. ①②B. ①③C. ②④D. ③④【答案】B【解析】,而,所以,①对;,,时位置关系不定;,而,所以,③对;,,时位置关系不定;所以选B.7. 运行如图所示的程序框图,若输出是126,则①应为()A. B. C. D.【答案】D【解析】执行循环得结束循环,所以,选D.8. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.【答案】B【解析】根据割补法将几何体补成半个球,所以体积为,选B.9. 若双曲线的中心为原点,是双曲线的焦点,过直线与双曲线交于两点,且的中点为,则双曲线的方程为()A. B. C. D.【答案】D【解析】由题意设该双曲线的标准方程为,,则且,则,即,则,即,则,所以,即该双曲线的方程为.故选B.点睛:本题考查双曲线的标准方程、直线和双曲线相交的中点弦问题;在处理直线和圆锥曲线的中点弦问题时,往往利用点差法进行处理,比联立方程过程简单,其主要步骤是(1)代点:且;(2)作差;(3)确定中点坐标和直线斜率的关系.10. 已知函数()的图象与直线的某两个交点的横坐标分别为,若的最小值为,且将函数的图象向右平移个单位得到的函数为奇函数,则函数的一个递增区间为()A. B. C. D.【答案】A【解析】由题意得因此,即为函数的一个递增区间,选A.【点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间;由求减区间11. 已知点是抛物线的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰在以为焦点的双曲线上,则双曲线的离心离为()A. B. C. D.【答案】B【解析】,因为以为焦点的双曲线可设为,所以,选B.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.12. 已知函数是上的奇函数,当时,,则函数在上的所有零点之和为()A. 0B. 4C. 8D. 16【答案】C【解析】,由,当时,由奇函数性质得函数在上的所有零点之和为在上零点值,即为8,选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在中,,,则__________.【答案】【解析】由得,所以14. 已知,的展开式中项的系数为1,则的值为__________.【答案】【解析】根据式子展开式中的系数为解得故答案为:.15. 已知各项都为正数的数列,对任意的,恒成立,且,则__________.【答案】21【解析】因为,所以,数列为等比数列,由,得,.点睛:1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则a m·a n=a p·a q”,可以减少运算量,提高解题速度.2.等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.16. 若以曲线上任意一点为切点作切线,曲线上总存在异于的点,以点为切点作线,且,则称曲线具有“可平行性”,下列曲线具有可平行性的编号为__________.(写出所有的满足条件的函数的编号)①②③④【答案】①③【解析】因为;因为不存在异于的点;因为总存在异于的点满足条件;因为,不存在异于的点;所以选①③三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,设内角的对边分别为,且.(1)求角;(2)若且,求的面积.【答案】(1);(2)【解析】试题分析:(1)利用两角差的正弦函数,余弦函数公式化简已知可得,结合范围0<C<π,即可解得C的值.(2)由正弦函数化简sinA=2sinB,可得a=2b,利用余弦定理解得b,可求a的值,利用三角形面积公式即可得解.试题解析:(1)因为,所以,因为在中,,所以.(2)因为,所以,因为,所以,所以,所以,所以考点:两角差的正弦函数,余弦函数公式,正弦定理,余弦定理【方法点睛】对余弦定理的理解(1)适用范围:余弦定理对任意的三角形都成立.(2)结构特征:“平方”、“夹角”、“余弦”.(3)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系式,它描述了任意三角形中边与角的一种数量关系.(4)主要功能:余弦定理的主要功能是实现三角形中边角关系的互化.18. 从某校高中男生中随机选取100名学生,将他们的体重(单位:)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在,内的两组男生中,用分层抽样的方法选取5人,再从这5人中随机抽取3人,记体重在内的人数为,求其分布列和数学期望.【答案】(1)64.5;(2)1.8【解析】试题分析:(1)根据组中值与对应区间概率乘积的和计算平均体重,(2)先确定各区间人数,再确定随机变量,根据组合数求对应区间概率,列表可得分布列,最后根据数学期望公式求期望.试题解析:(1)依频率分布直方图得各组的频率依次为:,故估计100名学生的平均体重约为:(2)由(1)及已知可得:体重在的男生分别为:从中用分层抽样的方法选5人,则体重在内的应选3人,体重在内的应选2人,从而的可能取值为1,2,3且得:........................其分布列为:P 1 2 3故得:19. 等边的边长为3,点分别为上的点,且满足(如图1),将沿折起到的位置,使二面角成直二面角,连接,(如图2)(1)求证:平面;(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.【答案】(1)见解析;(2)【解析】试题分析:(1) 由,等边三角形的边长为3.所以可得,所以在三角形ADE 翻折过程中始终成立.又由于成直二面角.由平面与平面垂直的性质定理可得平面.(2)由于平面平面BCED.假设存在点P,过点P作BD的垂线,垂足为H.则为所求的角.假设BP的长为x,根据题意分别求出相应的线段.即可得结论.(1) 因为等边△的边长为3,且,所以,.在△中,,由余弦定理得.因为,所以.(4分)折叠后有因为二面角是直二面角,所以平面平面又平面平面,平面,,所以平面(6分)(2)由(1)的证明,可知,平面.以为坐标原点,以射线、、分别为轴、轴、轴的正半轴,建立空间直角坐标系如图设,则,,所以,,所以(8分)因为平面,所以平面的一个法向量为因为直线与平面所成的角为,所以, (10分)解得即,满足,符合题意所以在线段上存在点,使直线与平面所成的角为,此时(12分)考点:1.线面垂直.2.图形的翻折问题.3.线面角.4.空间想象力.20. 在平面直角坐标系中,点,圆,点是圆上一动点,线段的中垂线与线段交于点.(1)求动点的轨迹的方程;(2)若直线与曲线相交于两点,且存在点(其中不共线),使得被轴平分,证明:直线过定点.【答案】(1);(2)【解析】试题分析:(1)根据中垂线性质得,即得,再根据椭圆定义确定轨迹方程,(2)因为被轴平分,所以,设坐标代入表示得,设直线方程与椭圆方程联立,利用韦达定理代入化简,最后根据方程恒成立条件得直线过定点.试题解析:(1)由已知,,圆的半径为依题意有:,故点P的轨迹是以为焦点,长轴长为4的椭圆,即故点P的轨迹E的方程为(2)令,因A,B,D不共线,故的斜率不为0,可令的方程为:,则由得则①被轴平分,即,亦即②而代入②得:③①代入③得:时得:此时的方程为:过定点(1,0)时,亦满足,此时的方程为:综上所述,直线恒过定点(1,0)21. 已知函数.(1)若,函数的极大值为,求实数的值;(2)若对任意的,,在上恒成立,求实数的取值范围.【答案】(1);(2)【解析】试题分析:(1)先求导数,再根据导函数零点分类讨论,根据导函数符号变化规律确定函数极大值,最后根据绝对值求实数的值;(2)先求,最大值,再变量分离得,最后根据导数研究函数最大值,即得实数的取值范围.试题解析:(1)由题意,.①当时,,令,得;,得,所以在单调递增单调递减.所以的极大值为,不合题意.②当时,,令,得;,得或,所以在单调递增,,单调递减.所以的极大值为,得.综上所述.(2)令,当时,,故上递增,原问题上恒成立①当时,,,,此时,不合题意.②当时,令,,则,其中,,令,则在区间上单调递增(ⅰ)时,,所以对,,从而在上单调递增,所以对任意,,即不等式在上恒成立.(ⅱ)时,由,及在区间上单调递增,所以存在唯一的使得,且时,.从而时,,所以在区间上单调递减,则时,,即,不符合题意.综上所述,.点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.22. 已知曲线的参数方程为,其中为参数,且在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)设是曲线上的一点,直线被曲线截得的弦长为,求点的极坐标.【答案】(1);(2)【解析】试题分析:(Ⅰ)运用平方法,可将半圆的参数方程化为普通方程,再由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,即可得到极坐标方程;(Ⅱ)结合半圆的直径所对的圆周角为直角,再由特殊角的三角函数值,即可求得T点的极坐标.试题解析:(Ⅰ)根据曲线的参数方程,其中为参数,且,得曲线C的普通方程为:,所以,曲线的极坐标方程为:,.(Ⅱ)由题意可得半圆C的直径为2,设半圆的直径为OA,则,由于,则,由于∠TAO=∠TOX,所以,T点的极坐标为.23. 已知函数,(1)求,求的取值范围;(2)若,对,都有不等式恒成立,求的取值范围.【答案】(1);(2)【解析】试题分析:(1)先根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)先根据二次函数性质得的最大值,再根据绝对值三角不等式得,最后解不等式可得的取值范围.试题解析:(1)由得或或综上所述,(2)当时,记则即,当,,时的最大值为,故原问题又点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

最新-【数学】湖北省黄冈中学2018年春季高一期中考试试题(理) 精品

最新-【数学】湖北省黄冈中学2018年春季高一期中考试试题(理) 精品

湖北省黄冈中学2018年春季高一数学期中考试试题(理)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 数列,161,81,41,21--的一个通项公式可能是 ( ) A .n n 21)1(- B .n n 21)1(- C .n n 21)1(1-- D .nn 21)1(1-- 2. 在ABC ∆中,角,A B 分别满足tan 2,tan 3A B ==,则角C 为 ( )A .34π B .4π C . 6π D . 3π 3. 符合下列条件的三角形ABC ∆有且只有一个的是 ( )A .1,2,30a b A ===︒B .1,2,3a b c ===C .1,45b c B ===︒D .1,2,100a b A ===︒ 4. 已知等差数列{}n a 的公差为2,若3a 是1a 与4a 的等比中项, 则2a =( )A .4-B .6-C .8-D .10-5. 已知数列121,,,4a a --成等差数列,1231,,,,4b b b --成等比数列,则212a a b -=( )A .12B .12-C.1122-或D.146. 等比数列{}n a 的各项均为正数,且13a =,如果前3项和为21,则456a a a ++等于( )A . 567-B .567C .168D . 577. 已知}{n a 是等比数列,22a =,514a =,则12231n n a a a a a a ++++=( )A .32(12)3n -- B .16(14)n-- C .16(12)n--D .32(14)3n -- 8. 在ABC ∆中,设角A ,B ,C 的对边分别为a ,b ,c ,且cos 2cos C a cB b-=,则角B 等于( ) A .30B .60C .90D . 1209. 等差数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=(2)m ≥,2138m S -=,则m = ( )A .38B .20C .10D .910.已知()f x 是定义在R 上的单调函数,且对任意,x y R ∈都有()()()f x f y f x y =+成立;若数列{}n a 满足1(0)a f =且11()(2)n n f a f a +=-- (n ∈N *),则2010a 的值为( )A . 4016B .4017C .4018D .4019二、填空题:本大题共5小题,每小题5分,共25分.11.已知{}n a 是等差数列, 且2581148a a a a +++=,则67a a += _________; 12.已知ABC ∆的三个内角,,A B C 成等差数列,且1,4,AB BC ==,则边BC 上的中线AD的长为__________;三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤。

河北定州中学2018届高三(承智班)上-期中考试数学试卷(含答案)

河北定州中学2018届高三(承智班)上-期中考试数学试卷(含答案)

河北定州中学2017—2018学年度高三上学期数学期中考试试题一、选择题1.函数的导函数为,满足,且,则的极值情况为()A. 有极大值无极小值B. 有极小值无极大值C. 既有极大值又有极小值D. 既无极大值也无极小值2.已知直线分别于半径为的圆相切于点,若点在圆的内部(不包括边界),则实数的取值范围是( )A. B. C. D.3.已知函数(为常数,)的图像关于直线对称,则函数的图象()A. 关于点对称B. 关于点对称C. 关于直线对称D. 关于直线对称4.设函数是定义在上的偶函数,且,当时,,若在区间内关于的方程(且)有且只有4个不同的根,则实数的取值范围是()A. B. C. D.5.已知,若,则当取得最小值时,()A. 2B. 4C. 6D. 86.已知数列满足,,其前项和为,则下列说法正确的个数为()①数列是等差数列;②;③.A. 0B. 1C. 2D. 37.设O 为坐标原点, P 是以F 为焦点的抛物线22y px =(0p >)上任意一点, M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )A.2 B. 23C. 3D. 18.若函数()f x x =,则函数()12log y f x x =-的零点个数是( ) A. 5个 B. 4个 C. 3个 D. 2个9.用一个平面去截正方体,则截面不可能是( )A. 等边三角形B. 直角三角形C. 正方形D. 正六边形 10.已知函数()()2312cos sin 2sin cos 222f x x x πππθθθ⎛⎫⎛⎫⎛⎫=-+--≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,在3,86ππ⎡⎤--⎢⎥⎣⎦上单调递增,若8f m π⎛⎫≤⎪⎝⎭恒成立,则实数m 的取值范围为( ) A. 3,⎡⎫+∞⎪⎢⎪⎣⎭ B. 1,2⎡⎫+∞⎪⎢⎣⎭ C. [)1,+∞ D. 2,⎡⎫+∞⎪⎢⎪⎣⎭11.如图,格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A. B. C. D.12.已知公比不为1的等比数列的前项和为,且成等差数列,则( )A. B. C. D.二、填空题13.已知 ,若关于的方程 恰好有 个不相等的实数根,则实数的取值范围是______________.14.已知圆22:1O x y +=的弦AB 长为2,若线段AP 是圆O 的直径,则AP AB ⋅=u u u v u u u v____;若点P 为圆O 上的动点,则AP AB ⋅u u u v u u u v的取值范围是_____.15.在数1和2之间插入n 个正数,使得这n+2个数构成递增等比数列,将这n+2个数的乘积记为n A ,令*2log ,n n a A n N =∈.(1)数列{}n a 的通项公式为n a =____________;(2) 2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋅⋅⋅+⋅=___________.16.已知ABC ∆的三边垂直平分线交于点O , ,,a b c 分别为内角,,A B C 的对边,且()222c b b =-,则AO BC ⋅u u u v u u u v的取值范围是__________.三、解答题17.函数.(1)求的单调区间;(2)若,求证:.18.已知函数.(1)求在区间上的最值;(2)若过点可作曲线的3条切线,求实数的取值范围.19.设公差大于0的等差数列的前项和为.已知,且成等比数列,记数列的前项和为. (1)求; (2)若对于任意的,恒成立,求实数的取值范围.20.在平面直角坐标系xOy 中, F 是抛物线2:2(0)C y px p =>的焦点, M 是抛物线C 上的任意一点,当M 位于第一象限内时, OFM ∆外接圆的圆心到抛物线C 准线的距离为32. (1)求抛物线C 的方程;(2)过()1,0K -的直线l 交抛物线C 于,A B 两点,且[]()2,3KA KB λλ=∈u u u r u u u r,点G 为x 轴上一点,且GA GB =,求点G 的横坐标0x 的取值范围。

山东省2018年普通高校招生(春季)考试 数学试题-答案

山东省2018年普通高校招生(春季)考试 数学试题-答案

三 、解 答 题 (本 大 题 5 个 小 题 ,共 40 分 ) 26.(本 小 题 6 分 )

博 解:(1)函数f(x)=x2+(m -1)x+4的对称轴为x=-m2-1,……………………… (1分) 东 因为函数f(x)在区间(-∞,0)上单调递减,
所以-m2-1≥0,…………………………………………………………………………… (1分)
(2 7)2=(3 7)2+72-2×3 7×7×cos∠B,
解 得 cos∠B =277,

传 所以sin∠B=
1-
æç2
7
ö2
÷
=
è7ø
21,… … … … … … … … … … … … … … … … … … … … … 7
(1 分 )
化 sin∠APB
=sin(180°-30°-
∠B
)=sin150°cos∠B
山东省2018年普通高校招生(春季)考试 数学试题答案及评分标准
卷 一 (选 择 题 ,共 60 分 )
一 、选 择 题 (本 大 题 20 个 小 题 ,每 小 题 3 分 ,共 60 分 )
题号
1
2
3
4
5
6
7
8
9 10
答案
B
D
A
A
C
D
B
C
B
C
题号
11 12 13 14 15 16 17 18 19 20
-cos150°sin∠B
=
1 2
27 ×7-
æ
ç
è
-
3ö÷ 2ø
×
文 721=5147,………………………………………………………………………………… (1分)

吉林省长春市2018届高三上学期期中数学试卷(理科)版含解析(20201103191223)

吉林省长春市2018届高三上学期期中数学试卷(理科)版含解析(20201103191223)

1.已知复数 z=
,则 z 的共轭复数 | |= ( )
A. 5 B. 1 C.
D.
【考点】 A5:复数代数形式的乘除运算. 【分析】利用复数代数形式的乘除运算化简,再由复数模的公式计算.
【解答】解:∵ z=
=

∴ ,则 | |=|i|=1 . 故选: B.
2.已知集合 A={x||x| > 1} , B={x|x 2﹣ 2x﹣ 3≤ 0} ,则 A∩ B=(
21.已知函数 f (x) =alnx+

( 1)讨论 f ( x)的单调性;
( 2)当 f ( x)有两个极值点 x1, x2,且
<m恒成立时,求 m的取值范围.
22.已知曲线 C1 的参数方程为
,以原点 O为极点,以 x 轴的非负
半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为 msin θ﹣ cos θ = .
A.(﹣ 1, 1) B. R C.( 1, 3] D.(﹣ 1, 3]
3.已知向量
()
A.
B.
C.
D.
4.“
”是“ f ( x) =Asin ( ω x+?)是偶函数”的(

A.充分不必要条件
B.必要不充分条件
C.充要条件 D .既不充分又不必要条件
5.已知命题 p“函数 f ( x) =log 2(x2﹣ 2x﹣ 3)在( 1, +∞)上单调递增”,命题
一次性从箱中摸球三个,若有一个红球,奖金
5 元,两个红球奖金 10 元,三个全为红球奖金
100 元.
( 1)求参与者中奖的概率;
( 2)若有 200 个爱心人士参加此项活动,求此次募捐所得善款的期望值.

湖北省华中师范大学第一附属中学2018届高三上学期期中考试数学(文)试题 含答案

湖北省华中师范大学第一附属中学2018届高三上学期期中考试数学(文)试题 含答案

华中师大一附中2017-2018学年度上学期高三期中检测数学试题(文科) 第Ι卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卡相应位置上)1.已知集合{}{}222320,ln(1)A x x x B x y x =-->==-,则A B =A .11,2⎛⎫- ⎪⎝⎭B .()(),21,-∞-+∞C .()2,1--D .()()2,11,--+∞2.已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2()2a bi i +="的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知βα,是两相异平面,n m ,是两相异直线,则下列错误..的是A .若m ∥α⊥m n ,,则α⊥nB .若⊥m βα⊥m ,,则α∥βC .若⊥m βα⊂m ,,则⊥αβD .若m ∥,n ααβ=,则m ∥n4.两次抛掷一枚骰子,则向上的点数之差的绝对值等于2的概率是A .19B .29C .13D .495。

等差数列{}na 的前n 项和为nS ,已知175100,5770a S S =--=,则 101S 等于A .100B .50C .0D .50-6.已知(,)P x y 为区域2200y x x a ⎧-≤⎨≤≤⎩内的任意一点,当该区域的面积为4时,2z x y =-的最大值是A .6B .0C .2D.7.设12017a b c===,则,,a b c的大小关系为2016,log logA.a b c>>>> D.c b a >>B.a c b>>C.b a c8.执行如下图的程序框图,如果输入的0.01t=,则输出的n=A.5 B.6 C.7 D.89.如下图所示是一个几何体的三视图,则这个几何体外接球的表面积为A 。

吉林省长春市2018届高三上学期期中考试数学(文)试卷(含答案)

吉林省长春市2018届高三上学期期中考试数学(文)试卷(含答案)

长春市2018届高三第一学期期中考试数学试卷(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

考试结束后,将答题卡交回。

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合( ).A.(-1,1)B.RC.(1,3]D.(-1,3]2.已知向量().A. B. C. D.3.已知复数().A.5B.1C.D.4.已知命题“函数”,命题“函数”,则下列命题正确的是().A. B. C. D.5.“”是“是偶函数”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件6.已知向量是奇函数,则实数的值为().A.2B.0C.1D.-27.要得到的图像,只需将函数的图像().A.左移B.右移C.左移D.右移8.已知实数的大小关系为().A. B. C. D.9.已知等差数列成等比数列,则().A.5B.3C.5或3D.4或310.已知等比数列().A.2B.4C.8D.1611.若函数上的增函数,则实数的取值范围是().A. B. C. D.12.已知为定义域为R的函数,是的导函数,且的解集为().A. B. C. D.第Ⅱ卷二、填空题:本题共4小题,每小题5分。

13.若 .14.函数处的切线方程为 .15.已知实数成公差为1的等差数列,成等比数列,且的最小值为 .16.已知 .三、解答题(本大题共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知三个内角的对边分别为.(1)求角的大小;(2)若时,求面积的最大值.18.(本小题满分12分)已知正项数列.(1)求数列的通项公式;(2)数列满足,求数列的前项和.19.(本小题满分12分)在三棱锥中,与均为正三角形,,平面(1)证明;(2)求三棱锥的体积;(3)写出三棱锥外接球的体积(不需要过程).20.(本小题满分12分)已知一动点到直线的距离是它到距离的2倍.(1)求动点的轨迹方程;(2)若直线经过点,与曲线交于两点,,求面积的最大值.21.(本小题满分12分)已知函数.(1)讨论的单调性;(2)当有两个极值点恒成立时,求的取值范围.22.(本小题满分10分)已知曲线的参数方程为,以原点O为极点,以轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求,的直角坐标方程;(2)若曲线与交于两点,与轴交于点,若.数学试卷(文科)参考答案一.选择题CBBDA,DDBCB,AA二.填空题13.14.3x-y+1=015.616.2三解答题17.(1)(2)18.(1) (2)19.(1)证明略(2)(3)20.(1);(2)321.(!)上单调递增,在上单调递减,在上单调递增。

2018届河北省衡水中学高三下学期期中考试理科数学试题及答案精品

2018届河北省衡水中学高三下学期期中考试理科数学试题及答案精品
(2)抽出 100 人的数学与语文的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级,横向、纵向分别表示语文成绩
与数学成绩,若在该样本中,数学成绩优秀率是 30%,求 a、b 的值;
( 3)在语文成绩为及格的学生中,已知
a 10,b 8 ,设随机变量
a b ,求① 的分布列、期望 ; ②数学成绩为优秀的人数比及格的
24. (本小题满分 10 分)选修 4-5 ,不等式选讲 在平面直角坐标系中,定义点 P(x1, y1) 、 Q( x2 , y2 ) 之间的直角距离
为 L( P,Q ) | x1 x2 | | y1 y2 |,点 A(x,1) , B(1,2) , C (5, 2) (1)若 L ( A, B) L( A,C) ,求 x 的取值范围; (2)当 x R 时,不等式 L ( A, B) t L( A, C ) 恒成立,求 t 的最小值 .
∴ O 为 B1C 中点又 D 为 AC 中点 , 从而 DO // AB1 (4 分)
∵ AB1 平面 BDC 1 , DO 平面 BDC1 ∴ AB1 // 平面 BDC1 (6 分) (Ⅱ)建立空间直角坐标系 B xyz 如图所示 ,
33
则 B(0,0,0) , A(
3,1,0) ,
C (0,2,0)
4
D.2k 或 2k 一 1 ( k∈Z)
4
C. 0
第Ⅱ卷(非选择题 共 90 分) 二、 填空题(每题 5分,共 20分。把答案填在答题纸的横线上)
13.设等比数列 { an} 满足公比 q N * ,a n N * ,且 { a n } 中的任意两项之积
也 是 该 数 列 中 的 一 项 , 若 a1 281 , 则 q 的 所 有 可 能 取 值 的 集 合
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档