高一数学必修1综合测试试题及答案
高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。
2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。
4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。
5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。
高一数学必修1函数综合试题(带答案)

函数单元测试一、选择题:(本题共12题,每小题5分,满分60分) 1.若a 、b 、c ∈R +,则3a =4b =6c,则( )A .b ac 111+= B .b ac 122+=C .ba c 221+=D .ba c 212+=2.集合}5,4,3,2,1{},1,0,2{=-=N M ,映射N M f →:,使任意M x ∈,都有)()(x xf x f x ++是奇数,则这样的映射共有( )A .60个B .45个C .27个D .11个3.已知()1a x f x x a -=--的反函数...f -1(x )的图像的对称中心是(—1,3),则实数a 等于 ( )A .2B .3C .-2D .-44.已知()|log |a f x x =,其中01a <<,则下列不等式成立的是( )A .11()(2)()43f f f >>B .11(2)()()34f f f >>C .11()()(2)43f f f >>D .11()(2)()34f f f >>5.函数f (x )=1-x +2 (x ≥1)的反函数是 ( )A .y =(x -2)2+1 (x ∈R)B .x =(y -2)2+1 (x ∈R)C .y =(x -2)2+1 (x ≥2)D .y =(x -2)2+1 (x ≥1)6.函数y =lg(x 2-3x +2)的定义域为F ,y =lg(x -1)+lg(x -2)的定义域为G ,那么( )A .F ∩G=∅B .F=GC .F GD .G F7.已知函数y =f (2x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .(0,+∞)B .(0,1)C .[1,2]D .[2,4]8.若()()25log 3log 3xx-≥()()25log 3log 3yy---,则( )A .x y -≥0B .x y +≥0C .x y -≤0D .x y +≤09.函数)),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是( )A .0≥bB .0≤bC .0<bD .0>b 10.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞11.将进货单价为80元的商品按90元一个出售时,能卖出400个,根据经验,该商品若每个涨(降)1元,其销售量就减少(增加)20个,为获得最大利润,售价应定为 ( ) A .92元B .94元C .95元D .88元12.某企业2002年的产值为125万元,计划从2003年起平均每年比上一年增长20%,问哪一年这个企业的产值可达到216万元( )A .2004年B .2005年C .2006年D .2007年二、填空题:(本题共4小题,每小题4分,满分16分) 13.函数xxy +=12[),1((+∞-∈x ]图象与其反函数图象的交点坐标为 . 14.若4log 15a<(0a >且1)a ≠,则a 的取值范围是 . 15.lg25+32lg8+lg5·lg20+lg 22= .16.已知函数221)(x x x f +=,那么=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++41)4(31)3(21)2()1(f f f f f f f ____________.三、解答题:(本题共6小题,满分74分) 17.(本题满分12分)设A ={x ∈R |2≤ x ≤ π},定义在集合A 上的函数y =log a x (a >0,a ≠1)的最大值比最小值大1,求a 的值.18.(本题满分12分)已知f (x )=x 2+(2+lg a )x +lg b ,f (-1)=-2且f (x )≥2x 恒成立,求a 、b 的值.19.(本题满分12分)“依法纳税是每个公民应尽的义务”,国家征收个人工资、薪金所得税是分段计算的:总收入不超过800元的,免征个人工资、薪金所得税;超过800元部分需征税,设纳税所得额(所得额指月工资、薪金中应纳税的部分)为x,x=全月总收入-800(元),税率见下表:(1)若应纳税额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;(2)某人2004年10月份工资总收入为4000元,试计算这个人10月份应纳个人所得税多少元?20.(本题满分12分)设函数f (x ) =21+x +lg xx +-11 . (1)试判断函数f (x )的单调性 ,并给出证明;(2)若f (x )的反函数为f -1(x ) ,证明方程f -1(x )= 0有唯一解.21.(本题满分13分)某地区上年度电价为0.80元/kW · h ,年用电量为a kW · h .本年度计划将电价降到0.55元/kW ·h 至0.75元/kW ·h 之间,而用户期望电价为0.4元/kW ·h .经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本为0.3元/kW ·h . (1) 写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式. (2) 设k =0.2a ,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%? (注:收益=实际用电量×(实际电价-成本价)).22.(本小题满分13分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.参考答案三、解答题:(本题共6小题,满分74分)17.解析: a >1时,y =log a x 是增函数,log a π-log a 2=1,即log a2π=1,得a =2π. 0<a <1时,y =log a x 是减函数,log a 2-log a π=1,即log aπ2=1,得a =π2. 综上知a 的值为2π或π2.18.解析:由f (-1)=-2得:1-(2+lg a )+lg b =-2即lg b =lg a -1①101=a b 由f (x )≥2x 恒成立,即x 2+(lg a )x +lg b ≥0, ∴lg 2a -4lgb ≤0,把①代入得,lg 2a -4lg a +4≤0,(lg a -2)2≤0 ∴lg a =2,∴a =100,b =1019.解:(1)依税率表,有[[13.)0,0(,14.4(0,)(1,)5+∞U ,15.3,16.27]] 第一段:x ·5%第二段:(x -500)·10%+500·5% 第三段:(x -2000)·15%+1500·10%+500·5%即:f (x )=⎪⎩⎪⎨⎧≤<+-≤<+-≤<)50002000( 175)2000(15.0)2000500(25)500(1.0)5000(05.0x x x x x x (2)这个人10月份纳税所得额 x =4000-800=3200f (3200)=0.15(3200-2000)+175=355(元) BBACC DDBAC CC 答:这个人10月份应缴纳个人所得税355元.20.解析:(1)由).1,1()(02011-⎪⎩⎪⎨⎧≠+>+-的定义域为解得函数x f x xx)11lg 11(lg )2121()()(,11:1122122121x x x x x x x f x f x x +--+-++-+=-<<<-则设 )1)(1()1)(1(lg)2)(2(21212121x x x x x x x x +--++++-=.又∵,0,0)2)(2(2121<->++x x x x ).()(0)()(.0)1)(1()1)(1(lg 111)1)(1()1)(1(0,0)1)(1(,0)1)(1(,0)2)(2(1212212121122121212121212121x f x f x f x f x x x x x x x x x x x x x x x x x x x x x x x x <<-∴<+--+⇒<--+--+=+--+<∴>+->-+<++-∴即又故函数f(x)在区间(-1,1)内是减函数.(2)这里并不需要先求出f (x)的反函数f -1(x),再解方程f -1(x)=0∵0)(21,0)21(,21)0(11===∴=--x f x f f 是方程即的一个解. 若方程f -1(x )=0还有另一解x 021≠,则.0)(1=-x f)0(f 又由反函数的定义知21≠,这与已知矛盾.故方程f -1(x)=0有唯一解.21.解析:(1)设下调后的电价为x 元/k W ·h ,用电量增至(4.0-x k+a )依题意知,y=(4.0-x k+a )(x -0.3),(0.55≤x ≤0.75)(2)依题意有⎪⎩⎪⎨⎧≤≤+⨯-⨯≥-+-75.055.0%)201()]3.08.0([)3.0)(4.02.0(x a x a x a整理得⎩⎨⎧≤≤≥+-75.055.003.01.12x x x 解此不等式得0.60≤x ≤0.75答:当电价最低定为0.60元/k W ·h ,仍可保证电力部门的收益比去年至少增长20%. 22.解析:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+ ∵⎩⎨⎧<≥-=-+,2,2,2,22|2|c x c c x c x c x x).,1[]21,0(.1,,.210,,.21121|2|.2|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y。
高一数学必修一综合试卷及答案

高一数学必修一综合试卷及答案【导语】高一阶段是学习高中数学的关键时期.对于高一新生而言,在高一学好数学,不仅能为高考打好基础,同时也有助于物理、化学等学科的学习,这篇是由无忧考网—高一频道为大家整理的《高一数学必修一综合试卷及答案》希望对你有所帮助!一、选择题:(本大题共10题,每小题5分,共50分)1.设全集U={1,2,3,4,5,6,7},集合A={1,3,5},集合B={3,5},则(C)2.如果函数f(x)=x+2(a?1)x+2在区间(?∞,4]上是减函数,那么实数a的取值范围2A.U=A∪BB.U=(CUA)∪BCU=A∪(CUB)D.U=(CUA)∪(CUB)B、a≥?3C、a≤5是(A)A、a≤?3A.4x+2y=5D、a≥53.已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是(B)B.4x?2y=5C.x+2y=5D.x?2y=54。
设f(x)是(?∞,+∞)上的奇函数,且f(x+2)=?f(x),当0≤x≤1时,f(x)=x,则f(7。
5)等于(B)A.0.5yB.?0。
5yC.1。
5D。
?1。
55。
下列图像表示函数图像的是(Cy)yxxxxABCD6.在棱长均为2的正四面体A?BCD中,若以三角形ABC为视角正面的三视图中,其左视图的面积是(C).A.3C.2(B).A.m⊥α,m⊥β,则α//βC.m⊥α,m//β,则α⊥β22ADBC题中不正确的是...B.263D.227.设m、n表示直线,α、β表示平面,则下列命B.m//α,αIβ=n,则m//nD.m//n,m⊥α,则n⊥αD.2?28.圆:x+y?2x?2y?2=0上的点到直线x?y=2的距离最小值是(A).A.0B.1+2C.22?29.如果函数f(x)=ax2+ax+1的定义域为全体实数集R,那么实数a的取值范围是(A).A.[0,4]B.[0,4)C.[4,+∞)D.(0,4)10。
a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a—7平行且不重合的(。
最新高一数学必修1综合测试题3套(附答案)

高一数学必修1综合测试题3套(附答案)高一数学综合检测题(1)一、选择题:(每小题5分,共60分,请将所选答案填在括号内) 1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( )(A)3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则 ( ) (A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T 3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等( )(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2}(D){}|2y y ≤4.不等式042<-+ax ax 的解集为R ,则a 的取值范围是 ( )(A)016<≤-a (B)16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B)5 (C)4 ( D)3 6.函数243,[0,3]y x x x =-+∈的值域为 ( )(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2] 7.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 ( )(A)k>12 (B)k<12 (C)k>12- (D).k<12-8.若函数f(x)=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤-3 (B)a ≥-3 (C)a ≤5 (D)a ≥3 9.函数2(232)x y a a a =-+是指数函数,则a 的取值范围是( )(A) 0,1a a >≠ (B) 1a = (C) 12a = ( D)121a a ==或10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11.函数y =( )(A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D)(23,1]12.设a,b,c 都是正数,且346a b c ==,则下列正确的是( )(A) 111c a b =+ (B) 221C a b =+ (C) 122C a b =+ (D)212ca b =+二、填空题:(每小题4分,共16分,答案填在横线上)13.已知(x,y )在映射 f 下的象是(x-y,x+y),则(3,5)在f 下的象是 ,原象是 。
(完整版)高一数学必修一测试题及答案

高中数学必修1检测题一、选择题: 1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( )①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数是同一函数的是 ( )①()f x =()g x =f(x)=x 与()g x ;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④6.根据表格中的数据,可以断定方程02=--x e x的一个根所在的区间是( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lgyx a y x 则 ( )A .a 3B .a 23 C .aD .2a 8、 若定义运算b a ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕的值域是( ) A[)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上的最大值与最小值的和为3,则=a ( )A .21 B .2 C .4 D .41 10. 下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B、2log y =C 、21log y x=D、2log (45)y x x =-+11.下表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
2023-2024学年高一上数学必修一综合测试卷(附答案解析)

解析:当 c=0 时,A 不成立;当 a=-1,b=-2 时,B 不成立;
由不等式的性质知 C 不成立;若 a> b,则一定能推出 a>b,故 D 成
立.
3.命题“∃x∈R,x3-x2+1>0”的否定是( A )
A.∀x∈R,x3-x2+1≤0 B.∀x∈R,x3-x2+1>0
C.∃x∈R,x3-x2+1≤0 D.不存在 x∈R,x3-x2+1≤0
的取值范围是( A )
A.[2,6)
B.(2,6)
C.(-∞,2]∪(6,+∞)
D.(-∞,2)∪(6,+∞)
解析:①当 a=2 时,1>0 成立,故 a=2 符合条件;②当 a≠2 时,
a-2>0,
必须满足 Δ=a-22-4a-2<0,
解得 2<a<6.由①②可知,a∈
[2,6).故选 A.
二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小
2
4
sinx
在
1π,3π 22
上单调递减,故
y=
π,3π 2sin2x 在 4 4 上单调递减,故
题给出的四个选项中,有多个选项符合题目要求.全部选对的得 5 分,
部分选对的得 3 分,有选错的得 0 分)
9.下列函数是偶函数的是( CD )
A.f(x)=tanx B.f(x)=sinx C.f(x)=cosx D.f(x)=lg|x|
解析:根据题意,依次分析选项:对于 A,f(x)=tanx,是正切函
解析:存在量词命题“∃x∈M,p(x)”的否定为全称量词命题“∀
x∈M,綈 p(x)”,故选 A.
4. 22cos375°+ 22sin375°的值为( A )
高一数学必修1综合试卷(带答案)

高一数学试卷时量:100分钟 总分:120分一、选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数 2.下列四个集合中,空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC B .()()A B A CC .()()AB BCD .()A B C4.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或26.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,57.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32C .1,32或 D 8.函数lg y x = ( )A .是偶函数,在区间(,0)-∞ 上单调递增; B.是偶函数,在区间(,0)-∞上单调递减 C.是奇函数,在区间(0,)+∞ 上单调递增; D.是奇函数,在区间(0,)+∞上单调递减9..函数12+=-x ay (0>a ,且1≠a )的图象必经过点( ) A.(0,1) B.(1,1) C. (2, 0) D. (2,2)10.已知不等式为27331<≤x ,则x 的取值范围( )A.321<≤-x B.321<≤x C. R D.3121<≤x 11.下列函数中值域为()∞+,0的是( ) A.xy -=215B.xy -⎪⎭⎫⎝⎛=131 C.121-⎪⎭⎫ ⎝⎛=xy D.xy 21-=12.甲乙二人同时从A 地赶往B 地,甲先骑自行车到中点改为跑步,而乙则是先跑步到中点改为骑自行车,最后两人同时到达B 地,又知甲骑自行车比乙骑自行车的速度快,并且二人骑车速度均比跑步速度快若某人离开A 地的距离S 与所用时间t 的函数关系可用图象表示,则下列给出的四个函数图象中,甲、乙各人的图象只可能是( )A.甲是图①,乙是图②B.甲是图①,乙是图④C.甲是图③,乙是图②D.甲是图③,乙是图④二、填空题(本大题共6小题,每小题4分,共24分。
高一数学必修1综合能力测评卷及答案详解

必修一模块综合能力测评卷说明:本试题分第 I 卷和第II 卷两部分,满分 150分,时间120 分钟一、选择题:本大题共12小题,每题 5 分合计 60 分。
1.以下五个写法:①{ 0}{1,2,3} ;②{0} ;③{0,1,2}{1,2,0} ;④0;⑤ 0,此中错误写法的个数为()..A.1B.2 C .3 D. 42 已知 M ={ x|y=x 2-1} , N={y|y=x2-1}, M N 等于()A. NB. MC.RD.3.设a22.5, b 2.50 , c( 1) 2.5,则a,b,c大小关系()2A. a>c>bB. c>a>bC. a>b>cD.b>a>c4.以下图像表示的函数能用二分法求零点的是()y y y y 1o x o x o x o xA B C D5.已知f ( x6)log 2 x ,则f (8)()4B. 8C. 181A . D .326.已知f (x)是定义在(0,) 上的单一增函数,若 f ( x) f (2x) ,则x的范围是()A x>1 B. x<1 C.0<x<2 D. 1<x<27.若函数f ( x)x 2bx c 对随意实数都有 f (2x) f (2x) ,则()A f ( 2) f (1) f (4) B. f (1) f (2) f (4) C. f (2) f (4) f (1) D. f (4) f (2) f (1)8.给出函数 f (x), g( x) 以下表,则f〔 g( x)〕的值域为()x1234x1234g(x)1133f(x)4321A.{4,2}B.{1,3}C.{1,2,3,4}D. 以上状况都有可能9.设函数f ( x)log a| x |, (a 0且 a 1)在(上单一递加,则 f (a1)与 f (2)的大小关系为(),0)A f (a 1) f (2)B f (a 1) f (2) C. f (a 1) f (2) D.不确立10.函数f(x)=x 2-4x+5 在区间 [0,m]上的最大值为 5,最小值为1,则 m 的取值范围是()A. [2,) B .[2,4] C .(,2] D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一必修1测试
1、设全集,Z U =集合{}{},2,1,0,1,2,1,1-=-=B A 从A 到B 的一个映射为|
|)(x x
x f y x =
=→,其中{},)(|,,x f y y P B y A x ==∈∈则=⋂)(P C B U _________________。
2、已知1x 是方程3lg =+x x 的根,2x 是方程310=+x
x 的根,则21x x +值为______________。
3、已知函数)(x f y =的图象关于直线1-=x 对称,且当0>x 时,1
)(x
x f =
则当2-<x 时=)(x f ________________。
4、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如图所示),则方程()0f x =在[1,4]上的根是x =
5、设12
32,2()((2))log (1) 2.
x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,
则的值为, A 、0 B 、1 C 、2 D 、3
6、从甲城市到乙城市m 分钟的电话费由函数)4
7][43
(06.1)(+⨯=m m f 给出,其中0>m ,][m 表示不大于m 的最大整数(如3]1,3[,3]9.3[,3]3[===),则从甲城市到乙城市8.5分钟的电话费为______________。
7、函数2
1
)(++=
x ax x f 在区间),2(+∞-上为增函数,则a 的取值范围是______________。
(
8、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--)
,2(,22]
2,(,2211x x y x x 的值域为______________。
A 、),23(+∞-
B 、]0,(-∞
C 、)2
3
,(--∞ D 、]0,2(- 9、若2)5(1
2-=-x f x ,则=)125(f __________
10、已知映射B A f →:,其中A =B =R ,对应法则为32:2
++=→x x y x f 若对实数B k ∈,在集合中A 不存在原象,则k 的取值范围是______________
11、偶函数)(x f 在0-,(∞)上是减函数,若)(lg -1)(x f f <,则实数x 的取值范围是______________. 12、关于x 的方程0|34|2
=-+-a x x 有三个不相等的实数根,则实数a 的值是_________________。
13、关于x 的方程a
x
lg 11
)2
1
(-=
有正根,则实数a 的取值范围是______________
14、已知函数f(x)=5log )(log 4
12
4
1
+-x x ,∈x []42,,则当x =, )(x f 有最大值;当x =时,f(x)有最小值.
》
15、已知集合=A {
}m ,3,2,1,集合{}
a a a B 3,,7,42
4
+=,其中 .,,,**B y A x N a N m ∈∈∈∈13:+=→x y x f 是从集合A 到集合B 的函数,求B A a m ,,,
16、已知函数3)(2
++=ax x x f ,当]2,2[-∈x 时,a x f ≥)(恒成立,求a 的最小值. 17、已知函数12
)(+=x x f ,将函数)(1
x f
y -=的图象向左平移2个单位,再向上平移1个单位,就得到
)(x g y =的图象.
(1)写出)(x g y =的解析式; (2)求)()()(1
2
x f
x g x F --=的最小值.
18、一片森林面积为a ,计划每年砍伐一批木材,每年砍伐面积的百分比相等,则砍伐到面积的一半时,所用时间是T 年.为保护生态环境,森林面积至少要保留原面积的
4
1
.已知到今年为止,森林剩余面积为原来的
2
2. (1)到今年为止,该森林已砍伐了多少年 (2)今后最多还能砍伐多少年
参考答案
/
一、选择题
1、{}2,0
2、1
3、
21--x 4、3 5、2 6、83.5元7、2
1
>a 8、D ]0,2(- 9、0 10、)2,(-∞ 11、),10()10
1
,0(+∞⋃12、a =1 13、(0,1)
14.4,7;2,
三、解答题:
15、由函数的定义可知,函数是从定义域到值域的映射,因此,值域中的每一个元素,在定义域中一定能有原象与之对应.
由对应法则,1对应4,2对应7,3对应10,m 对应13+m .
2,103,10,,24**==+≠∴∈∈a a a a N a N m (5-=a 舍去)
又,2134
=+m ,5=∴m 故{
}{}.16,10,7,4,5,3,2,1==B A 16、设)(x f 在]2,2[-上的最小值为)(a g ,则满足a a g ≥)(的a 的最小值即为所求.
?
配方得)2|(|4
3)2()(2
2≤-
++=x a a x x f
(1)当22
2≤-≤-a
时,43)(2a a g -=,由a a ≥-
432解得,26≤≤-a 24≤≤-∴a ; (2)当22≥-
a
时,27)2()(a f a g +==由a a ≥+27得7-≥a 47-≤≤-∴a (3)当22-≤-a 时,,27)2()(a f a g -=-=由a a ≥-27得3
7
≤a ,这与4≥a 矛盾,此种情形不存在.
综上讨论,得27≤≤-a 7min -=∴a 17、(1)1log )(21
-=-x x f
,向左平移2个单位,向上平移1个单位,得到1)2(log 12-+=-x y ,
)2(log 2+=∴x y ,即)2)(2(log )(2->+=x x x g .
(2)2
5
122log 12log )1(log )2(log )(222
22
2=+⋅≥++=--+=x x x x x x x F 当且仅当x x 2=
即)0(2>=x x 时,2
5
)(min =x F 18、设每年降低的百分比为x (10<<x ) (1)设经过M 年剩余面积为原来的
22.则2
1lg )1lg(21)1(=-⇒=-x T a x a T
. 、
又22lg )1lg(22)1(=-⇒=
-x M a x a M
.2
221log 2
2
T M M
T
=⇒==∴ ∴到今年为止,已砍伐了
2
T
年. (2)设从今年开始,以后砍了N 年,则再砍伐N 年后剩余面积为
N x a )1(2
2
-. 由题意,有
,41)1(22a x a N ≥-即4
1)1(22≥-N x 由(1)知T T
x x 1
)21(121)1(=-⇒=-.4
1
)21(22≥⋅∴
T N
. 化为23
)21
(2
21)21(=≥T N T N T N 2323≤⇒≤∴
故今后最多还能砍伐
T 2
3
年.。