多目标规划
多目标规划实例

多目标规划实例简介多目标规划是一种决策方法,它可以帮助人们在多个目标之间做出权衡和平衡。
在实际问题中,通常会有多个相互关联的目标需要同时考虑,而单目标规划无法满足这种需求。
多目标规划通过建立多个目标函数和约束条件之间的优化问题,从中寻找一个解集,该解集包含了一系列近似最优的解,这些解通常被称为 Pareto 最优解。
在本文中,我们将介绍一个实际的多目标规划问题,并使用 Markdown 文本格式展示其模型、目标函数和约束条件。
实例描述假设我们是一家电子产品制造公司,我们要生产两种类型的电子产品:手机和平板电脑。
我们有两个主要的目标:最大化销售额和最小化生产成本。
我们需要找到一个生产计划,使得销售额最大化同时生产成本最小化。
模型我们假设我们可以生产的手机数量为 x,平板电脑数量为 y。
我们使用以下模型描述我们的多目标规划问题:•目标函数 1:最大化销售额–销售额 = 销售价格 × 销售数量–销售价格:手机价格为 P1,平板电脑价格为 P2–销售数量:手机数量为 x,平板电脑数量为 y•目标函数 2:最小化生产成本–生产成本 = 生产成本1 + 生产成本2–生产成本1:生产一个手机的成本为C1–生产成本2:生产一个平板电脑的成本为 C2•约束条件–生产产能限制:手机数量加平板电脑数量不能超过产能上限 N–非负约束:手机数量和平板电脑数量不能为负数目标函数和约束条件根据上述模型,我们可以得到以下目标函数和约束条件。
目标函数 1:最大化销售额Maximize: P1 * x + P2 * y目标函数 2:最小化生产成本Minimize: C1 * x + C2 * y约束条件x + y <= Nx >= 0y >= 0结论多目标规划是一种强大的决策方法,可以帮助我们在多个目标之间做出权衡和平衡。
在本文中,我们介绍了一个实际的多目标规划问题,以及该问题的模型、目标函数和约束条件。
多目标规划应用实例

02
投资者需要在满足一定风险承 受能力的前提下,最大化投资 组合的预期收益,同时考虑市 场波动、政策风险等因素。
03
投资决策问题需要考虑多个目 标之间的权衡和折中,以实现 整体最优。
目标函数
收益最大化
投资者希望获得尽可能高的投资回报率,通 常以预期收益率作为目标函数。
风险最小化
投资者希望将投资风险降至最低,通常以方 差或标准差作为目标函数。
城市发展需满足环境保护的相关法律法规和标准。
3
3. 资源利用约束
城市发展需遵循资源利用的可持续性原则。
求解方法与结果分析
• 多目标规划问题通常采用权重法、目标规 划法、遗传算法等求解方法进行求解。通 过对不同方案进行比较和评估,可以得出 最优解或满意解。在城市规划与交通管理 中,多目标规划的应用可以帮助决策者全 面考虑各种因素,制定出更加科学、合理 的城市规划方案,提高城市运行效率,促 进城市的可持续发展。
多目标规划能够为决策者提供一个 系统的方法来权衡和比较不同目标 之间的优劣,从而提高决策的科学 性和合理性。
折衷与平衡
多目标规划可以帮助决策者在多个 目标之间找到一个相对最优的折衷 方案,实现不同目标之间的平衡发 展。
多目标规划的方法与步骤
方法
多目标规划常用的方法包括层次分析 法、多属性决策分析、数据包络分析 等。
问题描述
目标函数
• 目标函数包括两个部分:最小化生产成本 和运输成本。生产成本由各个工厂的生产 费用决定,运输成本则取决于各个工厂之 间的运输距离和运输量。
约束条件
• 约束条件包括:各个工厂的生产能力限制、市场需求量限制以及产品种类限制等。这些约束条件确保了生产计 划的可实施性和有效性。
多目标规划

解:
x2
A B C
x1
Eab = E pa = {B}, Ewp = AB, BC
{
}
O
T 2 2 例2 设 X = {( x1 , x2 ) ( x1 + 1) + 2 x = 4}, 求 X , 的 Eab , E pa , Ewp
2
解:
x2
Eab = φ , E pa = Ewp
= AB
{ }
第二节 多目标规划问题的解 一,向量集的极值 1 多目标规划的标准形式是
min( f1 ( x),..., f p ( x))T , p > 1, x ∈ E n g i ( x) ≥ 0 i = 1,..., m s.t. h j ( x) = 0 j = 1,..., l (2.1)
1
介绍A.M.Geoffrion于1968年提出的—种 真有效解—G-有效解.
�
min f ( x) = ( f1 ( x), f 2 ( x))T
x∈D
f1 ( x) = x1 + 2 x2 , f 2 ( x) = x1 x2 , D = ( x1 , x2 )T 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1
的有效解和弱有效解. f1 ( x) = 3 x2 1 B
{
}
R pa = Rwp = {OA, AB}
解: 1 画出 D 及 D 的像 f (D )
f1
x
f1 , f 2 联立消去 x
O 1
得
f1 = f 22 + 2 f 2
f2
1
R pa = Rwp
. .
2
.
f2
x
o
1 2
多目标规划模型及其在生产优化中的应用

多目标规划模型及其在生产优化中的应用多目标规划是一种在优化问题中同时考虑多个目标的方法。
与传统的单目标规划相比,多目标规划更加适用于现实生产优化中存在多个相互关联的目标的情况。
在生产优化中,多目标规划可以帮助企业在平衡多种目标之间找到最佳的决策方案,提高生产效率和经济效益。
1.决策变量:表示决策者可以调整的各种生产资源和生产参数,如生产数量、生产设备分配等。
2.约束条件:表示各种技术和资源限制,如设备产能、雇员工时等。
3.目标函数:表示需要优化的目标,可以包括多个目标函数,如最小化生产成本、最大化产出、最小化生产时间等。
在生产优化中,多目标规划可以应用于多个方面,如生产调度、生产设备配置和物料采购等。
下面以生产调度为例来具体说明多目标规划的应用。
生产调度是指在生产过程中,根据生产资源和生产任务的需求,合理安排和调度各个工序和设备的完成时间和数量,以达到最佳的生产效率和经济效益。
在生产调度中,通常存在多个决策变量和多个目标。
决策变量可以包括产品的生产顺序、工序的分配和设备的调度等。
不同的决策变量选择可能导致不同的生产成本、生产时间和质量水平等目标的变化。
多目标规划可以将生产调度问题转化为一个多目标优化问题。
在模型中,决策变量可以是各个工序的完成时间和数量,目标函数可以是最小化生产成本、最小化生产时间和最大化产品质量等。
同时,还需要考虑各种资源约束条件,如设备产能、雇员工时和原材料供应等。
通过多目标规划模型求解,可以得到一组最优解,即在满足约束条件的前提下,使得多个目标函数达到最优的决策方案。
这些最优解通常形成一个“帕累托前沿”,即在无法同时改善所有目标的情况下,提供了各种权衡和选择的可能性。
在实际应用中,多目标规划可以帮助企业决策者综合考虑多种目标和约束条件,合理安排生产资源和生产任务,以提高生产效率和经济效益。
同时,多目标规划还可以用于方案比较和灵敏度分析,帮助决策者评估不同决策方案的优劣和稳定性。
多目标规划

这是具有两个目标的非线性规划问题。
由以上实例可见,多目标最优化模型与单目标
最优化模型的区别主要是目标多于一个。在这些目 标中,有的是追求极大化,有的是追求极小化,而 极大化与极小化是可以相互转化的。因此,我们不 难将多目标最优化模型统一成一般形式:
决策变量:x1,……,xn 目标函数:minf1(x1,……,xn)
甲级糖数量最大。
那么这种先在第1优先层次极小化总花费, 然后在此基础上再在第2优先层次同等的极大化 糖的总数量和甲级糖的问题,就是所谓分层多目 标最优化问题。可将其目标函数表示为:
L-min{P1[f1(X)],P2[f2(X),f3(X)]} 其中P1,P2是优先层次的记号,L-min表示 按优先层次序进行极小化。 下面,我们来看一个建立分层多目标最优化 模型的例子
……………… minfp(x1,……,xn)
若记X= (x1,……,xn),V-min表示对向量F(X)=[f1(X), ……,fp(X)]T中的各目标函数f1(X),……,fp(X)同等的进行 极小化。R={X|gi(X)≥0,i=1,……,m}表示约束集。
则模型一般式也可简记为
这里(VMP)为向量数学规划(Vector Mathematical Programming)的简写。
多目标决策方法是现代管理科学的重要内容,也是系统
分析的基本工具。按照决策变量是连续的还是离散的,多目 标决策可以分为多目标规划决策(Multiple Objective Decision Making)和多准则决策(Multiple Attribute Decision Making)两大类,前者是以数学规划的形式呈现的决策问题, 后者则是已知各个方案及它产生的结局向量,由此选择最优 方案的决策。
多目标规划模型及其在生产优化中的应用

多目标规划模型及其在生产优化中的应用随着科技的不断进步,企业在生产的过程中需要考虑的因素也越来越多,例如成本、质量、效率、环保等多个方面。
这些因素不仅对企业的发展起到了决定性的作用,而且对于整个行业的发展也具有重要意义。
因此,在这个时代,如何能够完成多目标规划,对于企业的生产优化是非常重要的。
本文将从多目标规划模型及其在生产优化中的应用方面进行探讨。
一、多目标规划模型的概述多目标规划(multi-objective programming,MOP)是指在满足多个目标的基础上,寻求最优方案的一种决策方法。
多目标规划模型是通过建立目标函数,对每个目标进行评价和权衡,从而实现多目标的决策优化模型。
多目标规划模型可以被用来解决许多现实生产和决策问题,例如资源配置问题、供应链管理问题、营销决策问题、风险管理和环境保护问题等等。
在这些问题中,优化目标多个,且有时目标之间存在着矛盾性,因此需要采用多目标规划模型来解决。
二、多目标规划模型在生产优化中的应用1. 降低成本和提高质量对于一个企业来说,成本和质量是两个非常重要的因素。
如何同时降低成本和提高质量成为了企业的一个难题。
多目标规划模型可以帮助企业在进行生产决策时,考虑多个目标,实现成本和质量的平衡。
在多目标规划模型中,建立成本和质量的目标函数,对企业的各项指标进行量化和分析,然后对目标函数进行加权,最终得到最优方案。
通过这种方式,企业可以在不降低产品质量的条件下,实现成本的降低,从而提高企业的效益。
2. 提高生产效率和降低能耗随着市场竞争的加剧,企业需要不断提高生产效率,从而降低成本,并提高企业的竞争力。
另一方面,环境保护也成为了现代企业生产的一个必须考虑的因素。
多目标规划模型可以在生产过程中,同时考虑生产效率和能耗,实现生产的可持续发展。
在多目标规划模型中,建立生产效率和能耗的目标函数,评估企业的各项指标,加权得到最优方案。
通过这种方式,企业可以在提高生产效率的同时,降低能耗,实现生产效率与环境保护的双赢。
多目标规划的原理和

多目标规划的原理和多目标规划是一种优化方法,用于解决同时存在多个目标函数的问题。
与单目标规划不同,多目标规划的目标函数不再是单一的优化目标,而是包含多个决策者所关心的目标。
目标函数之间可能存在冲突和矛盾,因此需要找到一个平衡点,使得各个目标都能得到满意的结果。
1.目标函数的建立:多目标规划需要明确各个决策者所关心的目标,并将其转化为数学模型的形式。
目标函数可以是线性的、非线性的,也可以包含约束条件。
2.解集的定义:解集是指满足所有约束条件的解的集合。
在多目标规划中,解集通常是一组解的集合,而不再是单个的最优解。
解集可以是有限的或无限的,可以是离散的或连续的。
3.最优解的确定:多目标规划中的最优解不再是唯一的,而是一组解的集合,称为非劣解集。
非劣解集是指在所有目标函数下都没有其他解比其更好的解。
要确定最优解,需要考虑非劣解集中的解之间的关系,即解集中的解是否有可比性。
4.解的评价:首先需要定义一种评价指标来比较不同解之间的优劣。
常用的方法有加权法、广义距离法、灰色关联法等。
评价指标的选择应该能够反映出决策者对不同目标的重视程度。
5. Pareto最优解:对于一个多目标规划问题,如果存在一组解,使得在任意一个目标函数下都没有其他解比其更好,那么这组解就被称为Pareto最优解。
Pareto最优解是解集中最为重要的解,决策者可以从中选择出最佳的解。
6.决策者的偏好:在实际应用中,决策者对不同目标的偏好有时会发生变化。
因此,多目标规划需要考虑决策者的偏好信息,并根据偏好信息对解集进行调整和筛选。
多目标规划在解决实际问题中具有广泛的应用,尤其在决策支持系统领域发挥了重要作用。
它不仅能够提供一组有竞争力的解供决策者参考,还能够帮助决策者更好地理解问题的本质和各个目标之间的权衡关系。
多目标规划既可以应用于工程、经济、管理等领域的决策问题,也可以用于社会、环境等领域的问题求解。
总之,多目标规划通过将多个目标函数集成为一个数学模型,寻找一组最佳的解集,从而在多个目标之间实现平衡和协调。
多目标规划

多目标规划
多目标规划是一种管理和决策方法,用于解决具有多个竞争目标的问题。
在日常生活和商业环境中,我们常常面临多个目标的冲突和权衡,面临难以做出有效决策的情况。
多目标规划通过将多个目标和约束条件转换为数学模型,帮助决策者找到最优的解决方案。
多目标规划的基本思想是将多个目标转化为一个目标函数,然后通过优化算法求解这个目标函数的最优解。
在多目标规划中,每个目标对应着一个权重,决策者可以根据实际需求和优先级为每个目标分配不同的权重。
优化算法会考虑各个目标的权重,尽量减小目标函数的值。
多目标规划的优势在于它能够同时优化多个目标,避免了单一目标规划的片面性。
它能够帮助管理者在多个目标之间进行权衡,找到最合理的解决方案。
例如,一个公司希望在降低成本的同时提高产品质量,采用多目标规划可以帮助公司找到一个平衡点,实现成本和质量的最优化。
多目标规划还可以应用于各种复杂的决策问题,如资源分配、供应链管理、生产计划等。
在资源分配问题中,多目标规划可以考虑到多个资源的利用效率和经济性,从而提高整体资源利用率。
在供应链管理中,多目标规划可以考虑到多个目标,如减少库存成本、提高交付效率和降低物流成本等,从而优化供应链的绩效。
多目标规划方法有许多不同的求解算法,如线性加权法、加权
规范化法、最坏目标法等。
不同的算法适用于不同的问题,可以根据实际情况和具体需求选择合适的方法。
总而言之,多目标规划是一种强大的管理和决策工具,能够帮助决策者在多个目标之间进行权衡和平衡,找到最优的解决方案。
它可以应用于各种不同的领域和问题,帮助解决现实生活和商业环境中的复杂决策问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 对第i个项目投资 xi 0 不对第i个项目投资
约束条件为:
m i 1
ai
xi
xi 1 xi
a 0, i
1,2,
双目标规划
,m
最佳的投资方案——投资最少、收益最大
投资最少:min f1( x1, x2 , , xm )
m i 1
ai
xi
收益最大 max f2( x1, x2 , , xm )
p
j1 j
1
求解非线性规划问题: min h(F ( X ))
XD
原理:平方和加权法体现了通常的“自报公议”原则——那些强调各自
标值再差ε也是可接 受的!
缺点:当前面的问题最优解唯
一时,后面的求解失去意义!
多目标规划的基本解法
3. 功效系数法——对不同类型的目标函数统一量纲,分别得
到一个功效系数函数,然后求所有功效系数乘积的最优解。
例如:
V-min XD
f1X , f2X , , f p X
f
j min
min
XD
5. 多目标规划
多目标规划建模——引例 多目标规划模型 多目标规划的示意图 多目标规划的性质 多目标规划重要算法
引例1: 投资问题
某公司在一段时间内有a(亿元)的资金可用于建厂投资。 若可供选择的项目记为1,2,...,m。而且一旦对第i个项目 投资,就用去ai亿元;而这段时间内可得收益ci亿元。问如 何如确定最佳的投资方案?
f2
f2
f2 *
f1
f1 *
f2
f2 * f1 *
f2 *
f1 *
有效点
f1
弱有效点
f1
有效点= 弱有效点
多目标规划的基本解法
基本思想——转换为单目标规划问题
(1)约束法 (3)功效系数法
(2)分层序列法 (4)评价函数法
V-min XD
f1X , f2X , , f p X
1. 约束法——在多个目标中选定一个主要目标,而对其他目
4.2 平方和加权法:
V-min XD
f1X , f2X , , f p X
先设定单目标规划的下界(想象中的最好值),即
定义评价函数:
f
0 j
min
XD
h(F ( X ))
fj X
p
j1 j
j 1,2, , p
fj(X)
f
0 j
2
其中λj为事先给定的一组权系数,满足:
j 0, j 1,2, , p;
x*是有效解(Pareto解) 不存在X∈D , 使得fj(X)≤fj(x*), j=1~ p
x*是弱有效解 不存在X∈D , 使得fj(X)<fj(x*), j=1~ p
绝对最优解=有效解
有效解= 弱有效解
定义3 像集F(R)={F(x)|x∈R}约束集R在映像F之下的值域 F*是有效点 不存在F∈F(R), 使得F≤F*; F *是弱有效点 不存在F∈F(R), 使得F<F;
4.1 理想点法:
V-min XD
f1X , f2X , , f p X
f
j
*
min
XD
f j X
j 1,2,
,p
定义评价函数:
h(F( X )) h( f1, , f p )
p j 1
fj(X) fj * 2
求解非线性规划问题: min h(F ( X )) XD
原理:距理想点最近的点作为最优解!
标设定一个期望值,在要求结果不比此期望值坏的条件下,
求主要目标的最优值。
V-min XD
f1X , f2X , , f p X
mXf 2in(DXf)1 Xf 20,
,
f
p
(
X
)
f
0 p
,
多目标规划的基本解法
2. 分层序列法——把多个目标按其重要程度排序,先求出第 一个目标的最优解,再在达到此目标的条件下求第二个目标 的最优解,依此类推直到最后一个求解结束即得到最优解。
定义1 把满足问题中约束条件的解X∈Rn称为可行解(或可行点), 所有可行点的集合称为可行集(或可行域).记为D.即:
D X | gj X 0, hk X 0, X Rn
原问题可简记为
V- min XD
f1X , f2X , , f p X
定义2 x*是绝对最优解fj(X)≧fj(x*), 任意X∈D, j=1~ p
fj
X
f
j max
max XD
fj
X
dj(X)
f jmax f j ( X ) [0,1] f jmax f jmin
j 1,2, , p
p
p
max XD
dj(X)
j 1
或 max XD
d
j=1
j(X)
线性型功效系数法,还有其它类型的方法,如指数型方法
多目标规划的基本解法
4. 评价函数法——这是一种最常见的方法,就是用一个评价 函数来集中反映各不同目标的重要性等因素,并极小化此评 价函数,得到问题的最优解。常见的以下几种方法:
多目标规划的模型
一般形式:
V-min XRn
f1X , f2X , , f p X
s.t
.
g
j
hkபைடு நூலகம்
X X
0 0
j 1,2,..., m; k 1,2,..., l.
函数fi , g j , hk满足
fi: Rn R, gj: Rn R, hk: Rn R, p 2
求目标函数的最大值或约束条件为大于等于零的情况,都 可通过取其相反数化为上述一般形式.
V-min XD
f1X , f2X , , f p X
(1) :
f1
*
min
XD
f1
X
(2)
f2*
XD
min
x| f1 ( X ) f1*
f2
X
改进——宽容分层 序列法:给前面的 最优值设定一定的 宽容值ε>0, 即此目
( p) f p* XD min x| f p1( X ) f p1* f p X
每周正常时间生产得A产品数量——x1 每周加班时间生产得A产品数量——x2 每周正常时间生产得B产品数量——x3 每周加班时间生产得B产品数量——x4
加班最少
利润最大
约束条件为:
x1 x2 30
x3
x4
30
3x1 2x3 120
xi 0
min 3x2 2x4
max 10x1 9 x2 8 x3 7 x4
m i 1
ci
xi
引例2: 生产问题
某工厂生产两种产品,产品A每单位利润为10元,而产品B 每单位利润为8元,产品A每单位需3小时装配时间而B为2小时, 每周总装配有效时间为120小时。工厂允许加班,但加班生产 出来的产品利润的减去1元,根据最近的合同,厂商每周最少 得向用户提供两种产品各30单位。要求:1) 必须遵守合同;2) 尽可能少加班;3)利润最大. 问怎样安排生产?