2016年上海市杨浦区高考数学三模试卷(理)含答案解析
上海市杨浦高级中学2016届高三下学期3月月考数学试卷(理科)Word版含解析

2015-2016学年上海市杨浦高级中学高三(下)3月月考数学试卷(理科)一、填空题(本大题满分56分)本大题共有14小题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.抛物线y2=x的焦点F坐标为.2.已知全集U={﹣2,﹣1,0,1,2},集合,则∁U A=.3.如果=,那么a的取值范围是.4.关于x的方程:4x•|4x﹣2|=3的解为.5.不等式的解集为.6.向量,,在正方形网格中的位置如图所示,若(λ,μ∈R),则=.7.已知数列{a n}满足(n∈N*),则a2n=.8.在(2x+y+z)10的展开式中,x3y2z5的系数为.9.在极坐标系中,将圆ρ=2沿着极轴正方向平移两个单位后,再绕极点逆时针旋转弧度,则所得的曲线的极坐标方程为.10.5位好朋友相约乘坐迪士尼乐园的环园小火车.小火车的车厢共有4节,设每一位乘客进入每节车厢是等可能的,则这5位好朋友无人落单(即一节车厢内,至少有5人中的2人)的概率是.11.已知定义在R上的函数y=f(x)对于任意的x都满足f(x+2)=f(x).当﹣1≤x<1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|至少有6个零点,则a的取值范围是.12.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b(a,b≠0),不得分的概率为.若他投篮一次得分ξ的数学期望,则a的取值范围是.13.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“›”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i为虚数单位),“z1›z2”当且仅当“a1>a2”或“a1=a2且b1>b2”.下面命题:①1›i›0;②若z 1›z 2,z 2›z 3,则z 1›z 3;③若z 1›z 2,则对于任意z ∈C ,z 1+z ›z 2+z ;④对于复数z ›0,若z 1›z 2,则z •z 1›z •z 2.其中真命题是 .(写出所有真命题的序号)14.符号表示数列{a n }的前n 项和(即).已知数列{a n }满足a 1=0,a n ≤a n +1≤a n +1(n ∈N *),记,若S 2016=0,则当取最小值时,a 2016= .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,填写结果,选对得5分,否则一律得零分.15.在样本的频率分布直方图中,共有9个小长方形,若第1个长方形的面积为0.02,前5个与后5个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第5组)的频数为( )A .12B .24C .36D .4816.已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A .B .3C . mD .3m17.将函数的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .B .C .D .18.在半径为r 的球内有一内接正三棱锥,它的底面三个顶点恰好都在同一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,则经过的最短路程是( )A .2πrB .C .D .三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图:已知四棱锥P ﹣ABCD ,底面是边长为6的正方形,PA=8,PA ⊥面ABCD , 点M 是CD 的中点,点N 是PB 的中点,连接AM 、AN 、MN .(1)求证:AB ⊥MN ;(2)求二面角N ﹣AM ﹣B 的大小.20.已知向量和向量,且.(1)求函数f(x)的最小正周期和最大值;(2)已知△ABC的三个内角分别为A,B,C,若有=1,,求△ABC面积的最大值.21.某地拟模仿图(1)建造一座大型体育馆,其设计方案侧面的外轮廓线如图(2)所示:曲线AB是以点E为圆心的圆的一部分,其中E(0,t)曲线BC是抛物线y=﹣ax2+30(a >0)的一部分;CD⊥AD,且CD恰好等于圆E的半径.(1)若要求CD=20米,AD=(10+30)米,求t与a值;(2)当0<t≤10时,若要求体育馆侧面的最大宽度DF不超过45米,求a的取值范围.22.如图数表:,每一行都是首项为1的等差数列,第m行的公差为d m,且每一列也是等差数列,设第m行的第k项为a mk(m,k=1,2,3,…,n,n≥3,n ∈N*).(1)证明:d1,d2,d3成等差数列,并用m,d1,d2表示d m(3≤m≤n);(2)当d1=1,d2=3时,将数列{d m}分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为,求数列的前n项和S n;(3)在(2)的条件下,设N是不超过20的正整数,当n>N时,求使得不等式恒成立的所有N的值.23.如图,圆O与直线x+y+2=0相切于点P,与x正半轴交于点A,与直线y=x在第一象限的交点为B.点C为圆O上任一点,且满足=x+y,以x,y为坐标的动点D (x,y)的轨迹记为曲线Γ.(1)求圆O的方程及曲线Γ的方程;(2)若两条直线l1:y=kx和l2:y=﹣x分别交曲线Γ于点E、F和M、N,求四边形EMFN面积的最大值,并求此时的k的值.(3)根据曲线Γ的方程,研究曲线Γ的对称性,并证明曲线Γ为椭圆.2015-2016学年上海市杨浦高级中学高三(下)3月月考数学试卷(理科)参考答案与试题解析一、填空题(本大题满分56分)本大题共有14小题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.抛物线y2=x的焦点F坐标为.【考点】抛物线的简单性质.【分析】焦点在x轴的正半轴上,且p=,利用焦点为(,0),写出焦点坐标.【解答】解:抛物线y2=x的焦点在x轴的正半轴上,且p=,∴=,故焦点坐标为(,0),故答案为:(,0).2.已知全集U={﹣2,﹣1,0,1,2},集合,则∁U A=.【考点】补集及其运算.【分析】先根据整除性求出集合A,然后根据补集的定义求出C U A即可.【解答】解:∵x∈Z∴能被2整除的数有﹣2,﹣1,1,2则x=﹣2,﹣1,1,2即A={﹣2,﹣1,1,2}而U={﹣2,﹣1,0,1,2},则C U A={0}故答案为:{0}3.如果=,那么a的取值范围是.【考点】数列的极限.【分析】直接利用数列的极限的运算法则,化简已知条件即可推出a的范围.【解答】解:=,可得=,可得,解得a∈(﹣4,2).故答案为:(﹣4,2).4.关于x的方程:4x•|4x﹣2|=3的解为.【考点】根的存在性及根的个数判断.【分析】令4x =t ,将方程转化为关于t 的一元二次方程计算.【解答】解:令4x =t ,(t >0).则当t ≥2时,t 2﹣2t ﹣3=0,解得t=3或t=﹣1(舍).∴x=log 43.当0<t <2时,t (2﹣t )=3,即t 2﹣2t +3=0,方程无解.故答案为:x=log 43.5.不等式的解集为 .【考点】其他不等式的解法.【分析】将行列式按第二行展开,求得不等式=+2≥0,注意对数函数的定义域.【解答】解:等价于lgx ++2=+2≥0,即,解得0<x ≤或x >1,故不等式的解集为.故答案为:.6.向量,,在正方形网格中的位置如图所示,若(λ,μ∈R ),则= .【考点】平面向量的基本定理及其意义.【分析】以向量、的公共点为坐标原点,建立如图直角坐标系,得到向量、、的坐标,结合题中向量等式建立关于λ、μ的方程组,解之得λ=﹣2且μ=﹣,即可得到的值.【解答】解:以向量、的公共点为坐标原点,建立如图直角坐标系可得=(﹣1,1),=(6,2),=(﹣1,﹣3)∵∴,解之得λ=﹣2且μ=﹣因此, ==4故答案为:47.已知数列{a n }满足(n ∈N *),则a 2n = .【考点】数列递推式.【分析】由已知求出数列的第二项,并得到数列{a n }的偶数项构成以2为首项,以2为公比的等比数列,然后由等比数列的通项公式得答案.【解答】解:由①,得a 2=2,且(n ≥2)②,①÷②得:,∴数列{a n }的偶数项构成以2为首项,以2为公比的等比数列,则.故答案为:2n .8.在(2x +y +z )10的展开式中,x 3y 2z 5的系数为 .【考点】二项式定理的应用.【分析】根据展开式中项的由来,利用组合解答即可.【解答】解:由题意,在(2x +y +z )10的展开式中,含有x 3y 2z 5的项为,所以系数为8××=20160.故答案为:20160.9.在极坐标系中,将圆ρ=2沿着极轴正方向平移两个单位后,再绕极点逆时针旋转弧度,则所得的曲线的极坐标方程为 .【考点】简单曲线的极坐标方程.【分析】根据圆ρ=2的圆心与半径,得出平移和旋转后的圆心与半径,由此写出所得曲线的极坐标方程.【解答】解:圆ρ=2的圆心为(0,0),半径为2;沿着极轴正方向平移两个单位后,圆心为(2,0),半径为2;绕极点按逆时针方向旋转,所得圆的圆心为(2,),半径为2;设p为所求圆上任意一点,则OP=ρ=2×2cos(θ﹣)=4cos(θ﹣).故答案为:ρ=4cos(θ﹣).10.5位好朋友相约乘坐迪士尼乐园的环园小火车.小火车的车厢共有4节,设每一位乘客进入每节车厢是等可能的,则这5位好朋友无人落单(即一节车厢内,至少有5人中的2人)的概率是.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出这5位好朋友无人落单(即一节车厢内,至少有5人中的2人)包含的基本事件个数,由此能求出这5位好朋友无人落单(即一节车厢内,至少有5人中的2人)的概率.【解答】解:5位好朋友相约乘坐迪士尼乐园的环园小火车.小火车的车厢共有4节,设每一位乘客进入每节车厢是等可能的,则基本事件总数n=45,这5位好朋友无人落单(即一节车厢内,至少有5人中的2人)包含的基本事件个数:m=+,∴这5位好朋友无人落单(即一节车厢内,至少有5人中的2人)的概率:p===.故答案为:.11.已知定义在R上的函数y=f(x)对于任意的x都满足f(x+2)=f(x).当﹣1≤x<1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|至少有6个零点,则a的取值范围是.【考点】函数的周期性.【分析】函数g(x)=f(x)﹣log a|x|的零点个数,即函数y=f(x)与y=log5|x|的交点的个数,由函数图象的变换,分别做出y=f(x)与y=log a|x|的图象,结合图象可得log a5<1 或log a5≥﹣1,由此求出a的取值范围.【解答】解:根据题意,函数g(x)=f(x)﹣log a|x|的零点个数,即函数y=f(x)与y=log a|x|的交点的个数;f(x+2)=f(x),函数f(x)是周期为2的周期函数,又由当﹣1<x≤1时,f(x)=x3,据此可以做出f(x)的图象,y=log a|x|是偶函数,当x>0时,y=log a x,则当x<0时,y=log a(﹣x),做出y=log a|x|的图象,结合图象分析可得:要使函数y=f(x)与y=log a|x|至少有6个交点,则log a5<1 或log a5≥﹣1,解得a>5,或0<a≤.所以a的取值范围是(0,]∪(5,+∞).故答案为:(0,]∪(5,+∞).12.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b(a,b≠0),不得分的概率为.若他投篮一次得分ξ的数学期望,则a的取值范围是.【考点】离散型随机变量的期望与方差.【分析】由已知得,0<a<1,0<b<1,从而3a+2b=3a+2(﹣a)>,由此能求出a的取值范围.【解答】解:∵一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b(a,b≠0),不得分的概率为.∴a+b+=1,∴,∵0<a<1,0<b<1,∴0<a<,∵投篮一次得分ξ的数学期望,∴3a+2b=3a+2(﹣a)>,解得a>,综上,.故答案为:(,).13.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“›”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i为虚数单位),“z1›z2”当且仅当“a1>a2”或“a1=a2且b1>b2”.下面命题:①1›i›0;②若z1›z2,z2›z3,则z1›z3;③若z1›z2,则对于任意z∈C,z1+z›z2+z;④对于复数z›0,若z1›z2,则z•z1›z•z2.其中真命题是.(写出所有真命题的序号)【考点】复数代数形式的混合运算.【分析】利用复数的新定义大小关系即可得出.【解答】解:①.∵1=1+0•i,i=0+1•i,∵实部1>0,∴1›i.又0=0+0•i,∵实部0=0,虚部1>0,∴i›0,∴1›i›0,所以①正确.②设z k=a k+b k i,k=1,2,3,a k,b k∈R.∵z1›z2,z2›z3,∴a1≥a2,a2≥a3,∴a1≥a3.则当a1>a3时,可得z1›z3;当a1=a3时,有b1>b2>b3,可得z1›z3,∴②正确;③令z=a+bi(a,b∈R),∵z1›z2,∴a1≥a2,∴a1+a≥a2+a,当a1=a2时,b1>b2,故a1+a=a2+a,b1+b>b2+b,可得z1+z›z2+z;当a1>a2时,a1+a>a2+a,可得z1+z›z2+z;∴③正确;④取z=0+i>0,z1=a1+b1i,z2=a2+b2i,(a k,b k∈R,k=1,2),不妨令a1=a2,b1>b2,则z1›z2,此时z•z1=﹣b1+a1i,z•z2=﹣b2+a2i,不满足z•z1›z•z2.故④不正确.由以上可知:只有①②③正确.故答案为:①②③.14.符号表示数列{a n}的前n项和(即).已知数列{a n}满足a1=0,a n≤a n≤a n+1(n∈N*),记,若S2016=0,则当+1取最小值时,a2016=.【考点】数列的求和.【分析】S2016=0,=,进一步可知{a n}从第一起k∈{1,2,3,4,…,1008},当取最小值,a2016=1007.【解答】解:S2016=0,(﹣1)k=0,即=,∵a n≤a n+1,(n∈N*),0<a<1,∴≥,∴a2k﹣1=a2k,k∈{1,2,3,4,…,1008},∵a1=0,a n≤a n+1≤a n+1(n∈N*),∴当取最小值,∴a2016=1007,故答案为:1007.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,填写结果,选对得5分,否则一律得零分.15.在样本的频率分布直方图中,共有9个小长方形,若第1个长方形的面积为0.02,前5个与后5个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第5组)的频数为()A.12 B.24 C.36 D.48【考点】频率分布直方图.【分析】设出公差,利用9个小长方形面积和为1,求出公差,然后求解中间一组的频数.【解答】解:设公差为d,那么9个小长方形的面积分别为0.02,0.02+d,0.02+2d,0.02+3d,0.02+4d,0.02+3d,0.02+2d,0.02+d,0.02,而9个小长方形的面积和为1,可得0.18+16d=1 可以求得d=∴中间一组的频数为:160×(0.02+4d)=36.故选C.16.已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3 C.m D.3m【考点】双曲线的简单性质.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.17.将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.【考点】两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.【分析】函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.【解答】解:y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B18.在半径为r的球内有一内接正三棱锥,它的底面三个顶点恰好都在同一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,则经过的最短路程是()A.2πr B.C.D.【考点】多面体和旋转体表面上的最短距离问题.【分析】球面上两点之间最短的路径是大圆(圆心为球心)的劣弧的弧长,因此最短的路径分别是经过的各段弧长的和,利用内接正三棱锥,它的底面三个顶点恰好同在一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,经过的最短路程为:一个半圆一个圆即可解决.【解答】解:由题意可知,球面上两点之间最短的路径是大圆(圆心为球心)的劣弧的弧长,内接正三棱锥,它的底面三个顶点恰好同在一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,例如动点从A到S,再到C,到B回到A,∠SOA=∠SOC=90°,∠COB=∠BOA=60°,则经过的最短路程为:一个半圆一个圆,即:=故选B.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图:已知四棱锥P﹣ABCD,底面是边长为6的正方形,PA=8,PA⊥面ABCD,点M是CD的中点,点N是PB的中点,连接AM、AN、MN.(1)求证:AB⊥MN;(2)求二面角N﹣AM﹣B的大小.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.(1)分别以AD、AB、AP为x轴、y轴、z轴建立空间直角坐标系,只要证明,【分析】即可证明AB⊥MN.(2)利用法向量的夹角公式即可得出.【解答】(1)证明:分别以AD、AB、AP为x轴、y轴、z轴建立空间直角坐标系,则A(0,0,0)、B(0,6,0)、M(6,3,0)、N(0,3,4),得,,∴,∴AB⊥MN.(2)解:取平面AMB的一个法向量为,设平面AMN的法向量,又,,由,取平面AMN的一个法向量,设二面角N﹣AM﹣B为α,则=,∴二面角N﹣AM﹣B的大小为.20.已知向量和向量,且.(1)求函数f(x)的最小正周期和最大值;(2)已知△ABC的三个内角分别为A,B,C,若有=1,,求△ABC 面积的最大值.【考点】三角函数中的恒等变换应用;平面向量共线(平行)的坐标表示;正弦定理.【分析】(1)根据向量平行的坐标关系求出f(x)的解析式,化简成为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,结合三角函数的图象和性质求其最大值.(2)利用=1,求出A的角的大小,在结合余弦定理,利用三角函数的图象和性质求其最大值.【解答】解:(1)由题意:可得:⇔f(x)的最小正周期T=sinx的图象和性质可知:sin(x+)的最大值是1,∴的最大值是2.所以:函数f(x)的最小正周期为2π,最大值为2.(2)由(1)可知.∵=1,得:,∵0<A<π,∴,∴,解得:.又∵,即,∴b2+c2﹣bc=3,又∵b2+c2≥2bc(当且仅当b=c时取等号),则有:3+bc≥2bc,∴bc≤3,∴,所以:△ABC面积的最大值为:.21.某地拟模仿图(1)建造一座大型体育馆,其设计方案侧面的外轮廓线如图(2)所示:曲线AB是以点E为圆心的圆的一部分,其中E(0,t)曲线BC是抛物线y=﹣ax2+30(a >0)的一部分;CD⊥AD,且CD恰好等于圆E的半径.(1)若要求CD=20米,AD=(10+30)米,求t与a值;(2)当0<t≤10时,若要求体育馆侧面的最大宽度DF不超过45米,求a的取值范围.【考点】直线和圆的方程的应用;直线与圆的位置关系.【分析】(1)根据圆E的半径CD=30﹣t求出t的值,再利用圆E的方程求出点C的坐标,代入抛物线方程求出a的值;(2)根据圆E的半径,利用抛物线求出OD的值,写出DF的表达式,求DF在t∈(0,10]时不等式DF≤45恒成立即可.【解答】解:(1)因为CD=30﹣t=20,解得t=10;…3分此时圆E:x2+(y﹣10)2=202,令y=0,得AO=10,所以OD=AD﹣AO=30,将点C(30,20)代入y=﹣ax2+30(a>0)中,解得;…7分(2)因为圆E的半径为30﹣t,所以CD=30﹣t,在y=﹣ax2+30中,令y=30﹣t,解得,则由题意知对t∈(0,10]恒成立,…9分所以恒成立,而,当,即t=15∉(0,10]时,由()递减,可知:当t=10取最小值;…12分故,解得.…14分.22.如图数表:,每一行都是首项为1的等差数列,第m行的公差为d m,且每一列也是等差数列,设第m行的第k项为a mk(m,k=1,2,3,…,n,n≥3,n ∈N*).(1)证明:d1,d2,d3成等差数列,并用m,d1,d2表示d m(3≤m≤n);(2)当d1=1,d2=3时,将数列{d m}分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为,求数列的前n项和S n;(3)在(2)的条件下,设N是不超过20的正整数,当n>N时,求使得不等式恒成立的所有N的值.【考点】数列的应用.【分析】(1)根据第三行成等差数列得出a3n,根据最后一列成等差数列得出a3n,从而得出d1,d2,d3的关系,同理根据a mn的不同算法即可得出d m关于m,d1,d2的式子;(2)根据分组特点计算c m,利用错位相减法计算S n;(3)把S n,d n代入不等式求出使不等式成立的n的最小值即可得出N的最小值.【解答】解:(1)∵每一行都是首项为1的等差数列,∴a1n=1+(n﹣1)d1,a2n=1+(n﹣1)d2,a3n=1+(n﹣1)d3.∵每一列也是等差数列,∴2a2n=a1n+a3n,∴2+2(n﹣1)d2=1+(n﹣1)d1+1+(n﹣1)d3,即2d2=d1+d3∴d1,d2,d3成等差数列.∵a mn=1+(n﹣1)d m,a mn=a1n+(m﹣1)(a2n﹣a1n)=a1n+(m﹣1)(a2n﹣a1n)=1+(n﹣1)d1+(m﹣1)(n﹣1)(d2﹣d1),∴1+(n﹣1)d m=1+(n﹣1)d1+(m﹣1)(n﹣1)(d2﹣d1)化简得d m=(2﹣m)d1+(m﹣1)d2.(2)当d1=1,d2=3时,d m=2m﹣1(m∈N*),按数列{d m}分组规律,第m组中有2m﹣1个数,所以第1组到第m组共有1+3+5+…+(2m﹣1)=m2个数.则前m组的所有数字和为,∴,∵c m>0,∴c m=m,从而,m∈N*,∴S n=1×2+3×22+5×23+…+(2n﹣1)×2n,∴2S n=1×22+3×23+…+(2n﹣1)×2n+1,∴﹣S n=2+23+24+…+2n+1﹣(2n﹣1)×2n+1=2+23(2n﹣1﹣1)﹣(2n﹣1)×2n+1=(3﹣2n)×2n+1﹣6.∴.(3)由得(2n﹣3)•2n+1>50(2n﹣1).令a n=(2n﹣3)•2n+1﹣50(2n﹣1)=(2n﹣3)(2n+1﹣50)﹣100.∴当n≤5时,a n<0,当n≥6时,a n>0,所以,满足条件的所有正整数N=5,6,7,8, (20)23.如图,圆O与直线x+y+2=0相切于点P,与x正半轴交于点A,与直线y=x在第一象限的交点为B.点C为圆O上任一点,且满足=x+y,以x,y为坐标的动点D (x,y)的轨迹记为曲线Γ.(1)求圆O的方程及曲线Γ的方程;(2)若两条直线l1:y=kx和l2:y=﹣x分别交曲线Γ于点E、F和M、N,求四边形EMFN面积的最大值,并求此时的k的值.(3)根据曲线Γ的方程,研究曲线Γ的对称性,并证明曲线Γ为椭圆.【考点】直线与圆的位置关系;椭圆的简单性质.【分析】(1)圆O与直线x+y+2=0相切于点,利用点到直线的距离,即可求出半径,解得圆的方程.根据=x+y和坐标关系带入圆的方程,即可得到曲线Γ的方程;垂直(2)两条直线l1:y=kx和l2:y=﹣x分别交曲线Γ,解出坐标,由题意l1与l2垂直,利用两点之间的距离求出EF,MN长度,即可得到四边形的面积,利用基本不等式即可得到答案.(3)根据(1)中得到的方程,首先考虑奇偶性和x轴,y=x轴的对称,在考虑非常见对称.利用椭圆的定义证明即可.【解答】解:由题意:圆O与直线x+y+2=0相切于点,利用点到直线的距离,即可求出半径,r=∴圆的方程为:x2+y2=1圆与x轴的交点A(1,0),与直线y=x在第一象限的交点B为(,),由=x+y,可得:,将代入x2+y2=1得到:x2+y2+xy=1,()即为曲线Γ的方程;(2)∵两条直线l1:y=kx和l2:y=﹣x分别交曲线Γ于点E、F和M、N.∴联立:⇒解得:点E(,),点F(﹣,﹣)那么:|EF|=同理:联立⇒解得:点M(,)点N(﹣,﹣)那么:|MN|=由题意可知:l1⊥l2,所以四边形EMFN面积的为S=|MN|•|EF|=2×=∵.(当且仅k=±1时等号成立)∴⇒故当k=±1时,四边形EMFN的面积最大,其最大值为:.(3)由(1)可知:曲线Γ的方程:x2+y2+xy=1,()关于直线y=x,也关于原点对称,同时关于直线y=﹣x对称证明:设曲线Γ上任一点的坐标为P(x0,y0),则有点P关于直线y=x的对称点P′(y0,x0),带入方程得:,显然成立.故曲线Γ的方程关于直线y=x对称.同理:曲线Γ的方程关于原点对称,同时关于直线y=﹣x对称.证明曲线Γ为椭圆型曲线.证明:曲线Γ的方程:x2+y2+xy=1和直线x=y的交点坐标为B1(﹣,﹣),B2(,)曲线Γ的方程:x2+y2+xy=1和直线x=﹣y的交点坐标为A1(﹣1,1),A2(1,﹣1)|0A1|=,|0B1|=,那么,在y=﹣x上取F1(﹣,,),F2(,﹣)设P(x,y)在曲线Γ的方程上的任意一点,则|PF1|+|PF2|======因为xy≤,∴=2=|A1A2|即曲线Γ的方程上的任意一点P到两个定点F1(﹣,,),F2(,﹣)的距离之和为定值2.可以反过来证明:若点P到两个定点F1(﹣,,),F2(,﹣)的距离之和为定值2,可以求得P的轨迹方程,得到为:x2+y2+xy=1故曲线Γ的方程是椭圆,其焦点坐标为F1(﹣,,),F2(,﹣).2016年10月11日。
上海市杨浦区高考数学二模试卷(理科) Word版含解析

2016年上海市杨浦区高考数学二模试卷(理科)一、填空题1.函数的定义域是______.2.已知线性方程组的增广矩阵为,若该线性方程组的解为,则实数a=______.3.计算=______.4.若向量,满足且与的夹角为,则=______.5.若复数z1=3+4i,z2=1﹣2i,其中i是虚数单位,则复数的虚部为______.6.在的展开式中,常数项是______.(用数字作答)7.已知△ABC的内角A、B、C所对应边的长度分别为a、b、c,若,则角C的大小是______.8.已知等比数列{a n}的各项均为正数,且满足:a1a7=4,则数列{log2a n}的前7项之和为______.9.在极坐标系中曲线C:ρ=2cosθ上的点到(1,π)距离的最大值为______.10.袋中有5只大小相同的乒乓球,编号为1至5,从袋中随机抽取3只,若以ξ表示取到球中的最大号码,则ξ的数学期望是______.11.已知双曲线的右焦点为F,过点F且平行于双曲线的一条渐近线的直线与双曲线交于点P,M在直线PF上,且满足,则=______.12.现有5位教师要带三个班级外出参加志愿者服务,要求每个班级至多两位老师带队,且教师甲、乙不能单独带队,则不同的带队方案有______.(用数字作答)13.若关于x的方程(4x+)﹣|5x﹣|=m在(0,+∞)内恰有三个相异实根,则实数m的取值范围为______.14.课本中介绍了应用祖暅原理推导棱锥体积公式的做法.祖暅原理也可用来求旋转体的体积.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.二、选择题15.下列函数中,既是奇函数,又在区间(0,+∞)上递增的是()A.y=2|x|B.y=lnx C.D.16.已知直线l的倾斜角为α,斜率为k,则“”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分也非必要条件17.设x,y,z是互不相等的正数,则下列等式中不恒成立的是()A.B.C.D.|x﹣y|≤|x﹣z|+|y﹣z|18.已知命题:“若a,b为异面直线,平面α过直线a且与直线b平行,则直线b与平面α的距离等于异面直线a,b之间的距离”为真命题.根据上述命题,若a,b为异面直线,且它们之间的距离为d,则空间中与a,b均异面且距离也均为d的直线c的条数为()A.0条B.1条C.多于1条,但为有限条 D.无数多条三、解答题19.如图,底面是直角三角形的直三棱柱ABC﹣A1B1C1中,,D是棱AA1上的动点.(1)证明:DC1⊥BC;(2)求三棱锥C﹣BDC1的体积.20.某菜农有两段总长度为20米的篱笆PA及PB,现打算用它们和两面成直角的墙OM、ON围成一个如图所示的四边形菜园OAPB(假设OM、ON这两面墙都足够长).已知|PA|=|PB|=10(米),,∠OAP=∠OBP.设∠OAP=θ,四边形OAPB的面积为S.(1)将S表示为θ的函数,并写出自变量θ的取值范围;(2)求出S的最大值,并指出此时所对应θ的值.21.已知函数,其中a∈R.(1)根据a的不同取值,讨论f(x)的奇偶性,并说明理由;(2)已知a>0,函数f(x)的反函数为f﹣1(x),若函数y=f(x)+f﹣1(x)在区间[1,2]上的最小值为1+log23,求函数f(x)在区间[1,2]上的最大值.22.已知椭圆C:的焦距为,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于A(x1,y1)、B(x2,y2),且在椭圆C上存在点M,使得:(其中O为坐标原点),则称直线l具有性质H.(1)求椭圆C的方程;(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线PQ、QR、RP都具有性质H.23.已知数列{a n}和{b n}满足:,且对一切n∈N*,均有.(1)求证:数列为等差数列,并求数列{a n}的通项公式;(2)若λ=2,求数列{b n}的前n项和S n;(3)设,记数列{c n}的前n项和为T n,问:是否存在正整数λ,对一切n∈N*,均有T4≥T n恒成立.若存在,求出所有正整数λ的值;若不存在,请说明理由.2016年上海市杨浦区高考数学二模试卷(理科)参考答案与试题解析一、填空题1.函数的定义域是{x|x≥﹣2且x≠1} .【考点】函数的定义域及其求法.【分析】由题意即分母不为零、偶次根号下大于等于零,列出不等式组求解,最后要用集合或区间的形式表示.【解答】解:由题意,要使函数有意义,则,解得,x≠1且x≥﹣2;故函数的定义域为:{x|x≥﹣2且x≠1},故答案为:{x|x≥﹣2且x≠1}.2.已知线性方程组的增广矩阵为,若该线性方程组的解为,则实数a=2.【考点】线性方程组解的存在性,唯一性.【分析】由已知得,把x=﹣1,y=2,能求出a的值.【解答】解:∵线性方程组的增广矩阵为,该线性方程组的解为,∴,把x=﹣1,y=2,代入得﹣a+6=4,解得a=2.故答案为:2.3.计算=.【考点】数列的极限.【分析】将1+2+3+…+n=的形式,在利用洛必达法则,求极限值.【解答】解:原式====故答案为:4.若向量,满足且与的夹角为,则=.【考点】平面向量数量积的运算.【分析】根据可得答案.【解答】解:∵且与的夹角为∴=7∴则=故答案为:5.若复数z1=3+4i,z2=1﹣2i,其中i是虚数单位,则复数的虚部为﹣3.【考点】复数代数形式的乘除运算.【分析】由已知利用复数代数形式的乘除运算化简得答案.【解答】解:∵z1=3+4i,z2=1﹣2i,∴,,∴==,∴复数的虚部为﹣3.故答案为:﹣3.6.在的展开式中,常数项是15.(用数字作答)【考点】二项式系数的性质.【分析】先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.【解答】解:∵在的展开式的通项公式为T r+1=•(﹣1)r•,令r﹣6=0,求得r=4,故的展开式中的常数项是5.故答案为:15.7.已知△ABC的内角A、B、C所对应边的长度分别为a、b、c,若,则角C的大小是.【考点】二阶行列式的定义.【分析】由二阶行列式性质得a2+b2﹣c2=ab,由此利用余弦定理求出cosC=,从而能求出角C的大小.【解答】解:∵△ABC的内角A、B、C所对应边的长度分别为a、b、c,,∴a2﹣c2=﹣b2+ab,即a2+b2﹣c2=ab,∴cosC===,∵C是△ABC的内角,∴C=.故答案为:.8.已知等比数列{a n}的各项均为正数,且满足:a1a7=4,则数列{log2a n}的前7项之和为7.【考点】等比数列的性质.【分析】由等比数列的性质可得:a1a7=a2a6=a3a5=4,再利用指数与对数的运算性质即可得出.【解答】解:由等比数列的性质可得:a1a7=a2a6=a3a5=4=4,∴数列{log2a n}的前7项和=log2a1+log2a2+…+log2a7=log2(a1a2…a7)=log227=7,故答案为:7.9.在极坐标系中曲线C:ρ=2cosθ上的点到(1,π)距离的最大值为3.【考点】参数方程化成普通方程.【分析】把极坐标方程化为直角坐标方程,求出圆心到点(1,π)的距离,进而得出最大值.【解答】解:曲线C:ρ=2cosθ即ρ2=2ρcosθ,化为直角坐标方程:x2+y2=2x,配方为:(x﹣1)2+y2=1,可得圆心C(1,0),半径r=1.点P(1,π)化为直角坐标P(﹣1,0).∴|CP|=2,∴曲线C:ρ=2cosθ上的点到(1,π)距离的最大值=2+1=3.故答案为:3.10.袋中有5只大小相同的乒乓球,编号为1至5,从袋中随机抽取3只,若以ξ表示取到球中的最大号码,则ξ的数学期望是.【考点】离散型随机变量的期望与方差.【分析】由已知得ξ的可能取值为3,4,5,分别求出相应的概率,由此能求出E(ξ).【解答】解:由已知得ξ的可能取值为3,4,5,P(ξ=3)==,P(ξ=4)==,P(ξ=5)==,∴E(ξ)==.故答案为:.11.已知双曲线的右焦点为F,过点F且平行于双曲线的一条渐近线的直线与双曲线交于点P,M在直线PF上,且满足,则=.【考点】双曲线的简单性质.【分析】求得双曲线的a,b,c,可得F(,0),渐近线方程为y=±2x,设过点F且平行于双曲线的一条渐近线为y=2(x﹣),代入双曲线的方程可得P的坐标,由两直线垂直的条件可得直线OM的方程,联立直线y=2(x﹣),求得M的坐标,由向量共线的坐标表示,计算即可得到所求值.【解答】解:双曲线的a=1,b=2,c==,可得F(,0),渐近线方程为y=±2x,设过点F且平行于双曲线的一条渐近线为y=2(x﹣),代入双曲线的方程,可得x=,可得P(,﹣),由直线OM:y=﹣x和直线y=2(x﹣),可得M(,﹣),即有==.故答案为:.12.现有5位教师要带三个班级外出参加志愿者服务,要求每个班级至多两位老师带队,且教师甲、乙不能单独带队,则不同的带队方案有54.(用数字作答)【考点】排列、组合的实际应用.【分析】根据题意,采用分类原理,对甲,乙老师分当甲,乙带不同班和当甲,乙带相同班时分别求解,最后求和即可.【解答】解:当甲,乙带不同班时:×=36种;当甲,乙带相同班时,=18种;故共有54中,故答案为:54.13.若关于x的方程(4x+)﹣|5x﹣|=m在(0,+∞)内恰有三个相异实根,则实数m的取值范围为(6,).【考点】函数的零点与方程根的关系.【分析】分类讨论以去掉绝对值号,从而利用基本不等式确定各自方程的根的个数,从而解得.【解答】解:当x≥时,5x﹣≥0,∵方程(4x+)﹣|5x﹣|=m,∴(4x+)﹣(5x﹣)=m,即﹣x+=m;∴m≤.当0<x<时,5x﹣<0,∵方程(4x+)﹣|5x﹣|=m,∴(4x+)+(5x﹣)=m,即9x+=m;∵9x+≥6;∴当m<6时,方程9x+=m无解;当m=6时,方程9x+=m有且只有一个解;当6<m<10时,方程9x+=m在(0,1)上有两个解;当m=10时,方程9x+=m的解为1,;综上所述,实数m 的取值范围为(6,).故答案为:(6,).14.课本中介绍了应用祖暅原理推导棱锥体积公式的做法.祖暅原理也可用来求旋转体的体积.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为,将此椭圆绕y 轴旋转一周后,得一橄榄状的几何体(图2),其体积等于 .【考点】旋转体(圆柱、圆锥、圆台);棱柱、棱锥、棱台的体积.【分析】构造一个底面半径为2,高为5的圆柱,从中挖去一个圆锥,则由祖暅原理可得:椭球的体积为几何体体积的2倍.【解答】解:椭圆的长半轴为5,短半轴为2, 现构造一个底面半径为2,高为5的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积V=2(V 圆柱﹣V 圆锥)=2(π×22×5﹣)=.故答案为:.二、选择题15.下列函数中,既是奇函数,又在区间(0,+∞)上递增的是( )A .y=2|x|B .y=lnxC .D .【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性的定义和性质进行判断即可. 【解答】解:A .函数y=2|x|为偶函数,不满足条件. B .函数的定义域为(0,+∞),函数为非奇非偶函数,不满足条件. C.是奇函数,在(0,+∞)上递增,满足条件.D.是奇函数,当0<x <1时函数为减函数,当x >1时函数为增函数,不满足条件.故选:C16.已知直线l的倾斜角为α,斜率为k,则“”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】“”,可得0≤tanα<,“”;反之不成立,α可能为钝角.【解答】解:“”⇒0≤tanα<⇒“”;反之不成立,α可能为钝角.∴“”是“”的充分不必要条件.故选:A.17.设x,y,z是互不相等的正数,则下列等式中不恒成立的是()A.B.C.D.|x﹣y|≤|x﹣z|+|y﹣z|【考点】基本不等式.【分析】A.x,y,是互不相等的正数,令t=x+≥2,可得:﹣=t2﹣t﹣2=(t﹣2)(t+1)≥0,即可判断出真假;B.﹣=﹣,即可判断出真假.C.取x=1,y=2,即可判断出真假;D.|x﹣y|=|(x﹣z)+(z﹣y)|≤|x﹣z|+|y﹣z|,即可判断出真假.【解答】解:A.∵x,y,是互不相等的正数,令t=x+≥2,∴﹣=t2﹣t ﹣2=(t﹣2)(t+1)≥0,正确;B.∵>,∴﹣=﹣≤0,∴≤,正确.C.取x=1,y=2,则|x﹣y|+=1﹣1=0<2,因此不正确;D.|x﹣y|=|(x﹣z)+(z﹣y)|≤|x﹣z|+|y﹣z|,正确.故选:C.18.已知命题:“若a,b为异面直线,平面α过直线a且与直线b平行,则直线b与平面α的距离等于异面直线a,b之间的距离”为真命题.根据上述命题,若a,b为异面直线,且它们之间的距离为d,则空间中与a,b均异面且距离也均为d的直线c的条数为()A.0条B.1条C.多于1条,但为有限条 D.无数多条【考点】点、线、面间的距离计算.【分析】如图所示,给出一个平行六面体ABCD﹣A1B1C1D1.取AD=a,A1B1=b,假设平行平面ABCD与A1B1C1D1之间的距离为d.若平面BCC1B1∥a,平面CDD1C1∥b,且满足它们之间的距离等于d,其交线CC1满足条件.把满足平面BCC1B1∥a,平面CDD1C1∥b,且它们之间的距离等于d的两个平面旋转,则所有的交线CC1都满足条件,即可判断出结论.【解答】解:如图所示,给出一个平行六面体ABCD﹣A1B1C1D1.取AD=a,A1B1=b,假设平行平面ABCD与A1B1C1D1之间的距离为d.平面BCC1B1∥a,平面CDD1C1∥b,且满足它们之间的距离等于d,其交线CC1满足与a,b均异面且距离也均为d的直线c.把满足平面BCC1B1∥a,平面CDD1C1∥b,且它们之间的距离等于d的两个平面旋转,则所有的交线CC1都满足与a,b均异面且距离也均为d的直线c.因此满足条件的直线有无数条.故选:D.三、解答题19.如图,底面是直角三角形的直三棱柱ABC﹣A1B1C1中,,D是棱AA1上的动点.(1)证明:DC1⊥BC;(2)求三棱锥C﹣BDC1的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的性质.【分析】(1)由棱锥是直棱锥可得侧面与底面垂直,由面面垂直的性质可得BC⊥平面ACC1A1,进一步得到BC⊥DC1;(2)利用等积法,把三棱锥C﹣BDC1的体积转化为三棱锥B﹣CDC1的体积求解.【解答】(1)证明:如图,∵直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,∴CC1⊥底面ABC,又CC1⊂面ACC1A1,∴面ACC1A1⊥底面ABC,而面ACC1A1∩底面ABC=AC,由△ABC为Rt△,且AC=BC,得BC⊥AC,∴BC⊥平面ACC1A1,∴BC⊥DC1;(2)解:由(1)知,BC⊥平面ACC1A1,∵,∴AA1=2,则∴=.20.某菜农有两段总长度为20米的篱笆PA及PB,现打算用它们和两面成直角的墙OM、ON围成一个如图所示的四边形菜园OAPB(假设OM、ON这两面墙都足够长).已知|PA|=|PB|=10(米),,∠OAP=∠OBP.设∠OAP=θ,四边形OAPB的面积为S.(1)将S表示为θ的函数,并写出自变量θ的取值范围;(2)求出S的最大值,并指出此时所对应θ的值.【考点】正弦定理;余弦定理.【分析】(1)在三角POB中,由正弦定理,得:,得OB=10(cosθ+sinθ).再利用三角形面积计算公式即可得出.(2)由(1)利用倍角公式与和差公式、三角函数的单调性最值即可得出.【解答】解:(1)在三角POB中,由正弦定理,得:,得OB=10(cosθ+sinθ).所以,S==100(sinθcosθ+sin2θ),θ∈∪.(2)S=100(sinθcosθ+sin2θ)=50(2sinθcosθ+2sin2θ)=50(sin2θ﹣cos2θ+1)=,所以S的最大值为:50+50,θ=.21.已知函数,其中a∈R.(1)根据a的不同取值,讨论f(x)的奇偶性,并说明理由;(2)已知a>0,函数f(x)的反函数为f﹣1(x),若函数y=f(x)+f﹣1(x)在区间[1,2]上的最小值为1+log23,求函数f(x)在区间[1,2]上的最大值.【考点】函数的最值及其几何意义;反函数.【分析】(1)由得f(﹣x)=﹣ax+log2(2x+1)﹣x,从而可得当a=时函数为偶函数;(2)可判断与f﹣1(x)都是增函数,从而可得f(1)+f﹣1(1)=1+log23,从而解出a.【解答】解:(1)∵,∴f(﹣x)=﹣ax+log2(2﹣x+1)=﹣ax+log2(2x+1)﹣log22x=﹣ax+log2(2x+1)﹣x,∴f(﹣x)=f(x),即﹣ax﹣x=ax,故a=;此时函数为偶函数,若a≠﹣,函数为非奇非偶函数;(2)∵a>0,∴单调递增,又∵函数f(x)的反函数为f﹣1(x),∴f﹣1(x)单调递增;∴f(1)+f﹣1(1)=1+log23,即a+log23+f﹣1(1)=1+log23,故f﹣1(1)=1﹣a,即a(1﹣a)+log2(2a﹣1+1)=1,解得,a=1;故f(2)=2+log25.22.已知椭圆C:的焦距为,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于A(x1,y1)、B(x2,y2),且在椭圆C上存在点M,使得:(其中O为坐标原点),则称直线l具有性质H.(1)求椭圆C的方程;(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线PQ、QR、RP都具有性质H.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)由椭圆的焦距为,右焦点F与短轴的两个端点组成一个正三角形,求出a,b,由此能求出椭圆C的方程.(2)设直线l:x=t,(﹣2<t<2),则A(t,y1),B(t,y2),设M(x m,y m),求出,=﹣,由点M在椭圆C上,能求出直线l的方程.(3)假设在椭圆C上存在三个不同的点P(x1,y1),Q(x2,y2),R(x3,y3),使得直线PQ、QR、RP都具有性质H,利用反证法推导出相互矛盾结论,从而能证明在椭圆C上不存在三个不同的点P、Q、R,使得直线PQ、QR、RP都具有性质H.【解答】解:(1)∵椭圆C:的焦距为,∴c=,∵右焦点F与短轴的两个端点组成一个正三角形,∴c=,解得b=1,∴a2=b2+c2=4,∴椭圆C的方程为.(2)设直线l:x=t,(﹣2<t<2),则A(t,y1),B(t,y2),其中y1,y2满足:,y1+y2=0,设M(x m,y m),∵(其中O为坐标原点),∴,=﹣,∵点M在椭圆C上,∴,∴49t2+4﹣t2=100,∴t=,∴直线l的方程为x=或x=﹣.证明:(3)假设在椭圆C上存在三个不同的点P(x1,y1),Q(x2,y2),R(x3,y3),使得直线PQ、QR、RP都具有性质H,∵直线PQ具有性质H,∴在椭圆C上存在点M,使得:,设M(x m,y m),则,y m=,∵点M在椭圆上,∴+()2=1,又∵,,∴=0,①同理:=0,②,,③1)若x1,x2,x3中至少一个为0,不妨设x1=0,则y1≠0,由①③得y2=y3=0,即Q,R为长轴的两个端点,则②不成立,矛盾.2)若x1,x2,x3均不为0,则由①②③得=﹣>0,矛盾.∵在椭圆C上不存在三个不同的点P、Q、R,使得直线PQ、QR、RP都具有性质H.23.已知数列{a n}和{b n}满足:,且对一切n∈N*,均有.(1)求证:数列为等差数列,并求数列{a n}的通项公式;(2)若λ=2,求数列{b n}的前n项和S n;(3)设,记数列{c n}的前n项和为T n,问:是否存在正整数λ,对一切n∈N*,均有T4≥T n恒成立.若存在,求出所有正整数λ的值;若不存在,请说明理由.【考点】数列递推式;数列的求和.【分析】(1)化简可得,从而写出,即;(2)当λ=2时,a n=n2+n,从而求得b n=2n,从而求等比数列前n项和.(3)仿照(2)可得,b n=2n+r﹣2,从而化简c n=2﹣r﹣2n﹣(),从而分类讨论以确定λ的值.【解答】解:(1)证明:∵,两边除以n(n+1)得,,即,故数列为等差数列,故,故;(2)当λ=2时,a n=n2+n,∵,∴b1==2,b n+1===2n+1,综上所述,b n=2n,S n==2n+1﹣2;(3)仿照(2)可得,,b n=2n+r﹣2,c n==﹣=2﹣r﹣2n﹣(),∵对一切n∈N*,均有T4≥T n恒成立,∴当n>4时,c n≤0;若λ=1,则c n=1﹣2n﹣,c5=﹣>0,故T5>T4,故不成立;若λ=2,则c n=﹣2n﹣,故c1=﹣=0,c2=﹣,c3=﹣>0,c4=﹣>0,c5=﹣<0,且当n≥5时,2n>n2+n,故成立;若λ=3,则c n=﹣,故c1=﹣>0,c2=﹣>0,c3=﹣>0,c4=﹣>0,故且当n≥5时,•2n>n2+2n,故成立;若λ≥4,则c n=﹣,c4=﹣,令f(r)=16﹣16﹣4(r﹣1),则f′(r)=16•ln•﹣4=4(ln4•﹣1)>0,故f(r)在[4,+∞)上是增函数,故f(4)=16×2﹣16﹣4×3>0,故c4<0,故T3>T4,故不成立;综上所述,λ的值为2或3.2016年9月20日。
【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案)(K12教育文档)

【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案)(word版可编辑修改)的全部内容。
2016年普通高等学校招生全国统一考试理科数学注意事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2。
答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3。
全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S={}{}|(2)(3)0,|0S x x x T x x=--≥=>,则S T=( )(A) [2,3] (B)(—∞,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)(2)若12z i=+,则41izz=-( )(A)1 (B) —1 (C) i (D)-i(3)已知向量13(,)22BA= ,31(,),22BC=则∠ABC=( )(A)300 (B) 450(C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。
高考数学三模试卷 理(含解析)

2016年高考数学三模试卷(理科)一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.设P={x|2x<16},Q={x|x2<4},则()A.P⊆Q B.Q⊆P C.P⊆∁R Q D.Q⊆∁R P2.下列命题中,真命题的个数是()①经过直线外一点有且只有一条直线与已知直线平行②经过直线外一点有且只有一条直线与已知直线垂直③经过平面外一点有且只有一个平面与已知平面平行④经过平面外一点有且只有一个平面与已知平面垂直.A.1个B.2个C.3个D.4个3.执行如图所示的程序框图,若输入x=9,则输出的y的值为()A.﹣B.1 C.D.﹣4.已知f(x)=2sin(2x+),若将它的图象向右平移个单位,得到函数g(x)的图象,则函数g(x)的图象的一个对称中心为()A.(0,0)B.(,0)C.(,0)D.(,0)5.从5位男教师和3为女教师中选出3位教师,派往郊区3所学校支教,每校1人.要求这3位教师中男、女教师都要有,则不同的选派方案共有()A.250种B.450种C.270种D.540种6.已知直线x+y=a与圆O:x2+y2=8交于A,B两点,且•=0,则实数a的值为()A.2 B.2 C.2或﹣2D.4或﹣47.已知数列{a n}是公差为的等差数列,S n为{a n}的前n项和,若S8=4S4,则a8=()A.7 B.C.10 D.8.已知实数x,y满足,则的最大值为()A.B. C.D.9.(x+1)2(﹣1)5的展开式中常数项为()A.21 B.19 C.9 D.﹣110.已知抛物线y2=8x上的点P到双曲线y2﹣4x2=4b2的上焦点的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为()A.﹣=1 B.y2﹣=1 C.﹣x2=1 D.﹣=111.三棱锥S﹣ABC及其三视图的正视图和俯视图如图所示,则该三棱锥的外接球的表面积是()A.πB.πC.32π D.64π12.设函数f(x)=xlnx﹣(k﹣3)x+k﹣2,当x>1时,f(x)>0,则整数k的最大值是()A.3 B.4 C.5 D.6二、填空题:(本题共4小题,每题5分,共20分)13.复数等于.14.已知向量,,||=6,||=4,与的夹角为60°,则(+2)•(﹣3)= .15.已知函数f(x)=,若方程f(x)=kx+1有是三个不同的实数根,则实数k的取值范围是.16.定义在R上的函数f(x)满足:f(x+1)=+1,数列{a n}的前2015项和为﹣,a n=f2(n)﹣2f(n),n∈N*,则f17.在△ABC中,角A,B,C的对边分别为a,b,c,满足b2﹣(a﹣c)2=(2﹣)ac (Ⅰ)求角B的大小;(Ⅱ)若BC边上的中线AD的长为3,cos∠ADC=﹣,求a的值.18.某公司生产一种产品,有一项质量指标为“长度”(单位:cm),该质量指标服从正态分布N.该公司已生产10万件,为检验这批产品的质量,先从中随机抽取50件,测量发现全部介于157cm和187cm之间,得到如下频数分布表:分[157,162)[162,167)[172,177)[177,182)[182,182)[182,187)组频5 10 15 10 5 5数(Ⅰ)估计该公司已生产10万件中在[182,187]的件数;(Ⅱ)从检测的产品在[177,187]中任意取2件,这2件产品在所有已生产的10万件产品长度排列中(从长到短),排列在前130的件数记为X.求X的分布列和数学期望.参考数据:若X~N(μ,σ2),则P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<ξ≤μ+3σ)=0.9974.19.如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,△PAC是等边三角形,已知BC=2AC=4,AB=2.(Ⅰ)求证:平面PAC⊥平面CBP;(Ⅱ)求二面角A﹣PB﹣C的余弦值.20.已知椭圆C: +=1(a>b>0)的离心率为,且椭圆上的点到右焦点F的最大距离为3(Ⅰ)求椭圆C的方程;(Ⅱ)设过点F的直线l交椭圆C于A,B两点,定点G(4,0),求△ABG面积的最大值.21.函数f(x)=(x2﹣a)e1﹣x,a∈R(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)当f(x)有两个极值点x1,x2(x1<x2)时,总有x2f(x1)≤λ[f′(x1)﹣a(e+1)](其中f′(x)为f(x)的导函数),求实数λ的值.请考生在22、23、24三题中任选一题作答,多答、不答按本选考题的首题进行评分.[选修4-1:几何证明选讲]22.如图,已知圆O是△ABC的外接圆,AB=BC,过点C作圆O的切线交BA的延长线于点F(Ⅰ)求证:AF•AB=CF•AC;(Ⅱ)若AF=2,CF=2,求AC的长.[选修4-4:坐标系与参数方程选讲]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=,(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;(Ⅱ)设点M(0,2),曲线C1与曲线C2交于A,B两点,求|MA|•|MB|的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣3|+|x+4|(Ⅰ)求f(x)≥11的解集;(Ⅱ)设函数g(x)=k(x﹣3),若f(x)>g(x)对任意的x∈R都成立,求实数k的取值范围.2016年神州智达高考数学三模试卷(理科)参考答案与试题解析一、选择题:共12小题,每小题5分,共60分。
2019年上海市杨浦区高考三模(理科)数学试题(附带超详细答案解析)

【点睛】
本小题主要考查必要条件、充分条件与充要条件的判断、等比数列等基础知识,考查运算求解能力与转化思想.属于基础题.
2.D
【解析】
【分析】
对 ,取 ,即可判断出正误;对 ,由 ,则 , , ;对 ,取 , ,即可否定;对 ,设 , , , , , ,利用复数的运算法则即可判断出正误.
【详解】
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2.已知 、 均为复数,下列四个命题中,为真命题的是()
A.
B.若 ,则 的取值集合为 ( 是虚数单位)
C.若 ,则 或
D. 一定是实数
3.椭圆C: 的左右顶点分别为 ,点P在C上且直线 斜率的取值范围是 ,那么直线 斜率的取值范围是()
参考答案
1.C
【解析】
【分析】
由 可得: ,结合等比数列定义即可得到结果.
【详解】
解:∵ ,
当n≥2时,an=Sn﹣Sn﹣1=( )﹣( )= ,
∴
又 ,
∴当n≥2时,数列 为等比数列,
要使数列 为等比数列,则
即 ,∴ ;
反之 ,显然 ,又 ,
∴数列 为等比数列,
∴“ ”是“数列 为等比数列”的充要条件
于是 ,故 .
∵ ∴ .故选B.
【考点定位】直线与椭圆的位置关系
4.D
【解析】
【分析】
根据已知中函数的“曲径”的定义,逐一求出给定四个函数的曲径,比较后,可得答案.
【详解】
当y=f(x)=sin x时,端点A(1, ),B(2, ),直线AB的方程为y ,
故| |=sin x ,当x 时,| |的最大值为1 ,即该函数的“曲径”为1 ,
2016年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2016年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A:平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P:二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3,求出r,即可求出展开式中x3的系数.==25﹣【解答】解:(2x+)5的展开式中,通项公式为:T r+1r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【考点】87:等比数列的性质;8I:数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…a n,然后求解最值.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P (X≤n)≥0.5中n的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:X16171819202122P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
上海市杨浦区控江中学2016届高考数学模拟试卷(理科)(5月份) Word版含解析

2016年上海市杨浦区控江中学高考数学模拟试卷(理科)(5月份)一.填空题(每小题4分,共56分).1.集合A={x|x2﹣2x<0},B={x|x2<1},则A∪B等于.2.函数y=的定义域是.3.已知函数f(x)=,则f﹣1(1)=.4.若复数+b(b∈R)所对应的点在直线x+y=1上,则b的值为.5.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.6.已知平面上四点O、A、B、C,若=+,则=.7.若对任意正实数a,不等式x2≤1+a恒成立,则实数x的最小值为.8.对于抛物线C,设直线l过C的焦点F,且l与C的对称轴的夹角为.若l被C所截得的弦长为4,则抛物线C的焦点到顶点的距离为.9.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,PA⊥平面ABCD.若PA=a,则直线PB与平面PCD所成的角的大小为.10.在极坐标系中,曲线ρ=4cos(θ﹣)与直线ρcosθ=2的两个交点之间的距离为.11.某班级有4名学生被复旦大学自主招生录取后,大学提供了3个专业由这4名学生选择,每名学生只能选择一个专业,假设每名学生选择每个专业都是等可能的,则这3个专业都有学生选择的概率是.12.设F1、F2分别为双曲线的左、右焦点,若在双曲线右支上存在点P,满足PF2=F1F2,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为.13.函数f(x)=2x+sin2x﹣1图象的对称中心是.14.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是.二.选择题(每小题5分,共20分).15.下列函数中,与函数y=x3的值域相同的函数为()A.y=()x+1B.y=ln(x+1)C.y=D.y=x+16.一无穷等比数列{a n}各项的和为,第二项为,则该数列的公比为()A.B.C.D.或17.角α终边上有一点(﹣1,2),则下列各点中在角3α的终边上的点是()A.(﹣11,2)B.(﹣2,11)C.(11,﹣2)D.(2,﹣11)18.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中()A.存在某个位置,使得直线AB和直线CD垂直B.存在某个位置,使得直线AC和直线BD垂直C.存在某个位置,使得直线AD和直线BC垂直D.无论翻折到什么位置,以上三组直线均不垂直三.解答题(五题分别为12,14,14,16,18分,共74分).19.已知复数﹣1+3i、cosα+isinα(0<α<,i是虚数单位)在复平面上对应的点依次为A、B,点O是坐标原点.(1)若OA⊥OB,求tanα的值;(2)若B点的横坐标为,求S△AOB.20.某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,l=2r+1(l为圆柱的高,r为球的半径,l≥2).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为1千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)若预算为8万元,求所能建造的储油罐中r的最大值(精确到0.1),并求此时储油罐的体积V(单位:立方米,精确到0.1立方米).21.已知f (x )=x n +x n ﹣1+…+x ﹣1,x ∈(0,+∞).n 是不小于2的固定正整数.(1)当n=2时,若不等式f (x )≤kx 对一切x ∈(0,1]恒成立,求实数k 的取值范围;(2)试判断函数f (x )在(,1)内零点的个数,并说明理由.22.如图,在平面直角坐标系xOy 中,过y 轴正方向上一点C (0,c )任作一直线,与抛物线y=x 2相交于A ,B 两点,一条垂直于x 轴的直线分别与线段AB 和直线l :y=﹣c 交于点P ,Q .(1)若•=2,求c 的值;(2)若P 为线段AB 的中点,求证:直线QA 与该抛物线有且仅有一个公共点.(3)若直线QA 的斜率存在,且与该抛物线有且仅有一个公共点,试问P 是否一定为线段AB 的中点?说明理由.23.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n ﹣1﹣a n ﹣2|,n=3,4,5,…,则称{a n }为“D ﹣数列”.(1)举出一个前六项均不为零的“D ﹣数列”(只要求依次写出该数列的前六项);(2)若“D ﹣数列”{a n }中,a 2015=3,a 2016=0,数列{b n }满足b n =a n +a n+1+a n+2,n=1,2,3,…,分别判断当n →∞时,a n 与b n 的极限是否存在?如果存在,求出其极限值(若不存在不需要交代理由);(3)证明:任何“D ﹣数列”中总含有无穷多个为零的项.2016年上海市杨浦区控江中学高考数学模拟试卷(理科)(5月份)参考答案与试题解析一.填空题(每小题4分,共56分).1.集合A={x|x2﹣2x<0},B={x|x2<1},则A∪B等于(﹣1,2).【考点】并集及其运算.【分析】化简集合A、B,求出A∪B即可.【解答】解:集合A={x|x2﹣2x<0}={x|0<x<2}=(0,2);B={x|x2<1}={x|﹣1<x<1}=(﹣1,1);所以A∪B=(﹣1,2).故答案为:(﹣1,2).2.函数y=的定义域是(﹣∞,0].【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,求解指数不等式得答案.【解答】解:由,得,∴2x≤0,即x≤0.∴函数y=的定义域是:(﹣∞,0].故答案为:(﹣∞,0].3.已知函数f(x)=,则f﹣1(1)=1.【考点】反函数;二阶矩阵.【分析】本题由矩阵得到f(x)的表达式,再由反函数的知识算出.【解答】解:由f(x)==2x﹣1,由反函数的性质知2x﹣1=1,解得x=1所以f﹣1(1)=1.故答案为:1.4.若复数+b(b∈R)所对应的点在直线x+y=1上,则b的值为0.【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数+b=+b=+b=b+i所对应的点(b,1)在直线x+y=1上,∴b+1=1,解得b=0.故答案为:0.5.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为\frac{1}{3}.【考点】等比数列的性质.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为6.已知平面上四点O、A、B、C,若=+,则=\frac{2}{3}.【考点】向量的线性运算性质及几何意义.【分析】变形已知式子可得,即,问题得以解决.【解答】解:∵=+,∴,∴,∴∴=.故答案为:.7.若对任意正实数a,不等式x2≤1+a恒成立,则实数x的最小值为﹣1.【考点】二次函数的性质.【分析】由恒成立转化为最值问题,由此得到二次函数不等式,结合图象得到x的取值范围.【解答】解:∵对任意正实数a,不等式x2≤1+a恒成立,∴等价于a≥x2﹣1,∴a≥(x2﹣1)max0≥(x2﹣1)max﹣1≤x≤1∴实数x的最小值为﹣1.8.对于抛物线C,设直线l过C的焦点F,且l与C的对称轴的夹角为.若l被C所截得的弦长为4,则抛物线C的焦点到顶点的距离为\frac{1}{2}.【考点】抛物线的简单性质.【分析】设抛物线方程为y2=2px(p>0),得出直线l的方程,联立方程组得出根与系数的关系,利用弦长公式列方程解出p.则焦点到顶点的距离为.【解答】解:不妨设抛物线方程为y2=2px(p>0),则抛物线的焦点F(,0),则直线l的方程为y=x﹣.联立方程组,消元得y2﹣2py﹣p2=0.∴y1+y2=2p,y1y2=﹣p2.∴直线l被抛物线解得弦长为=4.∴=4,解得p=1.∴F(,0).即抛物线C的焦点到顶点的距离为.故答案为:.9.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,PA⊥平面ABCD.若PA=a,则直线PB与平面PCD所成的角的大小为\frac{π}{6}.【考点】直线与平面所成的角.【分析】求出B到平面PCD的距离,即可求出直线PB与平面PCD所成的角大小.【解答】解:设B到平面PCD的距离为h,直线PB与平面PCD所成的角为α,由等体积可得••a•a•h=••a•a•a,∴h=a,∵PB=a,∴sinα=,∴α=.故答案为:.10.在极坐标系中,曲线ρ=4cos(θ﹣)与直线ρcosθ=2的两个交点之间的距离为2\sqrt{3}.【考点】简单曲线的极坐标方程.【分析】把所给的直线和曲线的极坐标方程化为直角坐标方程,再把直线方程代入曲线方程,求得交点的坐标,可得弦长【解答】解:曲线ρ=4cos(θ﹣)即ρ2=2ρcosθ+2ρsinθ,化为直角坐标方程为(x﹣1)2+=4,表示以(1,)为圆心,半径等于2的圆.直线ρcosθ=2的直角坐标方程为x=2,把x=2代入圆的方程可得y=0,或y=2,故弦长为2,故答案为:.11.某班级有4名学生被复旦大学自主招生录取后,大学提供了3个专业由这4名学生选择,每名学生只能选择一个专业,假设每名学生选择每个专业都是等可能的,则这3个专业都有学生选择的概率是\frac{4}{9}.【考点】等可能事件的概率.【分析】设“这3个专业都有学生选择”为事件A,首先计算4名学生选择3个专业,可能出现的结果数目,注意是分步问题,再由排列、组合计算这3个专业都有学生选择的可能出现的结果数,结合等可能事件的概率公式,计算可得答案.【解答】解:设“这3个专业都有学生选择”为事件A,由题知,4名学生被复旦大学自主招生录取后,大学提供了3个专业由这4名学生选择,可能出现的结果共有34=81种结果,且这些结果出现的可能性相等,3个专业都有学生选择的可能出现的结果数为C42A33=36,则事件A的概率为,故答案为:.12.设F1、F2分别为双曲线的左、右焦点,若在双曲线右支上存在点P,满足PF2=F1F2,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为4x±3y=0.【考点】双曲线的简单性质.【分析】过F2点作F2Q⊥PF1于Q点,得△PF1F2中,PF2=F1F2=2c,高F2Q=2a,PQ=PF1=c+a,利用勾股定理列式,解之得a与c的比值,从而得到的值,得到该双曲线的渐近线方程.【解答】解:∵PF2=F1F2=2c,∴根据双曲线的定义,得PF1=PF2+2a=2c+2a过F2点作F2Q⊥PF1于Q点,则F2Q=2a,等腰△PF1F2中,PQ=PF1=c+a,∴=PQ2+,即(2c)2=(c+a)2+(2a)2,解之得a=c,可得b== c∴=,得该双曲线的渐近线方程为y=±x,即4x±3y=0故答案为:4x±3y=013.函数f(x)=2x+sin2x﹣1图象的对称中心是(0,﹣1).【考点】函数的图象.【分析】先研究函数g(x)=2x+sin2x的对称性,在研究函数f(x)与函数g(x)图象间的关系,最后由g(x)的对称中心推出f(x)的对称中心.【解答】解:设g(x)=2x+sin2x,则g(﹣x)=﹣2x+sin(﹣2x)=﹣2x﹣sin2x=﹣(2x+sin2x)=﹣g(x)∴g(x)为奇函数,其对称中心为(0,0)∵f(x)=g(x)﹣1∴函数f(x)的图象是由函数g(x)的图象再向下平移1个单位得到的,故f(x)的对称中心为(0,﹣1)故答案为:(0,﹣1).14.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是\frac{2\sqrt{21}}{3}.【考点】两点间的距离公式.【分析】过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G,由此可得结论.【解答】解:如图,过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G.由作图可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=在Rt△ABD中,AB==故答案为:二.选择题(每小题5分,共20分).15.下列函数中,与函数y=x3的值域相同的函数为()A.y=()x+1B.y=ln(x+1)C.y=D.y=x+【考点】函数的值域.【分析】知道已知函数的值域是R,再观察四个选项的y的取值情况,从而找出正确答案.【解答】解:∵函数y=x3的值域为实数集R,又选项A中y>0,选项B中y取全体实数,选项C中的y≠1,选项D中y≠0,故选B.16.一无穷等比数列{a n}各项的和为,第二项为,则该数列的公比为()A.B.C.D.或【考点】等比数列的性质.【分析】设无穷等比数列{a n}的公比为q,由题意可得,联立消去a1解方程可得.【解答】解:设无穷等比数列{a n}的公比为q,则,联立消去a1可得,整理可得9q2﹣9q+2=0,分解因式可得(3q﹣2)(3q﹣1)=0,解得q=或q=故选:D17.角α终边上有一点(﹣1,2),则下列各点中在角3α的终边上的点是()A.(﹣11,2)B.(﹣2,11)C.(11,﹣2)D.(2,﹣11)【考点】任意角的三角函数的定义.【分析】利用任意角的三角函数的定义求得sinα和cosα的值,再利用3倍角公式求得tan3α的值,从而得出结论.【解答】解:∵角α终边上有一点(﹣1,2),由三角函数的定义可知:sinα=,cosα=,∴sin3α=3sinα﹣4sin3α=,cos3α=4cos3α﹣3cosα=,∴tan3α==,故点(11,﹣2)在角3α的终边上,故选:C.18.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中()A.存在某个位置,使得直线AB和直线CD垂直B.存在某个位置,使得直线AC和直线BD垂直C.存在某个位置,使得直线AD和直线BC垂直D.无论翻折到什么位置,以上三组直线均不垂直【考点】空间中直线与直线之间的位置关系.【分析】假设各选项成立,根据线面位置关系推导结论,若得出矛盾式子,则假设错误,得出正确选项.【解答】解:对于A,若存在某个位置,使得直线AB与直线CD垂直,∵CD⊥BC,∴CD⊥平面ABC,∴平面ABC⊥平面BCD,过点A作平面BCD的垂线AE,则E在BC上,∴当A在平面BCD上的射影在BC上时,AB⊥CD.故A正确;对于B,若存在某个位置,使得直线AC与直线BD垂直,作AF⊥BD,则BD⊥平面AFC,∴BD⊥EC,显然这是不可能的,故B错误;对于C,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,BC⊥AC,∴AB>BC,即1>2,显然这是不可能的,故C错误.故选:A.三.解答题(五题分别为12,14,14,16,18分,共74分).19.已知复数﹣1+3i、cosα+isinα(0<α<,i是虚数单位)在复平面上对应的点依次为A、B,点O是坐标原点.(1)若OA⊥OB,求tanα的值;(2)若B点的横坐标为,求S△AOB.【考点】复数代数形式的混合运算;复数的代数表示法及其几何意义.【分析】(1)由已知得到A,B的坐标,进一步求得的坐标,由OA⊥OB得,代入坐标后整理可得tanα的值;(2)由已知求出|OA|,|OB|,由两角差的正弦求得sin∠AOB,代入三角形的面积公式得答案.【解答】解:(1)由题可知:A(﹣1,3),B(cosα,sinα),∴,由OA⊥OB,得,∴﹣cosα+3sinα=0,∴;(2)由(1),记∠AOx=β,,∴,,∵|OB|=1,,得,sin∠AOB=sin(β﹣α)=.∴S△AOB==.20.某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,l=2r+1(l为圆柱的高,r为球的半径,l≥2).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为1千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)若预算为8万元,求所能建造的储油罐中r的最大值(精确到0.1),并求此时储油罐的体积V(单位:立方米,精确到0.1立方米).【考点】组合几何体的面积、体积问题.【分析】(1)求出半球与圆柱的面积,得出y关于r的函数;(2)令y≤80,解出r的最大值,从而得出体积V的最大值.【解答】解:(1)半球的表面积,圆柱的表面积S2=2πr•l.于是.定义域为.(2)16πr2+2πr≤80,即,解得.,经计算得V≈22.7(立方米).故r的最大值为1.2(米),此时储油罐的体积约为22.7立方米.21.已知f(x)=x n+x n﹣1+…+x﹣1,x∈(0,+∞).n是不小于2的固定正整数.(1)当n=2时,若不等式f(x)≤kx对一切x∈(0,1]恒成立,求实数k的取值范围;(2)试判断函数f(x)在(,1)内零点的个数,并说明理由.【考点】函数恒成立问题.【分析】(1)代入得表达式.只需求出左式的最大值即可;(2)先求出端点值f()<0,f(1)>0,判断存在零点,根据函数在区间内递增,故仅有一个零点.【解答】解:(1)n=2时,f(x)=x2+x﹣1,﹣﹣f(x)≤kx即.﹣在(0,1]上递增,﹣﹣故即要求,即k≥1.﹣(2).﹣f(1)=n﹣1>0.﹣故f(x)在上有零点.﹣又f(x)在上增,故零点不会超过一个.﹣所以f(x)在上有且仅有一个零点.﹣(722.如图,在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x2相交于A,B两点,一条垂直于x轴的直线分别与线段AB和直线l:y=﹣c交于点P,Q.(1)若•=2,求c的值;(2)若P为线段AB的中点,求证:直线QA与该抛物线有且仅有一个公共点.(3)若直线QA的斜率存在,且与该抛物线有且仅有一个公共点,试问P是否一定为线段AB 的中点?说明理由.【考点】抛物线的简单性质.【分析】(1)设出直线AB:y=kx+c,代入抛物线的方程,运用韦达定理和向量的数量积的坐标表示,解方程可得c的值;(2)运用中点坐标公式可得Q的坐标,运用两点的斜率公式,可得QA的斜率,求得抛物线对应函数的导数,可得切线的斜率,即可得证;(3)设A(t,t2),这里x A=t≠0,由(2)知过A的与y=x2有且仅有一个公共点的斜率存在的直线必为y=2tx﹣t2.求得Q的横坐标,P的横坐标,求得AC的方程,联立抛物线的方程,求得B的横坐标,运用中点坐标公式,即可判断P为线段AB的中点.【解答】解:(1)设直线AB:y=kx+c,与y=x2联立,得x2﹣kx﹣c=0,设A(x1,y1),B(x2,y2),则x1x2=﹣c,从而y1y2=x12x22=c2,由•=2,可得c 2﹣c=2得c=2或﹣1(舍去),得c=2;(2)证明:由(1)可得,故直线PQ :x=,可得.设,k QA ==,由(1)可得x 1x 2=﹣c ,即有x 2=﹣,可得k QA ==2x 1,由y=x 2的导数为y ′=2x ,可得过A 的切线的斜率为2x 1,故直线QA 与该抛物线有且仅有一个公共点;(3)设A (t ,t 2),这里x A =t ≠0,由(2)知过A 的与y=x 2有且仅有一个公共点的斜率存在的直线必为y=2tx ﹣t 2.与y=﹣c 相交,得.故,,所以.与y=x 2联立,得x 2﹣(t ﹣)x ﹣c=0,即,故.这样,即P 是AB 的中点.23.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n ﹣1﹣a n ﹣2|,n=3,4,5,…,则称{a n }为“D ﹣数列”.(1)举出一个前六项均不为零的“D ﹣数列”(只要求依次写出该数列的前六项); (2)若“D ﹣数列”{a n }中,a 2015=3,a 2016=0,数列{b n }满足b n =a n +a n+1+a n+2,n=1,2,3,…,分别判断当n →∞时,a n 与b n 的极限是否存在?如果存在,求出其极限值(若不存在不需要交代理由);(3)证明:任何“D ﹣数列”中总含有无穷多个为零的项.【考点】数列的极限.【分析】(1)由新定义,比如如10,9,1,8,7,1;(2){a n}的极限不存在,{b n}的极限存在.运用分段形式写出a n与b n的通项公式,即可得到结论;(3)运用反证法证明.假设{a n}中只有有限个零,则存在K,使得当n≥K时,a n>0.运用推理论证得到{b n}单调,即可证明.【解答】解:(1)如10,9,1,8,7,1等等.(2){a n}的极限不存在,{b n}的极限存在.事实上,因为|3﹣0|=3,|0﹣3|=3,|3﹣3|=0,当n≥2015时,a n=,k∈Z,因此当n≥2015时,b n=6.所以b n=6.(3)证明:假设{a n}中只有有限个零,则存在K,使得当n≥K时,a n>0.当n≥K时,记b n=max{a n,a n+1}.于是a n+1≤b n,a n+2=|a n﹣a n+1|<max{a n,a n+1}<b n,故b n+1≤b n,而a n+3=|a n+2﹣a n+1|<max{a n+2,a n+1}≤b n+1≤b n,从而b n+2<b n.这样b K>b K+2>b K+4>…形成了一列严格递减的无穷正整数数列,这不可能,故假设不成立,{a n}中必有无限个0.2016年7月14日。
2016年上海市杨浦区高考数学二模试卷(理科)含详解

2016年上海市杨浦区高考数学二模试卷(理科)一、填空题1.(5分)函数f(x)=的定义域是.2.(5分)已知线性方程组的增广矩阵为,若该线性方程组的解为,则实数a=.3.(5分)计算=.4.(5分)若向量,满足且与的夹角为,则=.5.(5分)若复数z1=3+4i,z2=1﹣2i,其中i是虚数单位,则复数的虚部为.6.(5分)在的展开式中,常数项是.(用数字作答)7.(5分)已知△ABC的内角A、B、C所对应边的长度分别为a、b、c,若,则角C的大小是.8.(5分)已知等比数列{a n}的各项均为正数,且满足:a1a7=4,则数列{log2a n}的前7项之和为.9.(5分)在极坐标系中曲线C:ρ=2cosθ上的点到(1,π)距离的最大值为.10.(5分)袋中有5只大小相同的乒乓球,编号为1至5,从袋中随机抽取3只,若以ξ表示取到球中的最大号码,则ξ的数学期望是.11.(5分)已知双曲线的右焦点为F,过点F且平行于双曲线的一条渐近线的直线与双曲线交于点P,M在直线PF上,且满足,则=.12.(5分)现有5位教师要带三个班级外出参加志愿者服务,要求每个班级至多两位老师带队,且教师甲、乙不能单独带队,则不同的带队方案有.(用数字作答)13.(5分)若关于x的方程(4x+)﹣|5x﹣|=m在(0,+∞)内恰有三个相异实根,则实数m的取值范围为.14.(5分)课本中介绍了应用祖暅原理推导棱锥体积公式的做法.祖暅原理也可用来求旋转体的体积.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于.二、选择题15.(5分)下列函数中,既是奇函数,又在区间(0,+∞)上递增的是()A.y=2|x|B.y=lnx C.D.16.(5分)已知直线l的倾斜角为α,斜率为k,则“”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件17.(5分)设x,y,z是互不相等的正数,则下列等式中不恒成立的是()A.B.C.D.|x﹣y|≤|x﹣z|+|y﹣z|18.(5分)已知命题:“若a,b为异面直线,平面α过直线a且与直线b平行,则直线b与平面α的距离等于异面直线a,b之间的距离”为真命题.根据上述命题,若a,b为异面直线,且它们之间的距离为d,则空间中与a,b均异面且距离也均为d的直线c的条数为()A.0条B.1条C.多于1条,但为有限条D.无数多条三、解答题19.(12分)如图,底面是直角三角形的直三棱柱ABC﹣A1B1C1中,,D是棱AA1上的动点.(1)证明:DC1⊥BC;(2)求三棱锥C﹣BDC1的体积.20.(12分)某菜农有两段总长度为20米的篱笆PA及PB,现打算用它们和两面成直角的墙OM、ON围成一个如图所示的四边形菜园OAPB(假设OM、ON 这两面墙都足够长).已知|PA|=|PB|=10(米),∠AOP=∠BOP=,∠OAP=∠OBP.设∠OAP=θ,四边形OAPB的面积为S.(1)将S表示为θ的函数,并写出自变量θ的取值范围;(2)求出S的最大值,并指出此时所对应θ的值.21.(12分)已知函数,其中a∈R.(1)根据a的不同取值,讨论f(x)的奇偶性,并说明理由;(2)已知a>0,函数f(x)的反函数为f﹣1(x),若函数y=f(x)+f﹣1(x)在区间[1,2]上的最小值为1+log23,求函数f(x)在区间[1,2]上的最大值.22.(12分)已知椭圆C:的焦距为,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于A(x1,y1)、B(x2,y2),且在椭圆C上存在点M,使得:(其中O为坐标原点),则称直线l具有性质H.(1)求椭圆C的方程;(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线PQ、QR、RP 都具有性质H.23.(12分)已知数列{a n}和{b n}满足:,且对一切n∈N*,均有.(1)求证:数列为等差数列,并求数列{a n}的通项公式;(2)若λ=2,求数列{b n}的前n项和S n;(3)设,记数列{c n}的前n项和为T n,问:是否存在正整数λ,对一切n∈N*,均有T4≥T n恒成立.若存在,求出所有正整数λ的值;若不存在,请说明理由.2016年上海市杨浦区高考数学二模试卷(理科)参考答案与试题解析一、填空题1.(5分)函数f(x)=的定义域是{x|x≥﹣2且x≠1} .【考点】33:函数的定义域及其求法.【专题】11:计算题.【分析】由题意即分母不为零、偶次根号下大于等于零,列出不等式组求解,最后要用集合或区间的形式表示.【解答】解:由题意,要使函数有意义,则,解得,x≠1且x≥﹣2;故函数的定义域为:{x|x≥﹣2且x≠1},故答案为:{x|x≥﹣2且x≠1}.【点评】本题考查了求函数的定义域,最后要用集合或区间的形式表示,这是容易出错的地方.2.(5分)已知线性方程组的增广矩阵为,若该线性方程组的解为,则实数a=2.【考点】OR:线性方程组解的存在性,唯一性.【专题】11:计算题;35:转化思想;49:综合法;5R:矩阵和变换.【分析】由已知得,把x=﹣1,y=2,能求出a的值.【解答】解:∵线性方程组的增广矩阵为,该线性方程组的解为,∴,把x=﹣1,y=2,代入得﹣a+6=4,解得a=2.故答案为:2.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意线性方程组的性质的合理运用.3.(5分)计算=.【考点】8J:数列的极限.【专题】35:转化思想;49:综合法;54:等差数列与等比数列.【分析】将1+2+3+…+n=的形式,在利用洛必达法则,求极限值.【解答】解:原式====故答案为:【点评】本题考查等差数列求前n项和的公式,再求数列极限,属于基础题.4.(5分)若向量,满足且与的夹角为,则=.【考点】9O:平面向量数量积的性质及其运算.【分析】根据可得答案.【解答】解:∵且与的夹角为∴=7∴则=故答案为:【点评】本题主要考查向量的数量积运算,属基础题.5.(5分)若复数z1=3+4i,z2=1﹣2i,其中i是虚数单位,则复数的虚部为﹣3.【考点】A5:复数的运算.【专题】11:计算题;34:方程思想;4A:数学模型法;5N:数系的扩充和复数.【分析】由已知利用复数代数形式的乘除运算化简得答案.【解答】解:∵z1=3+4i,z2=1﹣2i,∴,,∴==,∴复数的虚部为﹣3.故答案为:﹣3.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.6.(5分)在的展开式中,常数项是15.(用数字作答)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.【解答】解:∵在的展开式的通项公式为T r=•(﹣1)r•,+1令r﹣6=0,求得r=4,故的展开式中的常数项是5.故答案为:15.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.7.(5分)已知△ABC的内角A、B、C所对应边的长度分别为a、b、c,若,则角C的大小是.【考点】OM:二阶行列式的定义.【专题】11:计算题;35:转化思想;49:综合法;5R:矩阵和变换.【分析】由二阶行列式性质得a2+b2﹣c2=ab,由此利用余弦定理求出cosC=,从而能求出角C的大小.【解答】解:∵△ABC的内角A、B、C所对应边的长度分别为a、b、c,,∴a2﹣c2=﹣b2+ab,即a2+b2﹣c2=ab,∴cosC===,∵C是△ABC的内角,∴C=.故答案为:.【点评】本题考查角的大小的求法,是基础题,解题时要认真审题,注意行列式性质及余弦定理的合理运用.8.(5分)已知等比数列{a n}的各项均为正数,且满足:a1a7=4,则数列{log2a n}的前7项之和为7.【考点】87:等比数列的性质.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列.【分析】由等比数列的性质可得:a1a7=a2a6=a3a5=4,再利用指数与对数的运算性质即可得出.【解答】解:由等比数列的性质可得:a1a7=a2a6=a3a5=4=4,∴数列{log2a n}的前7项和=log2a1+log2a2+…+log2a7=log2(a1a2…a7)=log227=7,故答案为:7.【点评】本题考查了指数与对数的运算性质、等比数列的性质,考查了推理能力与计算能力,属于中档题.9.(5分)在极坐标系中曲线C:ρ=2cosθ上的点到(1,π)距离的最大值为3.【考点】QH:参数方程化成普通方程.【专题】34:方程思想;35:转化思想;5S:坐标系和参数方程.【分析】把极坐标方程化为直角坐标方程,求出圆心到点(1,π)的距离,进而得出最大值.【解答】解:曲线C:ρ=2cosθ即ρ2=2ρcosθ,化为直角坐标方程:x2+y2=2x,配方为:(x﹣1)2+y2=1,可得圆心C(1,0),半径r=1.点P(1,π)化为直角坐标P(﹣1,0).∴|CP|=2,∴曲线C:ρ=2cosθ上的点到(1,π)距离的最大值=2+1=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标,考查了推理能力与计算能力,属于基础题.10.(5分)袋中有5只大小相同的乒乓球,编号为1至5,从袋中随机抽取3只,若以ξ表示取到球中的最大号码,则ξ的数学期望是.【考点】CH:离散型随机变量的期望与方差.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】由已知得ξ的可能取值为3,4,5,分别求出相应的概率,由此能求出E(ξ).【解答】解:由已知得ξ的可能取值为3,4,5,P(ξ=3)==,P(ξ=4)==,P(ξ=5)==,∴E(ξ)==.故答案为:.【点评】本题考查离散型随机变量的数学期望的求法,是基础题,解题时要认真审题,注意排列组合知识的合理运用.11.(5分)已知双曲线的右焦点为F,过点F且平行于双曲线的一条渐近线的直线与双曲线交于点P,M在直线PF上,且满足,则=.【考点】KC:双曲线的性质.【专题】34:方程思想;48:分析法;5A:平面向量及应用;5D:圆锥曲线的定义、性质与方程.【分析】求得双曲线的a,b,c,可得F(,0),渐近线方程为y=±2x,设过点F且平行于双曲线的一条渐近线为y=2(x﹣),代入双曲线的方程可得P的坐标,由两直线垂直的条件可得直线OM的方程,联立直线y=2(x﹣),求得M的坐标,由向量共线的坐标表示,计算即可得到所求值.【解答】解:双曲线的a=1,b=2,c==,可得F(,0),渐近线方程为y=±2x,设过点F且平行于双曲线的一条渐近线为y=2(x﹣),代入双曲线的方程,可得x=,可得P(,﹣),由直线OM:y=﹣x和直线y=2(x﹣),可得M(,﹣),即有==.故答案为:.【点评】本题考查双曲线的方程和性质,主要是渐近线方程和双曲线的方程的运用,考查向量的共线的坐标表示,考查运算能力,属于中档题.12.(5分)现有5位教师要带三个班级外出参加志愿者服务,要求每个班级至多两位老师带队,且教师甲、乙不能单独带队,则不同的带队方案有54.(用数字作答)【考点】D9:排列、组合及简单计数问题.【专题】38:对应思想;4C:分类法;5O:排列组合.【分析】根据题意,采用分类原理,对甲,乙老师分当甲,乙带不同班和当甲,乙带相同班时分别求解,最后求和即可.【解答】解:当甲,乙带不同班时:×=36种;当甲,乙带相同班时,=18种;故共有54中,故答案为:54.【点评】考查了分类原理和排列组合的计算,属于基础题型,应熟练掌握.13.(5分)若关于x的方程(4x+)﹣|5x﹣|=m在(0,+∞)内恰有三个相异实根,则实数m的取值范围为(6,).【考点】53:函数的零点与方程根的关系.【专题】15:综合题;35:转化思想;49:综合法;51:函数的性质及应用.【分析】分类讨论以去掉绝对值号,从而利用基本不等式确定各自方程的根的个数,从而解得.【解答】解:当x≥时,5x﹣≥0,∵方程(4x+)﹣|5x﹣|=m,∴(4x+)﹣(5x﹣)=m,即﹣x+=m;∴m≤.当0<x<时,5x﹣<0,∵方程(4x+)﹣|5x﹣|=m,∴(4x+)+(5x﹣)=m,即9x+=m;∵9x+≥6;∴当m<6时,方程9x+=m无解;当m=6时,方程9x+=m有且只有一个解;当6<m<10时,方程9x+=m在(0,1)上有两个解;当m=10时,方程9x+=m的解为1,;综上所述,实数m的取值范围为(6,).故答案为:(6,).【点评】本题考查了绝对值方程的解法与应用,同时考查了基本不等式的应用及转化思想的应用.14.(5分)课本中介绍了应用祖暅原理推导棱锥体积公式的做法.祖暅原理也可用来求旋转体的体积.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于.【考点】L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】31:数形结合;49:综合法;5F:空间位置关系与距离.【分析】构造一个底面半径为2,高为5的圆柱,从中挖去一个圆锥,则由祖暅原理可得:椭球的体积为几何体体积的2倍.【解答】解:椭圆的长半轴为5,短半轴为2,现构造一个底面半径为2,高为5的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积V=2(V圆柱﹣V圆锥)=2(π×22×5﹣)=.故答案为:.【点评】本题考查了对祖暅原理的理解,属于中档题.二、选择题15.(5分)下列函数中,既是奇函数,又在区间(0,+∞)上递增的是()A.y=2|x|B.y=lnx C.D.【考点】3N:奇偶性与单调性的综合.【专题】36:整体思想;4R:转化法;51:函数的性质及应用.【分析】根据函数奇偶性和单调性的定义和性质进行判断即可.【解答】解:A.函数y=2|x|为偶函数,不满足条件.B.函数的定义域为(0,+∞),函数为非奇非偶函数,不满足条件.C.是奇函数,在(0,+∞)上递增,满足条件.D.是奇函数,当0<x<1时函数为减函数,当x>1时函数为增函数,不满足条件.故选:C.【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.16.(5分)已知直线l的倾斜角为α,斜率为k,则“”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】35:转化思想;56:三角函数的求值;5B:直线与圆;5L:简易逻辑.【分析】“”,可得0≤tanα<,“”;反之不成立,α可能为钝角.【解答】解:“”⇒0≤tanα<⇒“”;反之不成立,α可能为钝角.∴“”是“”的充分不必要条件.故选:A.【点评】本题考查了倾斜角与斜率的关系,考查了推理能力与计算能力,属于中档题.17.(5分)设x,y,z是互不相等的正数,则下列等式中不恒成立的是()A.B.C.D.|x﹣y|≤|x﹣z|+|y﹣z|【考点】7F:基本不等式及其应用.【专题】35:转化思想;49:综合法;5T:不等式.【分析】A.x,y,是互不相等的正数,令t=x+≥2,可得:﹣=t2﹣t﹣2=(t﹣2)(t+1)≥0,即可判断出真假;B.﹣=﹣,即可判断出真假.C.取x=1,y=2,即可判断出真假;D.|x﹣y|=|(x﹣z)+(z﹣y)|≤|x﹣z|+|y﹣z|,即可判断出真假.【解答】解:A.∵x,y,是互不相等的正数,令t=x+≥2,∴﹣=t2﹣t﹣2=(t﹣2)(t+1)≥0,正确;B.∵﹣>,∴﹣=﹣≤0,∴≤,正确.C.取x=1,y=2,则|x﹣y|+=1﹣1=0<2,因此不正确;D.|x﹣y|=|(x﹣z)+(z﹣y)|≤|x﹣z|+|y﹣z|,正确.故选:C.【点评】本题考查了基本不等式的性质、分母有理化,考查了推理能力与计算能力,属于中档题.18.(5分)已知命题:“若a,b为异面直线,平面α过直线a且与直线b平行,则直线b与平面α的距离等于异面直线a,b之间的距离”为真命题.根据上述命题,若a,b为异面直线,且它们之间的距离为d,则空间中与a,b均异面且距离也均为d的直线c的条数为()A.0条B.1条C.多于1条,但为有限条D.无数多条【考点】MK:点、线、面间的距离计算.【专题】31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】如图所示,给出一个平行六面体ABCD﹣A1B1C1D1.取AD=a,A1B1=b,假设平行平面ABCD与A1B1C1D1之间的距离为d.若平面BCC1B1∥a,平面CDD1C1∥b,且满足它们之间的距离等于d,其交线CC1满足条件.把满足平面BCC1B1∥a,平面CDD1C1∥b,且它们之间的距离等于d的两个平面旋转,则所有的交线CC1都满足条件,即可判断出结论.【解答】解:如图所示,给出一个平行六面体ABCD﹣A1B1C1D1.取AD=a,A1B1=b,假设平行平面ABCD与A1B1C1D1之间的距离为d.平面BCC1B1∥a,平面CDD1C1∥b,且满足它们之间的距离等于d,其交线CC1满足与a,b均异面且距离也均为d的直线c.把满足平面BCC1B1∥a,平面CDD1C1∥b,且它们之间的距离等于d的两个平面旋转,则所有的交线CC1都满足与a,b均异面且距离也均为d的直线c.因此满足条件的直线有无数条.故选:D.【点评】本题考查了空间位置关系、线线线面平行的判定与性质定理、旋转法,考查了推理能力与计算能力,属于中档题.三、解答题19.(12分)如图,底面是直角三角形的直三棱柱ABC﹣A1B1C1中,,D是棱AA1上的动点.(1)证明:DC1⊥BC;(2)求三棱锥C﹣BDC1的体积.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直.【专题】15:综合题;35:转化思想;45:等体积法;5F:空间位置关系与距离.【分析】(1)由棱锥是直棱锥可得侧面与底面垂直,由面面垂直的性质可得BC ⊥平面ACC1A1,进一步得到BC⊥DC1;(2)利用等积法,把三棱锥C﹣BDC1的体积转化为三棱锥B﹣CDC1的体积求解.【解答】(1)证明:如图,∵直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,∴CC1⊥底面ABC,又CC1⊂面ACC1A1,∴面ACC1A1⊥底面ABC,而面ACC1A1∩底面ABC=AC,由△ABC为Rt△,且AC=BC,得BC⊥AC,∴BC⊥平面ACC1A1,∴BC⊥DC1;(2)解:由(1)知,BC⊥平面ACC1A1,∵,∴AA1=2,则∴=.【点评】本题考查面面垂直与线面垂直的性质,考查了棱锥体积的求法,训练了等积法,是中档题.20.(12分)某菜农有两段总长度为20米的篱笆PA及PB,现打算用它们和两面成直角的墙OM、ON围成一个如图所示的四边形菜园OAPB(假设OM、ON 这两面墙都足够长).已知|PA|=|PB|=10(米),∠AOP=∠BOP=,∠OAP=∠OBP.设∠OAP=θ,四边形OAPB的面积为S.(1)将S表示为θ的函数,并写出自变量θ的取值范围;(2)求出S的最大值,并指出此时所对应θ的值.【考点】HP:正弦定理;HR:余弦定理.【专题】31:数形结合;56:三角函数的求值;58:解三角形.【分析】(1)在三角POB中,由正弦定理,得:,得OB=10(cosθ+sinθ).再利用三角形面积计算公式即可得出.(2)由(1)利用倍角公式与和差公式、三角函数的单调性最值即可得出.【解答】解:(1)在三角POB中,由正弦定理,得:,得OB=10(cosθ+sinθ).所以,S==100(sinθcosθ+sin2θ),θ∈∪.(2)S=100(sinθcosθ+sin2θ)=50(2sinθcosθ+2sin2θ)=50(sin2θ﹣cos2θ+1)=,所以S的最大值为:50+50,θ=.【点评】本题考查了正弦定理、和差公式、倍角公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.21.(12分)已知函数,其中a∈R.(1)根据a的不同取值,讨论f(x)的奇偶性,并说明理由;(2)已知a>0,函数f(x)的反函数为f﹣1(x),若函数y=f(x)+f﹣1(x)在区间[1,2]上的最小值为1+log23,求函数f(x)在区间[1,2]上的最大值.【考点】3H:函数的最值及其几何意义;4R:反函数.【专题】11:计算题;34:方程思想;49:综合法;51:函数的性质及应用.【分析】(1)由得f(﹣x)=﹣ax+log2(2x+1)﹣x,从而可得当a=时函数为偶函数;(2)可判断与f﹣1(x)都是增函数,从而可得f(1)+f﹣1(1)=1+log23,从而解出a.【解答】解:(1)∵,∴f(﹣x)=﹣ax+log2(2﹣x+1)=﹣ax+log2(2x+1)﹣log22x=﹣ax+log2(2x+1)﹣x,∴f(﹣x)=f(x),即﹣ax﹣x=ax,故a=;此时函数为偶函数,若a≠﹣,函数为非奇非偶函数;(2)∵a>0,∴单调递增,又∵函数f(x)的反函数为f﹣1(x),∴f﹣1(x)单调递增;∴f(1)+f﹣1(1)=1+log23,即a+log23+f﹣1(1)=1+log23,故f﹣1(1)=1﹣a,即a(1﹣a)+log2(2a﹣1+1)=1,解得,a=1;故f(2)=2+log25.【点评】本题考查了函数与反函数,同时考查了函数的性质的判断与化简运算能力.22.(12分)已知椭圆C:的焦距为,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于A(x1,y1)、B(x2,y2),且在椭圆C上存在点M,使得:(其中O为坐标原点),则称直线l具有性质H.(1)求椭圆C的方程;(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线PQ、QR、RP 都具有性质H.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】14:证明题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由椭圆的焦距为,右焦点F与短轴的两个端点组成一个正三角形,求出a,b,由此能求出椭圆C的方程.(2)设直线l:x=t,(﹣2<t<2),则A(t,y1),B(t,y2),设M(x m,y m),求出,=﹣,由点M在椭圆C上,能求出直线l的方程.(3)假设在椭圆C上存在三个不同的点P(x1,y1),Q(x2,y2),R(x3,y3),使得直线PQ、QR、RP都具有性质H,利用反证法推导出相互矛盾结论,从而能证明在椭圆C上不存在三个不同的点P、Q、R,使得直线PQ、QR、RP 都具有性质H.【解答】解:(1)∵椭圆C:的焦距为,∴c=,∵右焦点F与短轴的两个端点组成一个正三角形,∴c=,解得b=1,∴a2=b2+c2=4,∴椭圆C的方程为.(2)设直线l:x=t,(﹣2<t<2),则A(t,y1),B(t,y2),其中y1,y2满足:,y1+y2=0,设M(x m,y m),∵(其中O为坐标原点),∴,=﹣,∵点M在椭圆C上,∴,∴49t2+4﹣t2=100,∴t=,∴直线l的方程为x=或x=﹣.证明:(3)假设在椭圆C上存在三个不同的点P(x1,y1),Q(x2,y2),R(x3,y3),使得直线PQ、QR、RP都具有性质H,∵直线PQ具有性质H,∴在椭圆C上存在点M,使得:,设M(x m,y m),则,y m=,∵点M在椭圆上,∴+()2=1,又∵,,∴=0,①同理:=0,②,,③1)若x1,x2,x3中至少一个为0,不妨设x1=0,则y1≠0,由①③得y2=y3=0,即Q,R为长轴的两个端点,则②不成立,矛盾.2)若x1,x2,x3均不为0,则由①②③得=﹣>0,矛盾.∵在椭圆C上不存在三个不同的点P、Q、R,使得直线PQ、QR、RP都具有性质H.【点评】本题考查椭圆方程的求法,考查直线方程的求法,考查在椭圆C上不存在三个不同的点P、Q、R,使得直线PQ、QR、RP都具有性质H的证明,是中档题,解题时要认真审题,注意椭圆性质和反证法的合理运用.23.(12分)已知数列{a n}和{b n}满足:,且对一切n∈N*,均有.(1)求证:数列为等差数列,并求数列{a n}的通项公式;(2)若λ=2,求数列{b n}的前n项和S n;(3)设,记数列{c n}的前n项和为T n,问:是否存在正整数λ,对一切n∈N*,均有T4≥T n恒成立.若存在,求出所有正整数λ的值;若不存在,请说明理由.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;14:证明题;32:分类讨论;33:函数思想;34:方程思想;4C:分类法;4M:构造法;53:导数的综合应用;54:等差数列与等比数列.【分析】(1)化简可得,从而写出,即;(2)当λ=2时,a n=n2+n,从而求得b n=2n,从而求等比数列前n项和.(3)仿照(2)可得,b n=2n+r﹣2,从而化简c n=2﹣r﹣2n﹣(),从而分类讨论以确定λ的值.【解答】解:(1)证明:∵,两边除以n(n+1)得,,即,故数列为等差数列,故,故;(2)当λ=2时,a n=n2+n,∵,∴b1==2,b n+1===2n+1,综上所述,b n=2n,S n==2n+1﹣2;(3)仿照(2)可得,,b n=2n+r﹣2,c n==﹣=2﹣r﹣2n﹣(),∵对一切n∈N*,均有T4≥T n恒成立,∴当n>4时,c n≤0;若λ=1,则c n=1﹣2n﹣,c5=﹣>0,故T5>T4,故不成立;若λ=2,则c n=﹣2n﹣,故c1=﹣=0,c2=﹣,c3=﹣>0,c4=﹣>0,c5=﹣<0,且当n≥5时,2n>n2+n,故成立;若λ=3,则c n=﹣,故c1=﹣>0,c2=﹣>0,c3=﹣>0,c4=﹣>0,故且当n≥5时,•2n>n2+2n,故成立;若λ≥4,则c n=﹣,c4=﹣,令f(r)=16﹣16﹣4(r﹣1),则f′(r)=16•ln•﹣4=4(ln4•﹣1)>0,故f(r)在[4,+∞)上是增函数,故f(4)=16×2﹣16﹣4×3>0,故c4<0,故T3>T4,故不成立;综上所述,λ的值为2或3.【点评】本题考查了等比经数列与等差数列的性质的判断与应用,同时考查了导数的综合应用及分类讨论的思想与方程思想,函数思想的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年上海市杨浦区高考数学三模试卷(理科)一.填空题1.函数y=log2(x+1)的反函数为.2.若直线l1:2x+my+1=0与l2:y=3x﹣1垂直,则实数m=.3.若2+i(i虚数单位)是实系数一元二次方程x2+px+q=0的根,则p+q=.4.已知sinx=,x∈(,π),则行列式的值等于.5.已知A={x|>1},B={x|log2(x﹣1)<1},则A∩B=.6.已知A地位于东经30°、北纬45°,B地位于西经60°、北纬45°,则A、B两地的球面距离与地球半径的比值为.7.在某次数学测验中,5位学生的成绩如下:78、85、a、82、69,他们的平均成绩为80,则他们成绩的方差等于.8.在极坐标系下,点(2,)到直线ρcos(θ﹣)=1的距离为.9.若(x+)n(n∈N*)展开式中各项系数的和等于64,则展开式中x3的系数是.10.三阶矩阵中有9个不同的数a ij(i=1,2,3;j=1,2,3),从中任取三个,则至少有两个数位于同行或同列的概率是(结果用分数表示)11.若函数y=cos(x+)的图象向右平移φ个单位(φ>0),所得到的图象关于y轴对称,则φ的最小值为.12.若两整数a、b除以同一个整数m,所得余数相同,即=k(k∈Z),则称a、b对模m同余,用符号a≡b(mod m)表示,若a≡10(mod 6)(a>10),满足条件的a由小到大依次记为a1,a2…a n,…,则数列{a n}的前16项和为.13.已知双曲线﹣=1(a∈N*)的两个焦点为F1,F2,P为该双曲线上一点,满足|F1F2|2=|PF1|•|PF2|,P到坐标原点O的距离为d,且5<d<9,则a2=.14.如图,已知AB⊥AC,AB=3,AC=,圆A是以A为圆心半径为1的圆,圆B是以B为圆心的圆.设点P,Q分别为圆A,圆B上的动点,且=,则•的取值范围是.二.选择题15.已知数列{a n}的前n项和S n=p n+q(p≠0,q≠1),则“q=﹣1”是“数列{a n}是等比数列”的()A.充要条件 B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件16.已知z1、z2均为复数,下列四个命题中,为真命题的是()A.|z1|=||=B.若|z2|=2,则z2的取值集合为{﹣2,2,﹣2i,2i}(i是虚数单位)C.若z12+z22=0,则z1=0或z2=0D.z1+z2一定是实数17.椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C. D.18.定义域为[a,b]的函数y=f(x)图象的两个端点为A(a,f(a)),B(b,f(b)),M (x,y)是y=f(x)图象上任意一点,过点M作垂直于x轴的直线l交线段AB于点N(点M与点N可以重合),我们称||的最大值为该函数的“曲径”,下列定义域为[1,2]上的函数中,曲径最小的是()A.y=x2 B.y= C.y=x﹣D.y=sin x三.解答题19.如图,圆锥的顶点为P,底面圆心为O,线段AB和线段CD都是底面圆的直径,且直线AB与直线CD的夹角为,已知|OA|=1,|PA|=2.(1)求该圆锥的体积;(2)求证:直线AC平行于平面PBD,并求直线AC到平面PBD的距离.20.已知数列{a n}中,a n+1=+(n∈N*),a1=1;(1)设b n=3n a n(n∈N*),求证:{b n}是等差数列;(2)设数列{a n}的前n项和为S n,求的值.21.图为一块平行四边形园地ABCD,经测量,AB=20米,BC=10米,∠ABC=120°,拟过线段AB上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将该园地分为面积之比为3:1的左、右两部分分别种植不同的花卉,设EB=x,EF=y(单位:米)(1)当点F与点C重合时,试确定点E的位置;(2)求y关于x的函数关系式,并确定点E、F的位置,使直路EF长度最短.22.已知圆E:(x﹣1)2+y2=4,线段AB、CD都是圆E的弦,且AB与CD垂直且相交于坐标原点O,如图所示,设△AOC的面积为S1,设△BOD的面积为S2;(1)设点A的横坐标为x1,用x1表示|OA|;(2)求证:|OA|•|OB|为定值;(3)用|OA|、|OB|、|OC|、|OD|表示出S1+S2,试研究S1+S2是否有最小值,如果有,求出最小值,并写出此时直线AB的方程;若没有最小值,请说明理由.23.已知非空集合A是由一些函数组成,满足如下性质:①对任意f(x)∈A,f(x)均存在反函数f﹣1(x),且f﹣1(x)∈A;②对任意f(x)∈A,方程f(x)=x均有解;③对任意f(x)、g(x)∈A,若函数g(x)为定义在R上的一次函数,则f(g(x))∈A;(1)若f(x)=,g(x)=2x﹣3均在集合A中,求证:函数h(x)=(2x﹣3)∈A;(2)若函数f(x)=(x≥1)在集合A中,求实数a的取值范围;(3)若集合A中的函数均为定义在R上的一次函数,求证:存在一个实数x0,使得对一切f(x)∈A,均有f(x0)=x0.2016年上海市杨浦区高考数学三模试卷(理科)参考答案与试题解析一.填空题1.函数y=log2(x+1)的反函数为y=2x﹣1(x∈R).【考点】反函数.【分析】由y=log2(x+1)(x>﹣1)解得x=2y﹣1,把x与y互换即可得出.【解答】解:由y=log2(x+1)(x>﹣1)解得x+1=2y,即x=2y﹣1,把x与y互换可得:y=2x ﹣1(x∈R).∴y=log2(x+1)的反函数为y=2x﹣1(x∈R).故答案为:y=2x﹣1(x∈R).2.若直线l1:2x+my+1=0与l2:y=3x﹣1垂直,则实数m=6.【考点】直线的一般式方程与直线的垂直关系.【分析】根据两直线垂直时,一次项对应系数之积的和等于0,解方程求得m的值.【解答】解:直线l1:2x+my+1=0与l2:y=3x﹣1垂直,即为3x﹣y﹣1=0∴2×3+m×(﹣1)=0,解得m=6,故答案为:6.3.若2+i(i虚数单位)是实系数一元二次方程x2+px+q=0的根,则p+q=1.【考点】复数代数形式的混合运算.【分析】可知2﹣i也是实系数一元二次方程x2+px+q=0的根,从而利用韦达定理求得.【解答】解:∵2+i是实系数一元二次方程x2+px+q=0的根,∴2﹣i是实系数一元二次方程x2+px+q=0的根,∴2+i+2﹣i=﹣p,(2+i)(2﹣i)=q,解得,p=﹣4,q=5;故p+q=1;故答案为:1.4.已知sinx=,x∈(,π),则行列式的值等于.【考点】同角三角函数基本关系的运用.【分析】由已知利用同角三角函数基本关系式可求cosx,进而可求secx的值,再计算行列式的值即可得解.【解答】解:∵sinx=,x∈(,π),∴cosx=﹣=﹣,secx==﹣,∴=sinxsecx+1=(﹣)+1=.故答案为:.5.已知A={x|>1},B={x|log2(x﹣1)<1},则A∩B={x|1<x<2} .【考点】交集及其运算.【分析】求出A与B中不等式的解集分别确定出A与B,找出两集合的交集即可.【解答】解:集合A中不等式,当x>0时,解得:x<2,此时0<x<2;当x<0时,解得:x>2,无解,∴A={x|0<x<2},集合B中不等式变形得:log2(x﹣1)<1=log22,即0<x﹣1<2,解得:1<x<3,即B={x|1<x<3},则A∩B={x|1<x<2},故答案为:{x|1<x<2}.6.已知A地位于东经30°、北纬45°,B地位于西经60°、北纬45°,则A、B两地的球面距离与地球半径的比值为.【考点】球面距离及相关计算.【分析】求出球心角,然后A、B两点的距离,求出两点间的球面距离,即可求出A、B两地的球面距离与地球半径的比值.【解答】解:地球的半径为R,在北纬45°,而AB=R,所以A、B的球心角为:,所以两点间的球面距离是:R,所以A、B两地的球面距离与地球半径的比值为故答案为:.7.在某次数学测验中,5位学生的成绩如下:78、85、a、82、69,他们的平均成绩为80,则他们成绩的方差等于38.【考点】极差、方差与标准差.【分析】根据披平均成绩求出a的值,根据方差的计算公式求出这组数据的方差即可.【解答】解:∵5位学生的成绩如下:78、85、a、82、69,他们的平均成绩为80,∴78+85+a+82+69=5×80,解得:a=86,∴s2= [(78﹣80)2+(85﹣80)2+(86﹣80)2+(82﹣80)2+(69﹣80)2]=38,则他们成绩的方差等于38,故答案为:38.8.在极坐标系下,点(2,)到直线ρcos(θ﹣)=1的距离为1.【考点】简单曲线的极坐标方程.【分析】把极坐标方程化为直角坐标方程,利用点到直线的距离公式即可得出.【解答】解:直线ρcos(θ﹣)=1化为: +=1,即x﹣y+2=0.点P(2,)化为P,∴点P到直线的距离d==1.故答案为:1.9.若(x+)n(n∈N*)展开式中各项系数的和等于64,则展开式中x3的系数是15.【考点】二项式系数的性质.【分析】令x=1,则(x+)n(n∈N*)展开式中各项系数的和=2n=64,解得n.再利用二项式定理的通项公式即可得出.【解答】解:令x=1,则(x+)n(n∈N*)展开式中各项系数的和为:2n=64,解得n=6.∴的展开式的通项公式T r+1==,令=3,解得r=2.∴展开式中x3的系数为:=15.故答案为:15.10.三阶矩阵中有9个不同的数a ij(i=1,2,3;j=1,2,3),从中任取三个,则至少有两个数位于同行或同列的概率是(结果用分数表示)【考点】列举法计算基本事件数及事件发生的概率.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C93=84种取法,取出的三个数,使它们不同行且不同列:从第一行中任取一个数有C31=3种方法,则第二行只能从另外两列中的两个数任取一个有C21=2种方法,第三行只能从剩下的一列中取即可有1中方法,∴共有3×2=6种方法三个数分别位于三行或三列的情况有6种;∴所求的概率为=,故答案为:11.若函数y=cos(x+)的图象向右平移φ个单位(φ>0),所得到的图象关于y轴对称,则φ的最小值为.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由y=Asin(ωx+φ)的图象变换规律,结合正弦函数、余弦函数的图象的对称性可得﹣φ+=kπ,k∈Z,从而求得φ的最小值.【解答】解:把函数y=cos(x+)的图象向右平移φ个单位(φ>0),可得y=cos(x﹣φ+)的图象;根据所得到的图象关于y轴对称,可得﹣φ+=kπ,k∈Z,可得φ的最小值为,故答案为:.12.若两整数a、b除以同一个整数m,所得余数相同,即=k(k∈Z),则称a、b对模m同余,用符号a≡b(mod m)表示,若a≡10(mod 6)(a>10),满足条件的a由小到大依次记为a1,a2…a n,…,则数列{a n}的前16项和为976.【考点】整除的定义.【分析】由两数同余的定义,m是一个正整数,对两个正整数a、b,若a﹣b是m的倍数,(a>10),则a﹣10为6的整数倍,则a=6n+10,则称a、b模m同余,我们易得若a≡10(mod 6)再根据等差数列{a n}的前n项公式计算即可得答案.【解答】解:由两数同余的定义,m是一个正整数,对两个正整数a、b,若a﹣b是m的倍数,则称a、b模m同余,我们易得若a≡10(mod 6)(a>10),则a﹣10为6的整数倍,则a=6n+10,故a=16,22,28,…均满足条件.由等差数列{a n}的前n项公式,则=976.故答案为:976.13.已知双曲线﹣=1(a∈N*)的两个焦点为F1,F2,P为该双曲线上一点,满足|F1F2|2=|PF1|•|PF2|,P到坐标原点O的距离为d,且5<d<9,则a2=1或4.【考点】双曲线的简单性质.【分析】求得双曲线的b,c,设P为右支上一点,|PF1|=m,|PF2|=n,运用双曲线的定义,结合条件,由两点的距离公式,解不等式可得a的正整数解.【解答】解:双曲线﹣=1的b=2,c2=a2+4,设P为右支上一点,|PF1|=m,|PF2|=n,由双曲线的定义可得m﹣n=2a,由题意可得4c2=mn,m2+n2=d2,可得(m﹣n)2+2mn=4a2+8c2=d2∈(25,81),即25<12a2+32<81,即为a2<,由a为正整数,可得a=1,2,故答案为:1或4.14.如图,已知AB⊥AC,AB=3,AC=,圆A是以A为圆心半径为1的圆,圆B是以B为圆心的圆.设点P,Q分别为圆A,圆B上的动点,且=,则•的取值范围是[﹣1,11] .【考点】平面向量数量积的运算.【分析】设∠QBA=θ,则∠PAC=90°+θ,从而有=﹣,=﹣,通过计算求出即可.【解答】解:设∠QBA=θ,则∠PAC=90°+θ,∵=﹣,=﹣∴•=(﹣)•(﹣)=•﹣•﹣•+•=•﹣•+•﹣•+•=2﹣cos(+θ)+3cos(π﹣θ)﹣•2•cos(+θ)+•2•cos=5+3sinθ﹣3cosθ=5+6sin(θ﹣),∵﹣1≤sin(θ﹣)≤1,∴•∈[﹣1,11].二.选择题15.已知数列{a n}的前n项和S n=p n+q(p≠0,q≠1),则“q=﹣1”是“数列{a n}是等比数列”的()A.充要条件 B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.=(p﹣1)•p n﹣1进而可判定n≥2时,【分析】先求出a1的值,再由n≥2时,a n=S n﹣S n﹣1{a n}是等比数列,最后再验证当n=1时q=﹣1时可满足,{a n}是等比数列,从而{a n}是等比数列的必要条件是p≠0且p≠1且q=﹣1;反之,q=﹣1时,当p=0或p=﹣1时,{a n}不是等比数列;利用充要条件的定义得到结论.【解答】解:当n=1时,a1=S1=p+q;=(p﹣1)•p n﹣1.当n≥2时,a n=S n﹣S n﹣1当p≠0,p≠1,∴当n≥2时,{a n}是等比数列.要使{a n}(n∈N*)是等比数列,则=p,即(p﹣1)•p=p(p+q),∴q=﹣1,即{a n}是等比数列的必要条件是p≠0且p≠1且q=﹣1.反之,q=﹣1时,S n=p n﹣1,a n=(p﹣1)•p n﹣1,因为p=1时,{a n}不是等比数列所以“q=﹣1”是“数列{a n}为等比数列”的必要不充分条件.故选B.16.已知z1、z2均为复数,下列四个命题中,为真命题的是()A.|z1|=||=B.若|z2|=2,则z2的取值集合为{﹣2,2,﹣2i,2i}(i是虚数单位)C.若z12+z22=0,则z1=0或z2=0D.z1+z2一定是实数【考点】复数代数形式的混合运算.【分析】A.取z1=i,即可判断出正误;B.由|z2|=2,则z2=2(cosθ+isinθ),θ∈[0,2π);C.取z1=i,z2=﹣i,即可否定;D.设z1=a+bi,z2=c+di,a,b,c,d∈R,利用复数的运算法则即可判断出正误.【解答】解:A.不成立,例如取z1=i;B.不成立,|z2|=2,则z2=2(cosθ+isinθ),θ∈[0,2π);C.不成立,例如取z1=i,z2=﹣i;D.设z1=a+bi,z2=c+di,a,b,c,d∈R,则z1+z2=(a+bi)(c﹣di)+(a﹣bi)(c+di)=ac+bd+(bc﹣ad)i+ac﹣bd+(ad﹣bc)i=2ac,因此是实数,正确.故选:D.17.椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C. D.【考点】直线与圆锥曲线的关系;直线的斜率.【分析】由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),则,得.∵=,=,∴==,∵,∴,解得.故选B.18.定义域为[a,b]的函数y=f(x)图象的两个端点为A(a,f(a)),B(b,f(b)),M (x,y)是y=f(x)图象上任意一点,过点M作垂直于x轴的直线l交线段AB于点N(点M与点N可以重合),我们称||的最大值为该函数的“曲径”,下列定义域为[1,2]上的函数中,曲径最小的是()A.y=x2 B.y= C.y=x﹣D.y=sin x【考点】函数的图象;函数的图象与图象变化.【分析】根据已知中函数的“曲径”的定义,逐一求出给定四个函数的曲径,比较后,可得答案.【解答】解:当y=f(x)=x2时,端点A(1,1),B(2,4),直线AB的方程为y=3x﹣2,故||=3x﹣2﹣x2,当x=时,||的最大值为,即该函数的“曲径”为,当y=f(x)=时,端点A(1,2),B(2,1),直线AB的方程为y=﹣x+3,故||=﹣x+3﹣,当x=时,||的最大值为3﹣2,即该函数的“曲径”为3﹣2,当y=f(x)=x﹣时,端点A(1,0),B(2,),直线AB的方程为y=x﹣,故||=x﹣﹣x+=﹣x﹣+,当x=时,||的最大值为﹣,即该函数的“曲径”为﹣,当y=f(x)=sin x时,端点A(1,),B(2,),直线AB的方程为y=,故||=sin x﹣,当x=时,||的最大值为1﹣,即该函数的“曲径”为1﹣,故函数y=x﹣的曲径最小,故选:C.三.解答题19.如图,圆锥的顶点为P,底面圆心为O,线段AB和线段CD都是底面圆的直径,且直线AB与直线CD的夹角为,已知|OA|=1,|PA|=2.(1)求该圆锥的体积;(2)求证:直线AC平行于平面PBD,并求直线AC到平面PBD的距离.【考点】点、线、面间的距离计算;旋转体(圆柱、圆锥、圆台).【分析】(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得AC∥BD,即可证明直线AC平行于平面PBD,C到平面PBD的距离即直线AC到平面PBD的距离,由V C﹣PBD=V P﹣BCD,求出直线AC到平面PBD的距离.【解答】(1)解:设圆锥的高为h ,底面半径为r ,则r=1,h=,∴圆锥的体积V=Sh=;(2)证明:由对称性得AC ∥BD , ∵AC ⊄平面PBD ,BD ⊂平面PBD , ∴AC ∥平面PBD ,∴C 到平面PBD 的距离即直线AC 到平面PBD 的距离,设C 到平面PBD 的距离为d ,则由V C ﹣PBD =V P ﹣BCD ,得,可得,∴d=,∴直线AC 到平面PBD 的距离为.20.已知数列{a n }中,a n+1=+(n ∈N *),a 1=1;(1)设b n =3n a n (n ∈N *),求证:{b n }是等差数列;(2)设数列{a n }的前n 项和为S n ,求的值.【考点】数列的求和;等差数列的通项公式.【分析】(1)由a n+1=+(n ∈N *),可得3n+1a n+1﹣3n a n =3,又b n =3n a n (n ∈N *),可得b n+1﹣b n =3,利用等差数列的定义即可证明.(2)由(1)可得:b n =3n ,3n a n =3n ,可得a n =.利用“错位相减法”与等比数列的前n项和公式可得:S n =﹣.再利用极限的运算性质即可得出.【解答】(1)证明:∵a n+1=+(n ∈N *),∴3n+1a n+1﹣3n a n =3,又b n =3n a n (n ∈N *),∴b n+1﹣b n =3,∴{b n }是等差数列,首项为3,公差为3.(2)解:由(1)可得:b n =3+3(n ﹣1)=3n ,∴3n a n =3n ,可得a n =.∴S n =1++3×+…++n ×,=+…+(n ﹣1×)+n ×,∴=1+++…+﹣n×=﹣n×=﹣×,∴S n=﹣.∴1﹣=.∴=.∴==.21.图为一块平行四边形园地ABCD,经测量,AB=20米,BC=10米,∠ABC=120°,拟过线段AB上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将该园地分为面积之比为3:1的左、右两部分分别种植不同的花卉,设EB=x,EF=y(单位:米)(1)当点F与点C重合时,试确定点E的位置;(2)求y关于x的函数关系式,并确定点E、F的位置,使直路EF长度最短.【考点】基本不等式在最值问题中的应用.【分析】(1)当点F与点C重合时,S△BEC=S▱ABCD,即•EB•h=AB•h,从而确定点E的位置;(2)点E在线段AB上,分10≤x≤20与0≤x<10讨论以确定y关于x的函数关系式,从而利用分段函数解得,当0≤x<10时,y=2,由二次函数求最小值,当10≤x≤20时,y=,由基本不等式求最值;从而可得.【解答】解:(1)当点F与点C重合时,S△BEC=S▱ABCD,即•EB•h=AB•h,其中h为平行四边形AB边上的高,得EB=AB,即点E是AB的中点.(2)∵点E在线段AB上,∴0≤x≤20,当10≤x≤20时,由(1)知,点F在线段BC上,∵AB=20m,BC=10m,∠ABC=120°,∴S▱ABCD=AB•BC•sin∠ABC=20×10×=100.由S△EBF=x•BF•sin120°=25,得BF=,∴由余弦定理得,y=EF==,当0≤x<10时,点F在线段CD上,=(x+CF)×10×sin60°=25得CF=10﹣x,由S四边形EBCF当BE≥CF时,EF=,当BE<CF时,EF=,化简均为y=EF=2,综上所述,y=;当0≤x<10时,y=2,当x=时,y有最小值y min=5,此时CF=;当10≤x≤20时,y=≥10>5,故当点E距点B2.5m,点F距点C7.5m时,EF最短,其长度为5.22.已知圆E:(x﹣1)2+y2=4,线段AB、CD都是圆E的弦,且AB与CD垂直且相交于坐标原点O,如图所示,设△AOC的面积为S1,设△BOD的面积为S2;(1)设点A的横坐标为x1,用x1表示|OA|;(2)求证:|OA|•|OB|为定值;(3)用|OA|、|OB|、|OC|、|OD|表示出S1+S2,试研究S1+S2是否有最小值,如果有,求出最小值,并写出此时直线AB的方程;若没有最小值,请说明理由.【考点】圆方程的综合应用.【分析】(1)利用距离公式,即可用x1表示|OA|;(2)分类讨论,计算|OA|•|OB|,即可证明|OA|•|OB|为定值;(3)由(2)得|OA|•|OB|=3,同理|OC||OD|=3,利用基本不等式,即可得出结论.【解答】(1)解:设A(x1,y1),代入圆E:(x﹣1)2+y2=4,得y12=﹣x12+2x1+3,∴|OA|==;(2)证明:设B(x2,y2),同理可得|OB|=,∴|OA|•|OB|=x1≠x2,设直线AB的方程为y=kx,代入圆的方程得(k+1)x2﹣2x﹣3=0,∴x1+x2=,x1x2=﹣,代入可得|OA|•|OB|=3,x1=x2,直线过原点,直线AB的方程为x=0,即x1=x2=0,代入可得|OA|•|OB|=3,综上所述,|OA|•|OB|=3为定值;(3)解:由(2)得|OA|•|OB|=3,同理|OC||OD|=3∴S1+S2=(|OA||OC|+|OB||OD|)≥=3,当且仅当|OA||OC|=|OB||OD|时取等号,此时,S1+S2最小值为3,直线AB的方程为y=±x.23.已知非空集合A是由一些函数组成,满足如下性质:①对任意f(x)∈A,f(x)均存在反函数f﹣1(x),且f﹣1(x)∈A;②对任意f(x)∈A,方程f(x)=x均有解;③对任意f(x)、g(x)∈A,若函数g(x)为定义在R上的一次函数,则f(g(x))∈A;(1)若f(x)=,g(x)=2x﹣3均在集合A中,求证:函数h(x)=(2x﹣3)∈A;(2)若函数f(x)=(x≥1)在集合A中,求实数a的取值范围;(3)若集合A中的函数均为定义在R上的一次函数,求证:存在一个实数x0,使得对一切f(x)∈A,均有f(x0)=x0.【考点】反函数;函数解析式的求解及常用方法.【分析】(1)由f(x)=∈A,根据性质①可得:f﹣1(x)=∈A,且存在x0>0,使得=x0,由g(x)=2x﹣3∈A,且为一次函数,根据性质③即可证明.(2)由性质②,方程=x(x≥1),即a=x在x∈[1,+∞)上有解,可得a≥1.变形f(x)==x+1+﹣2,(x∈[1,+∞)).对与2的关系分类讨论,利用基本不等式的性质即可得出.(3)任取f1(x)=ax+b,f2(x)=cx+d∈A,由性质(1)a,c≠0,不妨设a,c≠1,(若a=1,则b=0,f1(x)=x),由性质③函数g(x)=f1(f2(x))=acx+(ad+b)∈A,函数h(x)=f2(f1(x))=acx+(bc+d)∈A,由性质①:h﹣1(x)=∈A,由性质③:h﹣1(g(x))==x=∈A,由性质②方程:x+=x有解,可得ad+b=bc+d,即,即可证明.【解答】(1)证明:由f(x)=∈A,根据性质①可得:f﹣1(x)=∈A,且存在x0>0,使得=x0,由g(x)=2x﹣3∈A,且为一次函数,根据性质③可得:h(x)==f﹣1(g(x))∈A.(2)解:由性质②,方程=x(x≥1),即a=x在x∈[1,+∞)上有解,∴a≥1.由f(x)===x+1+﹣2,(x∈[1,+∞)).若>2,a>3时,>1,且f(1)=,∴此时f(x)没有反函数,即不满足性质①.若≤2,1≤a≤3时,函数f(x)在[1,+∞)上单调递增,∴函数f(x)有反函数,即满足性质①.综上:a∈[1,3].(3)证明:任取f1(x)=ax+b,f2(x)=cx+d∈A,由性质(1)a,c≠0,不妨设a,c≠1,(若a=1,则b=0,∴f1(x)=x),由性质③函数g(x)=f1(f2(x))=acx+(ad+b)∈A,函数h(x)=f2(f1(x))=acx+(bc+d)∈A,由性质①:h﹣1(x)=∈A,由性质③:h﹣1(g(x))==x=∈A,由性质②方程:x+=x有解,∴ad+b=bc+d,即,f1(x)=x,可得ax+b=x,x=.f2(x)=x,可得cx+d=x,x=.由此可知:对于任意两个函数f1(x),f2(x),存在相同的x0满足:f1(x0)=x0f2(x0),∴存在一个实数x0,使得对一切f(x)∈A,均有f(x0)=x0.2016年8月24日。