遥感影像各参数提取和运算
测绘技术中的遥感影像处理流程详解

测绘技术中的遥感影像处理流程详解引言:遥感技术在现代测绘领域中扮演着至关重要的角色,通过使用航空或卫星平台获取的遥感影像,可以提供全球范围的地表信息。
然而,这些原始的遥感影像需要经过一系列的处理步骤,才能够提供准确、可用的地理信息。
本文将详细介绍测绘技术中的遥感影像处理流程,并探讨其中的一些关键步骤和技术。
一、预处理遥感影像处理的第一步是预处理,主要目的是对原始影像进行校正和增强,以消除图像中的噪声、失真和其他不可避免的问题。
预处理包括几个子步骤:1. 几何校正几何校正是将原始影像与特定的地理坐标系统对应起来的过程。
通过地面控制点或现有的地理参考数据,可以计算出影像中各像素点的地理坐标。
这个过程涉及到地理坐标转换、投影变换等数学计算,确保遥感影像可以与地理坐标系统一致。
2. 辐射校正辐射校正是针对遥感影像中的辐射亮度值进行校正,以消除大气、地表反射率和传感器响应等因素引起的光谱失真。
这个过程涉及大气校正模型、辐射校正系数等参数的确定,确保影像中的亮度值具有可比性和可解释性。
3. 增强处理增强处理是通过调整影像的亮度、对比度、色彩等属性,以改善影像的可视化效果。
常见的增强处理技术包括直方图均衡化、空间滤波、波段合成等,通过这些技术可以突出目标特征、减弱干扰因素,使影像更易于解译和分析。
二、影像分类预处理完成后,接下来的步骤是影像分类,其目的是将遥感影像中的像素点划分为不同的类别,以提取出地物的信息。
影像分类可以基于不同的特征和方法进行,常见的分类方法包括:1. 监督分类监督分类是一种基于已知样本进行自动分类的方法。
首先,遥感影像中的一部分区域被标记为不同的类别,称为训练样本。
然后,根据这些训练样本,使用统计分类算法(如最大似然估计、支持向量机等)对整个影像进行分类。
监督分类方法可以提供较高的分类精度,但需要大量的标记样本和专业知识。
2. 无监督分类无监督分类是一种基于像素灰度值之间的相似性进行自动分类的方法。
遥感影像处理中的特征提取方法和应用

遥感影像处理中的特征提取方法和应用遥感影像是通过无人机、卫星等载体获取的地球表面的影像数据。
特征提取是遥感影像处理中的一项重要任务,旨在从遥感影像中提取出地物的特定特征,以实现对地物的分类、识别和监测等应用。
本文将介绍遥感影像处理中常用的特征提取方法及其应用。
一、特征提取方法1. 基于像素的特征提取方法基于像素的特征提取方法是从单个像素点的信息中提取特征。
常用的方法包括:(1)颜色特征提取:利用遥感影像中的颜色信息进行特征提取。
常用的方法包括二值化、RGB分量、HSV、归一化差异植被指数(NDVI)等。
(2)纹理特征提取:利用遥感影像中的纹理信息进行特征提取。
常用的方法包括灰度共生矩阵(GLCM)、灰度值标准差、平均灰度值等。
(3)形状特征提取:利用遥感影像中的形状信息进行特征提取。
常用的方法包括链码、Hu不变矩、区域面积等。
2. 基于目标的特征提取方法基于目标的特征提取方法是在已知地物目标的前提下,根据地物目标的特定特征进行特征提取。
常用的方法包括:(1)形状特征提取:利用地物目标的形状信息进行特征提取。
常用的方法包括面积、周长、伸长率等。
(2)纹理特征提取:利用地物目标的纹理信息进行特征提取。
常用的方法包括纹理能量、纹理熵、纹理对比度等。
(3)上下文特征提取:利用地物目标的上下文信息进行特征提取。
常用的方法包括边界连接、邻居分析、局部空间关系等。
二、特征提取应用1. 地物分类特征提取在地物分类中起到了关键作用。
通过提取不同地物的特定特征,可以将遥感影像中的地物进行分类,如水体、森林、建筑等。
特征提取方法可以通过训练分类器来实现自动分类。
2. 土地利用监测特征提取可以应用于土地利用监测。
通过提取遥感影像中地物的特定特征,可以实现对土地的类型和变化进行监测,如农田的扩张、森林的退化等,为土地规划和资源管理提供支持。
3. 城市规划特征提取在城市规划中具有重要意义。
通过提取遥感影像中的建筑、道路等特定特征,可以分析城市的发展趋势和扩张方向,为城市规划和交通规划提供数据支持。
遥感影像处理与分析

遥感影像处理与分析一、引言遥感影像处理与分析是一项用于获取和处理地球表面信息的技术,它对于了解自然环境变化、资源利用和环境保护方面提供了很多帮助,也对城市规划、农业生产、林业管理等方面起到支持作用。
在本文章中,我们将探讨遥感影像处理的方法、数据预处理、遥感影像分类、遥感影像变化检测等方面。
二、遥感影像处理的方法遥感影像处理的目的是将像元的属性信息转换为可视化的图片,以便人类观察和分析。
这种转换通常通过应用数字信号处理、图像处理和处理算法来完成。
常见的遥感影像处理方法包括:1. 图像增强:图像增强是使图像更清晰、更具对比度或缩放的过程。
增强可以使遥感图像适宜于不同的应用,如地貌分析和水文学。
2. 图像融合:图像融合是逐像素将多个源图像组合成单个输出图像的过程。
这种方法可以将不同传感器获得的多光谱或高光谱数据融合在一起,从而增加了遥感数据的可用性和可视化效果。
3. 估计:在一些应用场景下,需要从遥感数据中提取信息。
这需要估计各种地形和地貌信息,并将其处理成可视化的形式。
这种方法通常使用分类算法、回归方法或者机器学习技术来实现。
4. 遥感影像分割:遥感影像分割是将遥感影像分成不同的区域或对象。
这种方法通常使用基于像素的聚类或者基于拓扑的分割算法来实现。
三、数据预处理在进行遥感影像分析之前,需要对遥感数据进行预处理。
数据预处理过程通常包括数据预处理、噪声去除、解译标记和掩模制作。
1. 数据预处理:数据预处理通常包括校正、去噪和增强。
影像校正可以纠正遥感数据的几何校正和辐射校正,以减小图像中的拍摄偏差、纠正图片扭曲、消除不同地物物理反射和透射过程引起的影响,提高影像的精度和质量。
同时去噪和增强能使得仪器噪声降低,避免图像中的伪迹和干扰,在自然场景和高噪声环境中处理时具有显著的效果提升。
2. 噪声去除:噪声在遥感影像中是不可避免的,特别是图像的边缘部分容易被噪声干扰。
因此,必须使用合适的滤波器来去除噪声。
滤波技术可以分为线性和非线性滤波器两种,其中,线性滤波器采用加权平均法,非线性滤波器则更加注重对待图像中不同噪声的特殊处理,如中位数滤波、均值滤波等。
高分辨率卫星遥感立体影像处理模型与算法

高分辨率卫星遥感立体影像处理模型与算法一、本文概述随着空间技术和遥感科学的迅猛发展,高分辨率卫星遥感已成为地球观测与资源管理的重要手段。
高分辨率卫星遥感立体影像,以其高空间分辨率、高光谱分辨率和高时间分辨率的优势,为地表特征提取、环境监测、城市规划等领域提供了丰富而准确的信息源。
如何高效、精确地处理这些立体影像,以充分发挥其应用潜力,是当前遥感领域面临的重要挑战。
本文旨在探讨高分辨率卫星遥感立体影像处理模型与算法。
本文将回顾高分辨率卫星遥感立体影像处理技术的发展历程,分析现有技术的优缺点。
接着,本文将重点介绍几种先进的处理模型与算法,包括基于深度学习的立体匹配算法、多源数据融合算法以及变化检测算法等。
这些算法不仅提高了影像处理的精度和效率,还拓宽了高分辨率卫星遥感的应用范围。
本文还将探讨高分辨率卫星遥感立体影像处理技术在实践中的应用案例,如城市规划、灾害监测、环境评估等,以展示这些技术的实际应用价值和潜力。
本文将对未来高分辨率卫星遥感立体影像处理技术的发展趋势进行展望,指出可能的研究方向和挑战,以期为相关领域的研究和实践提供参考。
本文将对高分辨率卫星遥感立体影像处理模型与算法进行全面而深入的探讨,旨在推动遥感科学技术的发展,为地球观测与资源管理提供更有效的技术支持。
二、高分辨率卫星遥感技术概述高分辨率卫星遥感技术是指利用卫星搭载的遥感设备获取地球表面的高清晰度图像和数据的技术。
这种技术在地理信息系统、城市规划、农业监测、环境保护、灾害评估和军事侦察等领域具有广泛的应用。
高分辨率卫星遥感技术的关键在于其搭载的传感器和数据处理算法。
传感器必须具备高空间分辨率、高光谱分辨率和高时间分辨率,以确保获取到的图像清晰、详细。
同时,数据处理算法需要能够从这些高分辨率图像中提取有用的信息,进行分类、识别和分析。
立体影像处理是高分辨率卫星遥感技术中的一个重要方面,它涉及到从不同角度获取的两幅或多幅图像中重建地面的三维模型。
遥感影像的几何校正和特征提取方法

遥感影像的几何校正和特征提取方法遥感影像是通过遥感技术获取的地球表面信息的图像或图像组。
由于数据获取过程中存在各种误差,如地球自转、大气扰动、平台运动等,遥感影像在获取后需要进行几何校正以提高图像的质量和精度。
此外,为了进一步分析遥感影像中的信息,特征提取是必需的,可以帮助科学家从图像中提取有关地理特征的信息。
一、遥感影像的几何校正方法1. 大地控制点法:这是一种常用的几何校正方法,通过确定遥感影像上一系列具有已知地理坐标的地物进行配准。
通过收集大量的地面控制点,利用全球定位系统(GPS)等技术获取精确的地理坐标,然后将遥感影像转化为地理坐标系统,实现几何校正。
2. 特征点匹配法:该方法利用遥感影像与参考图像之间的特征点进行匹配。
通过提取遥感影像和参考图像的特征点,并使用特征匹配算法对两幅图像进行配准,从而实现几何校正。
3. 数字高程模型法:该方法利用数字高程模型(DEM)来进行几何校正。
DEM是一种用来表示地表地形高程信息的数学模型。
通过提取遥感影像上的地物高程信息,并结合DEM数据,可以实现对遥感影像的几何校正。
二、遥感影像的特征提取方法1. 阈值分割:该方法基于像素间的灰度差异来实现特征提取。
通过设置适当的阈值,将像素灰度值划分为不同的区域,从而提取出感兴趣的特征。
例如,可以利用阈值分割方法提取出水体、植被等特征。
2. 目标识别和分类:该方法通过使用机器学习算法来实现对遥感影像中的目标进行识别和分类。
常用的机器学习算法包括支持向量机(SVM)、随机森林(RF)等。
通过对已标记的训练样本进行训练,然后对遥感影像进行分类,可以实现对特定目标的提取和分类。
3. 特征融合:该方法通过将多个特征进行融合,提高特征提取的准确性和稳定性。
常用的特征融合方法包括主成分分析(PCA)、小波变换、人工神经网络等。
通过将多个特征进行组合和处理,可以提取出更具辨识度的特征。
4. 目标检测:该方法通过一系列图像处理和模式识别技术来实现对目标的检测。
遥感影像信息提取中的多尺度分割算法研究

遥感影像信息提取中的多尺度分割算法研究遥感技术在现代的资源管理、城市规划、农业等各个领域中已经广泛应用。
其中遥感影像信息提取是遥感技术应用中比较重要的一部分,它能够从遥感影像中提取出一些有价值的信息,如道路、建筑、水体等。
然而,由于遥感影像分辨率较高,单一分割算法往往难以有效地提取出有价值的信息。
多尺度分割算法的研究对于解决这一问题具有重要的意义。
一、多尺度分割算法的概念多尺度分割算法是一种利用不同的尺度对遥感影像进行分割的算法。
在进行图像分割时,往往需要对彩色或灰度图像中像素点进行聚类,以便提取出相似的像素点并将其归为一类。
随着遥感影像分辨率的提高,图像中的像素数目也随之增加,这就导致了聚类算法计算的复杂度增大。
而采用多尺度分割算法则可以在保持精度的前提下实现快速计算。
二、多尺度分割算法的主要应用1. 遥感影像分析与判读多尺度分割算法可以通过分析遥感影像,提取出其中的有用信息,如土地利用、土地覆盖、冰雪覆盖等。
这样就可以对地理环境进行诊断和监测,有效地优化资源管理。
2. 环境监测多尺度分割算法可以通过遥感影像提取水体、植被、土地利用等信息,为城市规划、土地利用规划等环境监测提供科学依据,为保护生态环境提供有力支持。
3. 地球科学研究多尺度分割算法可以将遥感影像中的类别分割得更加精确,从而为地球科学的研究提供可靠的基础数据,如洪水监测、气象预报等。
三、多尺度分割算法的实现原理目前常用的多尺度分割算法主要有基于小波变换、基于金字塔和基于局部自适应阈值(Local Adaptive Threshold, LAT)。
1. 基于小波变换基于小波变换的多尺度分割算法是一种对遥感影像进行多尺度分割的有效方法。
它可以将图像进行小波分解,然后根据不同的尺度进行分割,最终通过小波重构得到分割后的影像。
2. 基于金字塔基于金字塔的多尺度分割算法使用了一个多分辨率表示的图像金字塔,并依次分解到不同的尺度。
在不同的分辨率下,对图像进行分割,然后对每个尺度进行汇总,最终得到所有尺度的分割结果。
测绘技术遥感影像解译方法介绍

测绘技术遥感影像解译方法介绍近年来,随着遥感技术的快速发展和普及,其在测绘领域的应用也越来越广泛。
遥感影像解译作为一种重要的测绘技术手段,扮演着不可或缺的角色。
本文将介绍几种常用的遥感影像解译方法,帮助读者更好地了解和应用这一技术。
一、目视解译法目视解译法是最基础也是最常用的解译方法之一。
通过对遥感影像进行仔细观察,将不同的地物、特征和目标识别并进行分类。
这种解译方法需要解译员具备较高的专业知识和经验,并且对影像细节有较强的观察和辨别能力。
虽然目视解译法存在主观性和时间成本高等问题,但在一些小范围和特定场景的解译中仍然具有重要意义。
二、分类器解译法分类器解译法是利用计算机和数学方法对影像进行解译的一种常用方法。
其依靠事先建立的各类地物的光谱、纹理和形状特征等参数,通过计算和比对来确定影像中的地物类型和分布。
常见的分类器包括最大似然法、人工神经网络、支持向量机等,在实际应用中根据需要选择合适的分类器。
分类器解译法具有自动化程度高、效率高等优点,但也存在一定的误差和精度问题需注意。
三、特征提取法特征提取法是从遥感影像中筛选出有用的地物特征,然后对这些特征进行分类和解译。
这种方法基于对地物特征的深入研究和理解,结合遥感影像的优势,能够更精准地提取出相应地物的特征信息。
特征提取法可分为光谱特征提取、形状特征提取、纹理特征提取等,根据不同地物和任务需选择合适数学模型和算法进行特征提取和解译,从而得到更为准确的结果。
四、多源数据融合法多源数据融合法是将不同类型、不同分辨率、不同时间的遥感影像进行综合利用,以提高解译精度和信息获取能力。
通过多源数据的融合,可以更全面地展现地物的空间分布和时序变化,减少遥感影像解译的盲区和误差。
常见的多源数据包括多光谱影像、高光谱影像、雷达影像等,通过适当的数据融合方法和技术,可以获取更为全面和准确的地理信息。
综上所述,测绘技术遥感影像解译方法多种多样,每种方法都有其适用的场景和优势。
遥感影像处理具体操作步骤

遥感影像处理具体操作步骤遥感影像处理是利用遥感技术获取的遥感影像数据进行分析和处理的过程。
下面是遥感影像处理的具体操作步骤:1. 数据预处理:- 影像获取:通过卫星、航空器或者无人机等获取遥感影像数据。
- 影像校正:对获取的遥感影像进行几何校正和辐射校正,以消除影像中的几何畸变和辐射差异。
- 影像配准:将多个遥感影像进行配准,使其在同一坐标系下对齐,以便进行后续的分析。
- 影像切割:根据需要,将遥感影像切割成小块,方便后续处理。
2. 影像增强:- 直方图均衡化:通过调整影像的像素灰度分布,增强影像的对照度和细节。
- 滤波处理:利用滤波算法对影像进行平滑或者锐化处理,以去除噪声或者增强细节。
- 波段合成:将多个波段的影像合成为一幅彩色影像,以显示不同特征或者信息。
3. 影像分类:- 监督分类:根据已知样本进行训练,利用分类算法将遥感影像中的像素分为不同的类别。
- 无监督分类:根据像素的相似性进行聚类,将遥感影像中的像素分为不同的类别,不需要事先提供训练样本。
4. 特征提取:- 纹理特征:通过计算影像中像素的纹理统计量,提取纹理特征,用于地物分类和识别。
- 形状特征:通过计算影像中像素的形状参数,如面积、周长、圆度等,提取形状特征,用于地物分类和识别。
- 光谱特征:利用遥感影像中不同波段的反射率或者辐射值,提取光谱特征,用于地物分类和识别。
5. 地物提取:- 目标检测:利用目标检测算法,自动提取遥感影像中的目标物体,如建造物、道路等。
- 变化检测:通过比较不同时间的遥感影像,检测地物的变化情况,如城市扩张、土地利用变化等。
6. 结果评估:- 精度评估:通过对照遥感影像处理结果与实地调查数据或者高分辨率影像进行对照,评估处理结果的准确性和精度。
- 一致性检验:对处理结果进行一致性检验,确保处理结果的逻辑和合理性。
以上是遥感影像处理的具体操作步骤。
不同的任务和目标可能需要不同的处理方法和算法,具体操作步骤可能会有所不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感影像各参数提取和运算
一.实验目的
1.1 熟悉使用ENVI软件的一些常用功能;
1.2 学会利用ENVI软件对遥感影像的NDVI和NDWI进行计算,对典型地物的参数信息进行提取和分析。
二.实验内容
2.1 计算可见光至短波红外波段的7个波段的TOA反射率数据和热红外的2个波段的亮度温度值;
2.2 计算NDVI和NDWI;
2.3 选择水体、土壤、植被和人工建筑等典型地物,每种典型地物至少选择50个样点,提取各个样点的7个TOA反射率值、2个亮温值和2个光谱指数值;
2.4 针对各个典型地物的遥感参数进行统计分析,至少计算各个参数的Minimum, Maximum, Range and Standard Deviation,利用图表的形式对其进行专业分析。
三.实验数据与实验平台
数据:LANDSAT 7 ETM+影像、p125r053_7t20001106.met
平台:ENVI 4.7软件
四.实验过程与结果分析
4.1. 计算可见光至短波红外波段的7个波段的TOA反射率数据和热红外的1个波段的亮度温度值。
实验步骤:
(1)计算可见光至短波红外波段的7个波段的TOA反射率:
Main menu →Basic Tools →Preprocessing
→Calibration Utilities →Landsat
Calibration→选择波段数为6的,点击
OK → Reflectance → Edit Calibration
Parameters→输出文件名
图4.1.1 反射率参数设置
图4.1.2反射率转换结果图与原图对比
(7,4,3波段,左图为结果图,右图为原图)
(2)转换成亮度温度值步骤:
Main menu → Basic Tools → Preprocessing →Calibration Utilities → Landsat Calibration →选择波段数为2的,点击OK → Radiance → Edit Calibration Parameters→输出文件名
图4.1.3 亮度温度值参数设置
图4.1.4 热红外的1个波段的亮度温度值影像
4.2 计算NDVI和NDWI
(1) NDVI计算步骤:Transform →NDVI →选择新生成的6波段反射率文件→OK→输出文件名
(2) NDWI计算步骤:Transform → NDVI →选择新生成的6波段反射率文件→OK → NDVI Bands:Red:4;Near IR:2 →输出文件名
图 4.2.1 对植被和水体的提取影像对比
左图是对水体的提取,水体部分高亮度显示,亮度值为1,其他地物为暗色,亮度值为0;右图是对植被的提取,植被部分高亮度显示,亮度值为1,其他地物为暗色,亮度值为0;
4.3 典型地物遥感参数提取
参数提取步骤:
Main menu → Basic Tools → Resize Data →选择生成的亮温值波段→Set Output Dims by Pixel Size:Output X/Y by Pixel Size设置为28.5 → OK →输出文件名
Main menu→ File → Save File As → ENVI Standard → Import File:分别选择:6波段反射率文件、改变像素后的亮温值波段文件、6波段的ndvi文件、6波段的ndwi文件→文件输出
建立ROI区域采样:打开上个步骤的汇总文件6、4、3波段→右击图像,选择ROI Tools →ROI_Type:Point →Window:Zoom;→选取不同地物的点→File → Output ROIs to ASCII →选择汇总文件→ Select ALL Items →输出文件名
图4.3.1 建立ROI区域采样
4.4 各个典型地物的遥感参数统计分析(利用ENVI中的spectral Library Builder)
步骤:
首先打开6波段的反射率影像→ Spectral → Spectral Libraries →spectral Library Builder →first input spectrum →import →form ROI/EVF form input file → 6波段的反射率影像→ Select All Items → OK
所提取地物的光谱曲线展示如下图(在旁边标识曲线时,如果用中文名会显示不出来,所以可以在建立光谱库后要改成英文名)
4.5 对应影像比较分析地物的波谱曲线
①完成上个步骤的光谱库后,选中所要打开的地物光谱曲线,点击plot即可显示
②导入野外测试的ASD光谱:import → from ASD binary file → ASD文件相对应地物的野外观测光谱数据
标准光谱库植被光谱:import →from Spectral library file →spectral library →相对应的标准地物光谱曲线
图4.5.1 不同测量手段植被光谱曲线的对比
(x轴表示波段范围,y轴表示反射率)
结果分析:通过对ETM+遥感影像、野外观测以及标准光谱库中植被光谱曲线的对比可以看出,几种方法处理得出的曲线趋势相似,在ETM+遥感影像中的植被光谱曲线与野外观测的植被光谱曲线比较接近,但ASD光谱仪野外观测的光谱曲线与ETM+遥感影像上的光谱曲线这两种曲线在近红外波段与标准植被光谱反射率大小相差较大,原因在于在野外观测过程中和利用遥感手段获取的影像过程中,会受到天气情况以及大气层反射折射的影响。
图4.5.2 不同测量手段水体光谱曲线的对比
结果分析:通过对ETM+遥感影像、野外观测以及标准光谱库中水体光谱曲线的对比可以看出,ETM+遥感影像中的水体光谱曲线与野外观测的水体光谱曲线很相似,但海水的反射率在0.5nm-1.6nm之间都接近于0,在1.6nm之后才渐渐回升,与前两种观测手段得出的水体光谱曲线有很大的差别。
五.实验体会
在进行实验之前,我们对ASD光谱仪器的操作方法一无所知,对ENVI软件的大部分功能都没有深入了解。
通过这次实验,我们基本上每个人都熟悉了地物光谱的测量以及处理,达到了预期的效果。
只是在光谱分析这方面,由于知识水平有限,分析得不全面,做的还不是很好,希望在经过一些专业的训练后,能够弥补这一空缺。
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。