手机锂离子电池保护电路原理分析
深入剖析锂电池保护电路工作原理

深入剖析锂电池保护电路工作原理1. 锂离子电池介绍锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。
在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌,充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。
锂离子电池电压范围2.8V~4.2V,典型电压3.7V,低于2.8V或者高于4.2V,电池都会有损坏风险。
2. 1C和0.1C的概念电池容量的单位是mAh,C指的是电池充放电的倍率,比如一个2000mAh的电池,以1C放电指的是放电电流大小为2000mA,0.1C为200mA,充电也是同样的道理。
3. 锂离子电池的优缺点锂离子电池的主要优点:锂离子电池电压高,能量密度高;循环寿命长,一般可循环500,甚至达到1000次以上;自放电小,室温下充满电的Li-ion储存1个月后的自放电率为10%左右;可快速充电,1C充电时容量可以达到标称的80%;工作温度范围宽,一般为-25~45°C,后面有望突破-40-70°C;没有Ni-Cd、Ni-Mh一样的记忆效应,在充电前不必将剩余电量用完;相比较Ni-Cd、Ni-Mh来说环保无污染(不含镉,汞等重金属);锂离子电池的主要缺点:成本高;需要加保护电路板,包括过充和过放保护;不能大电流放电,一般放电电流在0.5C以下,过大的电流导致电池内部发热;安全性差,容易爆炸、起火。
4. 锂电池和锂离子电池的区别锂电池和锂离子电池是两个不同的概念,主要有如下的区别:锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂;锂离子电池是以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子;锂电池也称一次锂电池,可以连续放电,也可以间歇放电,一旦电能耗尽便不能再用,不能进行充电;锂离子电池也称二次锂电池,可以充放电;5. 锂离子电池充电模式锂离子电池理想充电模式被称为CC CV模式,即恒流恒压模式。
锂电池保护板的电路图与工作原理

锂电池保护板的电路图与工作原理锂电池保护板的电路图与工作原理关于锂离子电池的保护板电路,原理介绍,以及管理的书籍推荐.或者聚合物锂电池方面经典书籍。
太深奥了,建议新华书店锂电池保护板原理:锂电池保护板根据使用IC,电压等的不同而电路及参数有所不同。
锂电池保护板其正常工作过程为:当电池电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01的第1脚、第3脚电压将分别加到8205A的第5 4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电池的负极与保护板的P-端相当于直接连通,保护板有电压输出。
锂电池保护板的电路图与工作原理:锂电池保护板原理:锂电池保护板根据使用IC,电压等的不同而电路及参数有所不同。
锂电池保护板其正常工作...锂电池保护电路板生产过程中CC offset是什么意思?具体有什么作用!:保护板是有计算电芯容量的芯片吧? CC offset 估计是恒流补尝.(也就是在生产过程中通过负载放...求锂电池保护板原理图:照这个做吧!成熟的电路!改变R61可以改变充电电流的大小!有啥不懂进群讨论!105888932为什么有的锂电保护板需要激活?什么原理:所有的锂电池保护板在保护后都需要激活。
激活的方法很简单,在专用充电器上充电1-2分钟就可以了。
锂电池...18650 单节电池充放电保护电路原理图啊:工作原理:将充电器与手机、插座连接后,电压通过电阻调整,以一较小值进入电压比较器,输出一个额定值,是...如何制作18650锂电池保护板,要完整的原理图、pcb板图,:锂电保护板,多节,18650,原理图,PCB板,单片机程序,应有尽有!电池保护电路板都是什么够成的?上面好多小件:因为Li+电池过充或过放可能会导致爆炸并造成人员伤害,所以使用这类电池时,安全是主要关心的问题。
锂电池保护ic电路工作原理

锂电池保护ic电路工作原理锂电池保护IC是一种用于锂电池组的电池管理系统的关键元件。
它的主要功能是监测和保护锂电池组的电压、电流和温度,以确保锂电池组的安全运行。
本文将从锂电池保护IC的工作原理、结构和应用等方面进行描述。
一、锂电池保护IC的工作原理锂电池保护IC是通过监测锂电池组的电压、电流和温度等参数来实现对锂电池组的保护。
它通过内部的比较器对这些参数进行比较和判断,当锂电池组的状态异常时,锂电池保护IC会采取相应的保护措施,以防止电池的过充、过放、过流和过温等情况的发生。
锂电池保护IC通常由电压检测电路、电流检测电路、温度检测电路和保护控制电路等部分组成。
其中,电压检测电路用于监测锂电池组的电压,当电压超过预设的上限或下限时,锂电池保护IC会发出保护信号,从而切断电池与外部电路的连接,以防止电池的过充或过放。
电流检测电路用于监测锂电池组的充放电电流,当电流超过预设的上限时,锂电池保护IC会采取相应的措施,如切断电池与外部电路的连接,以防止电池的过流。
温度检测电路用于监测锂电池组的温度,当温度超过预设的上限时,锂电池保护IC会采取相应的措施,如切断电池与外部电路的连接,以防止电池的过温。
保护控制电路是锂电池保护IC的核心部分,它通过对上述检测电路的监测结果进行比较和判断,确定是否需要采取相应的保护措施。
当锂电池组的状态异常时,保护控制电路会发出保护信号,从而触发保护措施的执行。
二、锂电池保护IC的结构锂电池保护IC通常由芯片、封装和引脚等部分组成。
芯片是锂电池保护IC的核心部分,它集成了电压检测电路、电流检测电路、温度检测电路和保护控制电路等功能。
封装是将芯片封装在外部保护壳中,以保护芯片的安全和稳定工作。
引脚是芯片与外部电路之间的连接接口,通过引脚可以实现芯片与外部电路的通信和控制。
锂电池保护IC的结构设计主要考虑芯片的功能、尺寸和功耗等因素。
在实际应用中,锂电池保护IC的尺寸通常很小,以适应电子产品的小型化和轻便化的需求。
锂电池保护板电路原理详解

锂电池保护板电路原理详解
保护板电路:
以下是我司某产品上使用的锂电池保护板电路图,电池容量3000mA/3.8V,充电限制电压4.35V。
两个双MOS管两两并联。
双MOS管内部结构、
保护板BOM清单:
过充保护:
以上是电池充电电流流向,可见两个双MOS管(U2、U3)全部导通,充电的时候U1的Pin5芯片会实时监听电芯正极电压,此电压相对Pin6,因为Pin6是U1的地参考。
当电芯正极相对Pin6大于过充门限电压时,Pin3控制关闭两个MOS管,此时停止充电,只能放电。
当放电到过充恢复电压以下时,Pin3控制的MOS 管重新打开,
这时可以充电。
过放保护:
以上是电池放电电流流向,可见两个双MOS管(U2、U3)全部导通,放电的时候U1的Pin5芯片会实时监听电芯正极电压,此电压相对Pin6,因为Pin6是U1的地参考。
当电芯正极相对Pin6小于过放门限电压时,Pin1控制关闭两个MOS管,此时停止放电,只能充电。
当充电到过放恢复电压以上时,Pin1控制的MOS 管重新打开,这时可以放电。
放电过流/短路保护:
以上是电池放电电流流向,可见两个双MOS管(U2、U3)全部导通,放电的时候U1的Pin2芯片会实时监听电压,此电压相对Pin6,因为Pin6是U1的地参考。
实际上这个电压就是两个MOS的导通压降,电流越大压降越大,当电压大于放电过流保护/短路保护电压时,Pin1管脚关闭两个MOS管。
以下是芯片MM3280JB7NRH的各种截止电压参数:。
手机锂电池保护板原理

手机锂电池保护板原理
手机锂电池保护板是保护手机电池免受过充、过放、短路和过热等问题的关键组件。
其原理主要包括以下几个方面:
1. 过充保护:锂电池在充电时,当电压超过一定阈值时,保护板会自动切断电流,防止电池过充,避免损坏电池和可能的安全隐患。
2. 过放保护:锂电池在放电时,当电压低于一定阈值时,保护板会自动切断电流,防止电池过放,避免损坏电池和可能的安全隐患。
3. 过流保护:保护板会监测电池充放电过程中的电流,一旦电流超过一定限制,保护板将立即切断电路,防止过大的电流损坏电池或引发危险。
4. 短路保护:当电池正负极短路时,保护板会迅速切断电路,防止电池短路过流,避免火灾等安全事故。
5. 温度保护:保护板会监测电池温度,一旦温度超过安全范围,保护板将切断电路,防止过热导致电池损坏或安全风险。
以上是手机锂电池保护板的基本工作原理,通过这些保护措施可以确保锂电池的安全运行,延长电池寿命,并提高使用者的安全性。
3.7v锂电池充放电保护电路

3.7v锂电池充放电保护电路3.7V锂电池充放电保护电路是一个重要的电子电路,主要用于保护锂电池在充放电过程中的安全使用。
这种电路可以防止电池过度充电、过度放电和短路等情况,从而延长电池的使用寿命和防止电池热失控导致的安全问题。
一、电路组成3.7V锂电池充放电保护电路主要由锂电池、充电电路、放电电路和保护电路四部分组成。
其中,保护电路是核心部分,它由充电保护芯片、放电保护芯片和电压检测芯片等组成。
二、工作原理1.充电工作原理:当锂电池连接到充电电路时,充电保护芯片会检测电池的电压和电流。
如果电池电压或电流超过设定值,充电保护芯片会自动切断充电电路,以避免电池过度充电。
同时,电压检测芯片会检测电池的电压,当电池电压达到设定值时,充电保护芯片会自动关闭充电电路,以避免电池过充。
2.放电工作原理:当锂电池需要放电时,放电保护芯片会检测电池的电压和电流。
如果电池电压或电流超过设定值,放电保护芯片会自动切断放电电路,以避免电池过度放电。
同时,电压检测芯片会检测电池的电压,当电池电压低于设定值时,放电保护芯片会自动关闭放电电路,以避免电池过放。
3.短路保护:如果锂电池发生短路,电流会迅速增加,这时,放电保护芯片会自动切断放电电路,以避免电流过大损坏电池。
同时,充电保护芯片也会自动关闭充电电路,以避免电池过充而损坏。
三、电路特点1.具有充电、放电和短路保护功能:该电路具有全面的保护功能,可以有效地防止锂电池在充放电过程中出现过度充电、过度放电和短路等问题。
2.高精度控制:该电路采用先进的控制技术,可以实现对电池电压和电流的高精度检测和控制,确保电池在安全范围内使用。
3.可靠性高:该电路采用高品质的电子元件和先进的生产工艺,具有高可靠性和长寿命等特点,可以满足各种应用场景的需求。
4.体积小、重量轻:该电路体积小、重量轻,方便携带和使用,适用于各种移动设备和其他小型电子产品中。
5.安全可靠:该电路采用多重保护机制,确保电池在任何情况下都不会出现过充、过放和短路等现象,从而保证了电池的安全可靠。
锂离子电池的原理

锂离子电池的原理锂离子电池是一种常见的电池类型,广泛应用于手机、笔记本电脑、电动汽车等领域。
它的原理是利用锂离子在正负极之间的迁移来实现电荷的存储和释放。
在充电时,锂离子从正极(通常是氧化物)迁移到负极(通常是石墨),在放电时则相反。
这种迁移过程是通过电解质中的离子传导实现的。
锂离子电池的正极通常是由锂离子化合物构成,如三氧化二锂(Li2O3)、钴酸锂(LiCoO2)等。
而负极则通常是由碳材料构成,如石墨。
电解质一般采用有机溶剂和锂盐组成的液体或固体。
在充电时,正极材料中的锂离子被氧化,氧化物中的锂离子释放出电子,然后通过外部电路流向负极,同时负极材料中的碳结构吸附这些锂离子。
在放电时,这些锂离子又会从负极释放出来,回到正极的氧化物中,同时释放出储存在其中的电子,从而产生电流。
锂离子电池的工作原理可以用下面的化学方程式来表示:在充电时:正极,LiCoO2 → Li1-xCoO2 + xLi+ + xe-。
负极,C + xLi+ + xe→ LixC。
在放电时:正极,Li1-xCoO2 + xLi+ + xe→ LiCoO2。
负极,LixC → C + xLi+ + xe-。
其中,LiCoO2代表正极的材料,C代表负极的材料,Li+代表锂离子,e-代表电子。
在充放电过程中,锂离子在正负极之间来回迁移,而电子则通过外部电路流动,从而实现了电荷的储存和释放。
锂离子电池具有高能量密度、长循环寿命、低自放电率等优点,因此得到了广泛的应用。
但是,锂离子电池也存在着安全性、成本和资源等方面的挑战,如过充、过放、高温等情况可能导致电池的短路、爆炸等问题,同时锂资源的有限性也制约了其大规模应用。
因此,未来锂离子电池仍需要不断的技术创新和改进,以满足人们对于高能量密度、安全性和可持续发展的需求。
总之,锂离子电池的原理是通过锂离子在正负极之间的迁移来实现电荷的存储和释放,其工作原理可以用化学方程式来表示。
锂离子电池具有许多优点,但也面临着一些挑战,未来仍需要不断改进和创新。
手机锂离子电池的保护电路与充电

手机锂离子电池的保护电路与充电器 上世纪90年代市面上自推出可充锂离子电池以来,由于其价格低廉,容量大,无记忆等特性而深受广大群众的喜爱,特别是在携带式的电器通讯设备中(例手机,MPG 随身听,便携式DV 摄录机,数码相机,笔记本电脑等), 锂离子电池己成为主流或首选品种,故当前了解锂离子电池的简单原理和充放电知识,己成为推行现代教育技术,不可忽略的内容。
手机使用的锂离子电池,阳极通常是铜片或石墨电极组成,阴极通常是二氧化锂组成,电池充电时,阴极中锂原子电离成锂离子和电子,锂离子向阳极移动并与电子合成锂原子,放电时,阳极表面锂原子又电离成锂离子和电子,锂离子移动到阴极处重新结合成锂原子,由于电池内锂总是以离子形态出现,故称锂离子电池。
锂离子电池每一个单体电压约为3.6V ,工作时电压会随时间增大而徐徐下降,所以手机上能通过电路检测出电池的即时电压,从而显示剩余电量,以便及时充电。
常用手机锂离子电池单体的充电电压最好保持在4.1V 左右,充电电流通常限制在500mA 以下,放电电流不应超过1500mA 。
放电电压不应低于2.2V ,否则会造成锂离子电池永久性损坏,故一般锂离子电池内部都按置保护电路,由于锂离子电池,对环境温度敏感,正常工作温度应为-200 C —600C,所以有一些锂离子电池壳内除通常配有完善的过流过压保护电路外还配有温度保护电路。
保护电路一般由3-6片小型贴片集成电路和大量贴片三极管,电阻,电容等组成,双面焊接在一小块印刷线路板上,性能一般都很优异.检测锂离子电池内部的电压电流保护电路最简单的方法是用多用表的直流电流档,将其量程拨在2.5A以上,然后短时间将两个表笔分别接电池,+,- ,两极,测定电池的短路电流, 如表针只抖动一下就显示没电了, 表明电池内部有保护电路,该电路已处于保护状态, 电池自动暂时失去了供电能力, 此时需要将电池放入充电器中, 充电一两秒, 解除短路保护状态后又能正常使用了, 否则说明电池内部根本没有保护电路或电路已损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
手机锂离子电池保护电路原理分析上网时间:2009-07-22 来源:EAW电子技术应用
中心议题:
锂离子电池的特点
锂离子电池保护电路工作原理
解决方案:
采用过充电保护
采用过放电保护
放电过电流保护
线路短路保护
述。
锂电池分为一次电池和二次电池两类,目前在手机里的备用电池因耗电小主要使用不可充电的一次锂电池,而在手机主电池因耗电量较大则使用可充电的二次电池,即锂离子电池。
与镍镉和镍氢电池相比,锂离子电池具备以下几个优点:
1、电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V电压。
2、容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5倍。
3、荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。
4、寿命长,正常使用其循环寿命可达到500次以上。
5、没有记忆效应,在充电前不必将剩余电量放空,使用方便。
由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电
和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行监测,并在某些条件下关断充、放电回路以防止对电池发生损害。
下图为一个典型的锂离子电池保护电路原理图。
V1、V2)和一个控
N1
MOSFET的栅极,MOSFET
分别控制着充电回路与放电回路的导通与关断,C3
原理分析如下:
1、正常状态
在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET
MOSFET的导
通阻抗很小,通常小于30
小。
此状态下保护电路的消耗电流为μA级,通常小于7μA。
2、过充电保护
锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。
电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。
手机锂离子电池保护电路原理分析上网时间:2009-07-22 来源:EAW电子技术应用
4.28V(该值由控制IC决定,不同的IC“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。
而此时由于V2的存在,电池可以通过该二极管对外
4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。
3、过放电保护
电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的永久性损坏。
在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC 决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。
而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二极管对电池进行充电。
由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于
0.1μA。
在控制IC检测到电池电压低于2.3V至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常设为100毫秒左右,以避免因干扰而造成误判断。
4、过电流保护
由于锂离子电池的化学特性,电池生产厂家规定了其放电电流最大不能超过2C(C=电池容量/小时),当电池超过2C电流放电时,将会导致电池的永久性损坏或出现安全问题。
电池在对负载正常放电过程中,放电电流在经过串联的2
时,由于MOSFET
U=I*RDS*2,RDS为单个MOSFET导通阻抗,控制IC上的“V-”脚对该电压值进行检测,若负载因某种原因导致异常,使回路电流增大,当回路电流大到使U>0.1V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路,使回路中电流为零,起到过电流保护作用。
在控制IC检测到过电流发生至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常为13毫秒左右,以避免因干扰而造成误判断。
在上述控制过程中可知,其过电流检测值大小不仅取决于控制IC的控制值,还取决于MOSFET的导通阻抗,当MOSFET导通阻抗越大时,对同样的控制IC,其过电流保护值越小。
5、短路保护
电池在对负载放电过程中,若回路电流大到使U>0.9V(该值由控制IC 决定,不同的IC有不同的值)时,控制IC则判断为负载短路,其“DO”脚将迅速由高电压转变为零电压,使V1由导通转为关断,从而切断放电回路,起到短路保护作用。
短路保护的延时时间极短,通常小于7微秒。
其工作原理与过电流保护类似,只是判断方法不同,保护延时时间也不一样。
以上详细阐述了单节锂离子电池保护电路的工作原理,上面电路中所用的控制IC为日本理光公司的R5421系列,在实际的电池保护电路中,还有许多其它类型的控制IC,如日本精工的S-8241系列、日本MITSUMI 的MM3061系列、富晶的FS312和FS313系列、类比科技的AAT8632系
IC
系列。
外,电路中还有一个重要元件,就是MOSFET,它在电路中
MOSFET较好时,其导通阻抗很小,电池包的内阻就小,带载能力也强,在放电时其消耗的电能也少。
随着科技的发展,手机的体积越做越小,而随着这种趋势,对锂离子电池的保护电路体积的要求也越来越小,在这两年已出现了将控制IC和MOSFET整合成一颗保护IC的产品,如DIALOG公司的DA7112系列,有的厂家甚至将整个保护电路封装成一颗小尺寸的IC,如MITSUMI公司的产品。
手机的锂离子电池在损坏后,有些是保护电路出故障(尤其是进水机的电池),因此有些锂电可以拆开来修复,既环保又不浪费。