eds能谱分析仪

合集下载

能谱仪EDS概述

能谱仪EDS概述
19
富Mg相
Al-Mg合金 SEI (深蚀)
Al X射线像
Mg X射线像
20
TiB/Ti合金基复合材料
21
CA =(ZAF)
IA
I (SA )
9
• X射线检出角
X射线检测方向与试样表面之间的夹角。采用高检出角减 小了试样对X射线的吸收和试样表面粗糙所造成的影响。
10
试样要求
• 电子探针WDS分析需制备抛光的平试样,否则定量分析 误差较大,而EDS分析可采用如颗粒、断口及不能破坏的 零件等粗糙试样。虽然定量准确度较差,但许多情况下可 以满足要求。 • 细粉末压片或块。 • 为了获得样品的“平均”定量结果,可使电子束扫描几个 较大区域,并取不同区域的平均值。
非常低,Be窗口对Be到Ne之间元素的X射线吸收严重。
● 现在的窗口材料可接收Be。
2
电子与物质相互作用
3
4
各种信息的发射深度
5
K系激发:L3层向K层跃迁Kα1,M层向K层跃迁Kβ。
6
元素与特征X射线波长的关系
• 即EDS定性分析原理
√= K(Z-σ)
7

EDS定性速度快,但由于它能量分辨率低,谱峰往往 重叠,必须正确判断才能获得正确的结果。用WDS和
11
标样要求
• 在微米区域内成分均匀,成分准确; • 物理和化学性能稳定;在真空中电子束轰击下稳定; • 颗粒直径不小于0.2mm。
12
EDS分析方法
点分析
● 将电子束固定在试样感兴趣的点上,进行定性或 定量分析。可对材料晶界、夹杂、析出相、沉淀
物、及材料的组成(扫描多个较大区域)等分析。
13
14
电子探针

材料分析仪器

材料分析仪器

材料分析仪器材料分析仪器是用于研究材料性质和组成的仪器。

随着科技的发展,材料分析仪器的种类越来越多,功能也越来越强大。

本文将介绍几种常见的材料分析仪器。

一、扫描电子显微镜(SEM)扫描电子显微镜是一种通过扫描样品表面并测量电子束与样品之间的反射电子或次级电子来获得样品表面形貌和结构信息的仪器。

它可以提供高分辨率的图像,并能够观察样品的表面形貌、晶体结构、成分分布等。

SEM广泛应用于纳米材料、金属材料、半导体材料等领域的研究和工业生产中。

二、能谱仪(EDS)能谱仪是一种用于确定材料成分的仪器。

它通过测量材料中X 射线的能量和强度来确定材料的元素组成。

能谱仪通常与SEM配合使用,能够提供样品的形貌和成分信息。

EDS广泛应用于材料科学、地质学、化学等领域。

三、X射线衍射仪(XRD)X射线衍射仪是一种用于研究材料结构和组成的仪器。

它利用X射线与样品相互作用的原理,测量样品中的晶格间距和晶体结构。

XRD可以提供材料的晶体结构、晶格常数、晶体质量和成分等信息。

XRD广泛应用于材料科学、材料工程、矿物学等领域。

四、质谱仪(MS)质谱仪是一种用于确定材料分子结构和组成的仪器。

它通过将样品分子击中电子束或离子束,测量产生的碎片离子质量和相对丰度,从而确定样品的分子结构和组成。

质谱仪可以提供材料的分子量、分子结构、有机化合物成分等信息。

它广泛应用于有机化学、生物化学、环境科学等领域。

五、热分析仪(TA)热分析仪是一种用于研究材料热性质的仪器。

它可以测量材料在不同温度下的热重、差热、热容等参数,以及材料的热分解、氧化、还原等热反应过程。

热分析仪广泛应用于材料研发、药物制剂、化学工业等领域。

六、扫描隧道显微镜(STM)扫描隧道显微镜是一种用于观察和测量材料表面的原子和分子结构的仪器。

它通过扫描金属探测器和样品之间的隧穿电流,获得样品表面的原子尺寸拓扑图像。

STM广泛应用于纳米科学、材料科学、表面科学等领域的研究。

EDS操作指南

EDS操作指南

EDS操作指南EDS是利用特征X射线能量不同来展谱的能量色散谱仪,简称能谱仪(Energy Dispersive Spectrometer,简称EDS)。

EDS本身不能独立工作,而是作为附件安装在SEM上。

它由探测器、前置放大器、脉冲信号处理单元、模数转换器、多道分析器、小型计算机及显示记录系统组成,实际上是一套复杂的电子仪器。

EDS具体操作过程1.确认能谱能否工作Si(Li)探测器必须在低温环境下才能正常工作,所以在做EDS之前,需要检查能谱的杜瓦瓶中是否还有液氮 。

如果杜瓦瓶中没有液氮,则须补充。

在刚加入液氮的1-2小时内,由于探测器还未完全冷却,EDS不能工作。

这时打开EDS的控制电脑,会发现机箱上的HV Bias 灯为红色。

等待至探测器完全冷却,灯变绿色,此时EDS可以正常工作。

2.样品制备及装入EDS的制样及装入与SEM相同,但对于样品的制备有较高的要求。

(1)样品要尽量平。

(2)样品须导电。

(3)非导电样品,需要喷镀金膜的,要确保金或铂在谱图上的峰位,不会影响样品本身所含元素的峰位。

3.在SEM中观察图象3.1在SEM中设定条件在做EDS时,扫描条件的设定主要包括加速电压、发射电流、探针电流和工作距离的设定。

(1)加速电压通常设定在15kV-20kV之间。

(2)发射电流通常设定在7uA-20uA之间。

(3)探针电流设置为“High”模式。

(4)工作距离设定为15mm.3.2在SEM中根据“SEM操作指南”把图象调清晰。

4.谱图观察4.1简明操作过程4.2操作界面介绍134 57892 6上图是能谱仪的控制软件图,图中1-9是常用的控制区域,功能分别如下:1.屏幕观察方式(1、4、16幅图像、图像和谱线、8幅图像和1条谱线等方式)2.启动或释放外部扫描控制3.扫描模式(光斑模式、缩小光栅及全屏模式)4.时间常数(Amp time),调整时间常数使死时间在 20% - 40% 之间。

5.加速电压和放大倍数,根据SEM 控制软件中所选的加速电压和放大倍数设定6.图象收集键7.自动峰识别 并清除现有的峰标识8.谱线收集键;清除谱线键;谱线观察键:展开、收缩、升高降低; 谱线复位键;定量分析键,得到无标样定量分析结果。

eds能谱表

eds能谱表

EDS能谱表一、引言随着科技的不断进步,能谱分析技术已成为材料科学、生命科学、环境科学等领域中不可或缺的分析手段。

其中,EDS能谱表作为一种常用的能谱分析技术,具有广泛的应用前景。

本文将对EDS能谱表的基本原理、技术特点、应用领域及未来发展方向进行详细阐述。

二、EDS能谱表基本原理EDS能谱表,即能量色散X射线光谱仪,是一种基于X射线照射样品后产生的特征X射线来进行元素分析的仪器。

当X射线照射到样品上时,样品中的元素会发射出具有特定波长和能量的特征X射线。

通过测量这些特征X射线的能量和强度,可以确定样品中元素的种类和含量。

EDS能谱表的原理基于X射线与物质相互作用时的能量损失和光谱线特征,能够对样品进行定性和定量分析。

三、EDS能谱表技术特点EDS能谱表具有以下技术特点:1.高精度元素分析:EDS能谱表可以对样品中的元素进行高精度分析,检测范围广泛,包括轻元素到重元素。

2.快速分析:EDS能谱表具有较高的分析速度,可以在较短的时间内完成样品的元素分析。

3.空间分辨率高:EDS能谱表的空间分辨率较高,能够提供元素在样品表面分布的信息。

4.无需样品制备:EDS能谱表分析时不需要对样品进行特殊制备,可以直接对样品进行测量。

5.操作简便:EDS能谱表的操作系统较为简单,便于用户快速掌握。

6.适用范围广:EDS能谱表适用于各种材料的分析,如金属、陶瓷、塑料、生物组织等。

四、EDS能谱表应用领域EDS能谱表在多个领域中都有广泛的应用:1.材料科学:在材料科学领域中,EDS能谱表常被用于合金、陶瓷、复合材料等材料的元素分析和成分研究。

通过对材料表面元素的分布进行分析,可以深入了解材料的结构和性能。

2.生物学:在生物学领域中,EDS能谱表常被用于生物组织、细胞、蛋白质等样品的元素分析。

通过对生物样品中元素的种类和含量进行分析,可以揭示生物体内的代谢过程和生理机制。

3.环境科学:在环境科学领域中,EDS能谱表常被用于土壤、水、空气等样品的元素分析。

EDS能谱检测

EDS能谱检测

Z:原子序数修正因子。(电子束散射与Z有关)
A:吸收修正因子。(试样对X射线的吸收) F:荧光修正因子。(特征X射线产生二次荧光)
半定量分析
无标样定量分析
无标样定量分析是X射线显微分析的一种快 速定量方法。强度比K=IS/IStd。
表达式中IStd是标样强度,它是由纯物理计 算,或用标样数据库给定的,适应于不同 的实验条件。其计算精度不如有标样定量 分析。
EDS原理及应用
12091024 吴保华
EDS
EDS可以与EPMA,SEM,TEM等组 合,其中SEM-EDS组合是应用最 广的显微分析仪器,EDS的发展, 几乎成为SEM的表配。是微区成 份分析的主要手段之一。
能谱仪:EDS (Energy Dispersive Spectrometer)
能谱的特点
Na
Cl
Ag
Thank you !
EDS检测(未镀膜)
cps/eV 4.5 4.0 3.5 3.0 Cl 2.5 2.0 1.5 1.0 0.5 0.0 0 1 2 3 keV 4 5 6 C Ca O Cl Ca
El AN
unn. C norm. C Atom. C Error (1 Sigma) K fact. Z corr. A corr. F corr. [wt.%] [wt.%] [at.%] [wt.%] ------------------------------------------------------------------------------------C 6 K-series 63.77 66.81 81.86 7.68 1.515 0.441 1.000 1.000 Cl 17 K-series 23.11 24.21 10.05 0.80 0.086 2.794 1.000 1.007 O 8 K-series 8.29 8.68 7.98 1.25 0.119 0.731 1.000 1.00 Ca 20 K-series 0.29 0.30 0.11 0.04 0.001 2.722 1.000 1.017 -------------------------------------------------------------------------------------

能谱分析仪

能谱分析仪

能谱分析仪(EDS)能谱分析仪(EDS)是微区成份分析的主要手段之一。

通常EDS检测限为0.1%-0.5%(元素含量)。

EDS的能量分辨率:~130eV。

图1 EDS1、主要有以下特点:1)、能快速、同时对各种试样的微区内Be-U的所有元素,元素定性、定量分析,几分钟即可完成。

2)、对试样与探测器的几何位置要求低,可以在低倍率下获得X射线扫描、面分布结果。

3)、能谱所需探针电流小:对电子束照射后易损伤的试样,例如生物试样、快离子导体试样、玻璃等损伤小。

4)、检测限一般为0.1%-0.5%,中等原子序数的无重叠峰主元素的定量相误差约为2%。

2、EDS分析方法----点分析法电子束(探针)固定在试样感兴趣的点上,进行定性或定量分析。

该方法准确度高,用于显微结构的成份分析,对低含量元素定量的试样,只能用点分析。

图2 某试样EDS点分析3、EDS的分析方法-线扫描分析电子束沿一条分析线进行扫描时,能获得元素含量变化的线分布曲线。

结果和试样形貌像对照分析,能直观地获得元素在不同相或区域内的分布。

图3 某试样线扫表分析4、EDS的分析方法-面分布电子束在试样表面扫描时,元素在试样表面的分布能在屏幕上以亮度(或彩色)分布显示出来(定性分析),亮度越亮,说明元素含量越高。

研究材料中杂质、相的分布和元素偏析常用此方法。

面分布常常与形貌对照分析。

图5-a 某试样EDS检测(未镀膜)图5-b 某试样EDS检测(镀膜)5、定量分析对试样的要求1)样品在真空和电子束轰击下要稳定;2)高准确度的分析时,要求试样分析面平、垂直于入射电子束;图6 不同入射角度对比图3)试样尺寸大于X射线扩展范围;4)有良好的导电和导热性能;不导电试样或者导电性差的试样,例如无机非金属材料、有机材料、矿物及生物材料等,在常规SEM/EDS分析条件下会产生如下现象:(1)、荷电现象(电荷积累);(2)电子束不稳定,无法确定分析点或者分析点漂移。

(3)、图像质量差(图像畸变、衬度和亮度异常),试样经常放电或者无法成像。

eds分析

eds分析

eds分析人工智能是当下最为热门的技术领域之一,其中一个重要的应用就是EDS分析。

EDS分析是通过能量色散X射线能谱仪(Energy Dispersive X-ray Spectroscopy)对样品进行化学元素分析的一种方法。

本文将从EDS分析的原理、仪器设备、应用领域等方面进行介绍。

首先,我们来了解一下EDS分析的原理。

当样品受到电子束轰击后,会产生各种各样的物理反应,其中之一就是发射X射线。

这些X射线的能量与样品中的化学元素有关,通过检测和分析X射线能谱,我们可以确定样品中存在的化学元素的种类和相对含量。

这种分析方法非常快速和灵敏,可以用于研究不同材料的成分和微观结构。

要进行EDS分析,我们需要一台能量色散X射线能谱仪。

这种仪器设备通常由电子显微镜和能量色散X射线探测器组成。

电子显微镜负责向样品发射电子束,并观察样品的形态和结构;而能量色散X射线探测器则负责收集和分析样品产生的X射线能谱。

通过对X射线能谱的处理和解析,我们可以得到样品中元素的特征峰和相对峰强度,从而进行元素定性和定量分析。

EDS分析在材料科学、地质学、生物学等领域具有广泛的应用。

首先,它可以用于材料组分的分析和表征。

例如,在合金材料中,我们可以利用EDS分析来确定不同元素的含量和分布情况,从而了解合金的组成和性能。

此外,EDS分析还可以用于研究纳米材料和薄膜的成分和结构,为材料的制备和改性提供依据。

其次,EDS分析在地质学研究中也扮演着重要的角色。

地质样品往往含有丰富的化学元素,通过对样品进行EDS分析,可以确定岩石和矿物中的主要元素和微量元素的含量,帮助地质学家了解地质过程和资源开发的潜力。

另外,EDS分析还可用于分析土壤和环境样品中的污染元素,为环境保护和污染治理提供科学依据。

此外,EDS分析在生物学研究中也有一定的应用。

通过对细胞和组织样品进行化学元素分析,可以揭示生物体内微量元素的分布和变化规律,为生物学家研究生物体的功能和生理过程提供重要线索。

X射线能谱仪(EDS)

X射线能谱仪(EDS)
入射电子束受到气体散射作用
电子能量为25KV时,通过氧气的平均自由程
环境扫描电镜的特点(一)
平均碰撞次数(m)定义三类不同的散射
Minimal Scattering Scatter <5% ( 0< m< 0.05 )
Partial Scattering Scatter 5% to 95% ( 0.05< m< 3)
半定量分析
无标样定量分析
无标样定量分析是X射线显微分析的一种快 速定量方法。强度比 K=IS/IStd。 表达式中IStd是标样强度,它是由纯物理计 算,或用标样数据库给定的,适应于不同的 实验条件。其计算精度不如有标样定量分 析。
二、X射线能谱仪基本功能
EDS的分析方法-点分析
电子束(探针)固定 在试样感兴趣的点 上,进行定性或定量 分析。该方法准确度 高,用于显微结构的 成份分析,对低含量 元素定量的试样,只 能用点分析。
EDS的分析精度
“电子探针和扫描电镜X射线能谱定量分析通则”国家标准 定量结果及允许误差 对定量结果必须正确选取有效位数。EDS定量分析结果, 小数点后保留一位,原始数据可以多保留一位。 EDS分析的相对误差 (含量>20%wt)的元素, 允许的相对误差 <5% (3 %wt<含量<20%wt的元素,允许的相对误差<10% (1 %wt<含量<3%wt的元素,允许的相对误差<30% (0.5%wt<含量<1%wt的元素,允许的相对误差<50%
X + e- → X+ + 2e-
环境扫描电镜的特点(二)
消除绝缘样品表面电荷积累的解释
- - - - gas
- - - - gas
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EDS能谱分析仪
1. 简介
EDS能谱分析仪(Energy Dispersive X-ray Spectroscopy)是一种常用于材料科学和研究领域的分析仪器。

它用于确定材料的元素组成和分析样品的化学成分。

EDS能谱分析仪基于X 射线的能量特性进行测量和分析。

2. 工作原理
EDS能谱分析仪的工作原理基于样品中发生的X射线和能谱仪之间的相互作用。

当样品被激发时,其原子与外部能量源发生相互作用,产生一系列X射线。

这些X射线具有特定的能量值,对应于不同元素的特征峰。

EDS能谱分析仪通过将能量分散的X射线引导至能谱仪中的能量敏感探测器,从而测量和记录X射线的能量谱。

能谱仪会将能量谱转换为计数率谱,这样就可以定量分析样品中元素的含量。

3. 主要组成部分
EDS能谱分析仪主要由以下几个组成部分组成:
3.1 X射线发生器
X射线发生器用于产生高能量的X射线。

它通常由X射线管、高压电源和辐射窗口组成。

X射线管通过电子束轰击X 射线靶材来产生X射线。

3.2 样品室
样品室是放置待分析样品的空间。

它通常具有真空环境,以避免气体对X射线的吸收和散射。

样品室还包括样品台,用于支持和定位待分析的样品。

3.3 X射线与样品的相互作用区域
该区域包括X射线与待分析样品之间的交互部分。

它通常包括一个X射线窗口和一套滤光器,以过滤和选择特定能量范围的X射线。

3.4 能谱仪
能谱仪是EDS能谱分析仪的关键组成部分,用于测量和记录X射线的能量谱。

它通常由一个能量敏感探测器、放大器和多道分析器组成。

能量敏感探测器将能量分散的X射线转
换为电信号,并将其发送给放大器进行放大。

多道分析器将能量信号转换为计数率谱,以进行后续的数据分析和处理。

3.5 数据处理和分析软件
EDS能谱分析仪通常配备专业的数据处理和分析软件。

这些软件可以对能量谱进行处理、分析和解释,并生成元素含量和化学组成等报告。

4. 应用领域
EDS能谱分析仪在材料科学和研究领域有广泛的应用。

以下是一些常见的应用领域:
•材料分析:EDS能谱分析仪可以用于确定材料的元素组成和分析材料的化学成分。

它可以帮助科学家们了解材料的特性和性能。

•矿物学研究:EDS能谱分析仪可以用于研究和鉴定矿物样品中的元素和相组成。

它可以帮助地质学家们了解地球的矿物形成和演化过程。

•生物科学:EDS能谱分析仪可以应用于生物样品的元素分析,例如分析生物组织中的矿物元素含量,从而深
入研究生命过程和疾病机制。

•失效分析:EDS能谱分析仪可以用于材料失效分析,通过分析失效部位的元素组成和化学成分,帮助找到失效
的根本原因。

5. 使用注意事项
在使用EDS能谱分析仪时,需要注意以下几点:
•仪器操作:使用者需要熟悉仪器的操作步骤和安全
注意事项,并按照操作手册进行操作。

•样品准备:样品需要被制备成适合分析的形态,如
薄片、粉末或块状。

样品表面需平整、洁净以确保准确分析。

•仪器校准:在进行分析之前,需要对仪器进行校准,以确保获得准确可靠的结果。

•数据解释:分析结果需要结合其他实验数据和理论
知识进行解释,从而得出科学和可靠的结论。

6. 结论
EDS能谱分析仪作为一种常用的分析仪器,在材料科学和研究领域发挥着重要的作用。

它通过测量和分析样品中X射线的能量谱,可以确定材料的元素组成和化学成分。

EDS能谱分析仪广泛应用于材料分析、矿物学研究、生物科学和失效分析等领域。

使用者在使用EDS能谱分析仪时需要注意仪器操作、样品准备、仪器校准和数据解释等方面的要点,以获得准确可靠的分析结果。

相关文档
最新文档