(推荐)高一三角函数题型总结

合集下载

高中三角函数知识点归纳总结(通用10篇)

高中三角函数知识点归纳总结(通用10篇)

高中三角函数知识点归纳总结(通用10篇)高中数学三角函数知识点总结:三倍角公式篇一sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)高中数学三角函数知识点总结:三倍角公式推导篇二sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:半角公式篇三tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)高中数学三角函数知识点总结:辅助角公式篇四Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))高中数学三角函数知识点总结:和差化积篇五sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)高中三角函数知识点归纳篇六1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。

全国通用2023高中数学必修一第五章三角函数题型总结及解题方法

全国通用2023高中数学必修一第五章三角函数题型总结及解题方法

全国通用2023高中数学必修一第五章三角函数题型总结及解题方法单选题1、已知函数f (x )=sin (2x +π3),为了得到函数g (x )=cos (2x +π3)的图象只需将y =f (x )的图象( ) A .向左平移π4个单位B .向右平移π4个单位 C .向左平移π2个单位D .向右平移π2个单位 答案:A分析:利用三角函数的平移结合诱导公式即可求解. 解:因为sin (2x +π3+π2)=cos (2x +π3) 所以sin(2x +π3)→sin(2x +π2+π3),只需将f (x )的图象向左平移π4个单位, 故选:A.2、已知α,β为锐角,sinα=45,cos(α+β)=−√22,则cosβ=( )A .3√210B .√210C .7√210D .9√210答案:B分析:利用同角三角函数基本关系式,求出cosα,sin(α+β),再利用角变换β=α+β−α,利用两角差的余弦公式求得答案.由α是锐角,sinα=45,则cosα=√1−sin 2α=35,又α,β是锐角,得α+β∈(0,π), 又cos (α+β)=−√22,则sin(α+β)=√22, 则cosβ=cos[(α+β)−α]=cos(α+β)cosα+sin(α+β)sinα =−√22×35+√22×45=−3√2+4√210= √210.故选:B .3、中国扇文化有着深厚的文化底蕴,文人雅士喜在扇面上写字作画.如图,是书画家唐寅(1470—1523)的一幅书法扇面,其尺寸如图所示,则该扇而的面积为( )A .704cm 2B .352cm 2C .1408cm 2D .320cm 2 答案:A解析:设∠AOB =θ,OA =OB =r ,由题意可得:{24=rθ64=(r +16)θ ,解得r ,进而根据扇形的面积公式即可求解.如图,设∠AOB =θ,OA =OB =r , 由弧长公式可得:{24=rθ64=(r +16)θ , 解得:r =485,所以,S 扇面=S 扇形OCD −S 扇形OAB =12×64×(485+16)−12×24×485=704cm 2.故选:A .4、已知sin (π+α)=35,则sin(−α)cos(π−α)sin(π2−α)=( )A .−45B .45C .−35D .35答案:C解析:由条件利用诱导公式进行化简所给的式子,可得结果. ∵sin(π+α)=35=−sinα,∴sinα=−35,则sin(−α)cos(π−α)sin(π2−α)=−sinα⋅(−cosα)cosα=sinα=−35,故选:C5、已知tanθ=2,则sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ)=( )A .2B .-2C .0D .23答案:B分析:根据tanθ=2,利用诱导公式和商数关系求解. 因为tanθ=2, 所以sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ),=2cosθcosθ−sinθ, =21−tanθ=−2,故选:B6、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r 的等式,由此求解出r 的值.设扇形的半径为R ,圆心角为α,面积为S ,因为2R +αR =20, 所以S =12αR 2=(10−R )R ≤(10−R+R 2)2=25,取等号时10−R =R ,即R =5,所以面积取最大值时R =5,α=2, 如下图所示:设内切圆圆心为O ,扇形过点O 的半径为AP ,B 为圆与半径的切点, 因为AO +OP =R =5,所以r +r sin∠BPO=5,所以r +r sin1=5,所以r =5sin11+sin1, 故选:C.7、若f (x )=cos (x −π3)在区间[−a,a ]上单调递增,则实数a 的最大值为( )A .π3B .π2C .2π3D .π 答案:A分析:先求出函数的增区间,进而建立不等式组解得答案即可.易知将函数y =cosx 的图象向右平移π3得到函数f (x )=cos (x −π3)的图象,则函数f (x )=cos (x −π3)的增区间为[−23π+2kπ,π3+2kπ](k ∈Z ),而函数又在[−a,a ]上单调递增,所以{−a ≥−23πa ≤π3 ⇒a ≤π3,于是0<a ≤π3,即a的最大值为π3.故选:A.8、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值. sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A.9、小说《三体》中的“水滴”是三体文明派往太阳系的探测器,由强相互作用力材料制成,被形容为“像一滴圣母的眼泪”.小刘是《三体》的忠实读者,他利用几何作图软件画出了他心目中的水滴(如图),由线段AB ,AC 和优弧BC 围成,其中BC 连线竖直,AB ,AC 与圆弧相切,已知“水滴”的水平宽度与竖直高度之比为74,则cos∠BAC =( ).A .1725B .4√37C .45D .57答案:A分析:设优弧BC 的圆心为O ,半径为R ,连接OA ,OB ,OC ,如图,进而可得“水滴”的水平宽度为|OA |+R,竖直高度为2R ,根据题意求得OA =52R ,由切线的性质和正弦函数的定义可得sin∠BAO =25,结合圆的对称性和二倍角的余弦公式即可得出结果.设优弧BC 的圆心为O ,半径为R ,连接OA ,OB ,OC ,如下图所示易知“水滴”的水平宽度为|OA |+R ,竖直高度为2R ,则由题意知OA+R 2R=74,解得OA =52R ,AB 与圆弧相切于点B ,则OB ⊥AB ,∴在Rt △ABO 中,sin∠BAO =OB OA=R 52R=25,由对称性可知,∠BAO =∠CAO ,则∠BAC =2∠BAO ,∴cos∠BAC =1−2sin 2∠BAO =1−2×(25)2=1725, 故选:A .10、若角α的终边上一点的坐标为(1,−1),则cosα=( ) A .−1B .−√22C .√22D .1 答案:C分析:根据任意角三角函数的定义即可求解.∵角α的终边上一点的坐标为(1,−1),它与原点的距离r =√12+(−1)2=√2, ∴cosα=xr =√2=√22, 故选:C. 填空题11、已知cos (π6+α)=√33,则cos (5π6−α)=________.答案:−√33分析:本题可根据诱导公式得出结果.cos (5π6−α)=cos [π−(π6+α)]=−cos (π6+α)=−√33, 所以答案是:−√3312、若函数f(x)=sin(x +φ)+cosx 的最大值为2,则常数φ的一个取值为________. 答案:π2(2kπ+π2,k ∈Z 均可)分析:根据两角和的正弦公式以及辅助角公式即可求得f(x)=√cos 2φ+(sinφ+1)2sin(x +θ),可得√cos 2φ+(sinφ+1)2=2,即可解出.因为f(x)=cosφsinx +(sinφ+1)cosx =√cos 2φ+(sinφ+1)2sin(x +θ), 所以√cos 2φ+(sinφ+1)2=2,解得sinφ=1,故可取φ=π2.所以答案是:π2(2kπ+π2,k ∈Z 均可).小提示:本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.13、函数f(x)=sinx的图象向左平移π6个单位得到函数g(x)的图象,则下列函数g(x)的结论:①一条对称轴方程为x=7π6;②点(5π6,0)是对称中心;③在区间(0,π3)上为单调增函数;④函数g(x)在区间[π2,π]上的最小值为−12.其中所有正确的结论为______.(写出正确结论的序号)答案:②③④解析:先求得g(x),然后利用代入法判断①②,根据单调区间和最值的求法判断③④.函数f(x)=sinx的图象向左平移π6个单位得到函数g(x)=sin(x+π6),g(7π6)=sin(7π6+π6)=sin4π3=sin(π+π3)=−sinπ3=−√32≠±1,所以①错误.g(5π6)=sin(5π6+π6)=sinπ=0,所以②正确.由2kπ−π2≤x+π6≤2kπ+π2,解得2kπ−2π3≤x≤2kπ+π3,k∈Z.令k=0得−2π3≤x≤π3,所以g(x)在区间(0,π3)上为单调增函数,即③正确.由π2≤x≤π得2π3≤x+π6≤7π6,所以当x=π,x+π6=7π6时,g(x)有最小值为sin7π6=sin(π+π6)=−sinπ6=−12,所以④正确.所以答案是:②③④小提示:解决有关三角函数对称轴、对称中心的问题,可以考虑代入验证法.考查三角函数单调区间的问题,可以考虑整体代入法.解答题14、已知函数f(x)=2cos2ωx−1+2√3sinωxcosωx(0<ω<1),直线x=π3是函数f(x)的图象的一条对称轴. (1)求函数f(x)的单调递增区间;(2)已知函数y=g(x)的图象是由y=f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g(2α+π3)=65,α∈(0,π2),求sinα的值.答案:(1)[−2π3+2kπ,π3+2kπ],k∈Z;(2)4√3−310解析:(1)首先化简函数f(x)=2sin(2ωx+π6),再根据x=π3是函数的一条对称轴,代入求ω,再求函数的单调递增区间;(2)先根据函数图象变换得到g(x)=2cos12x,并代入g(2α+π3)=65后,得cos(α+π6)=35,再利用角的变换求sinα的值.(1)f(x)=cos2ωx+√3sin2ωx=2sin(2ωx+π6),当x =π3时,ω×2π3+π6=π2+kπ,k ∈Z ,得ω=12+3k 2,k ∈Z ,∵0<ω<1,∴ω=12,即f (x )=2sin (x +π6),令−π2+2kπ≤x +π6≤π2+2kπ, 解得:−2π3+2kπ≤x ≤π3+2kπ,k ∈Z ,函数的单调递增区间是[−2π3+2kπ,π3+2kπ],k ∈Z ;(2)g (x )=2sin [12(x +2π3)+π6]=2cos 12x , g (2α+π3)=2cos (α+π6)=65,得cos (α+π6)=35, ∵α∈(0,π2),α+π6∈(π6,2π3),sin (α+π6)=√1−cos 2(α+π6)=45, sinα=sin [(α+π6)−π6]=sin (α+π6)cos π6−cos (α+π6)sin π6=45×√32−35×12=4√3−310小提示:方法点睛:本题考查函数的图象变换,以及y =Asin (ωx +φ)的性质,属于中档题型,y =Asin (x +φ)的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是y =Asin (ωx +φ),若y =Asinωx 向右(或左)平移φ(φ>0)个单位,得到函数的解析式是y =Asin [ω(x −φ)]或y =Asin [ω(x +φ)].15、已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过函数f (x )=−3−a x−3(a >0且a ≠1)的定点M .(1)求sinα−2cosα的值;(2)求sin (π+α)+cos(π2+α)cos (2π+α)+sin (−α)−tan (5π+α)的值. 答案:(1)−2 (2)5221分析:(1)易知函数f (x )=−3−a x−3的定点M 的坐标为(3,−4),利用三角函数的定义则可求出sinα=−45,cosα=35则可求出答案;(2)利用诱导公式化简,再将sinα=−45,cosα=35,tanα=−43代入,即可得出答案. (1)∵函数f (x )=−3−a x−3(a >0且a ≠1)的定点M 的坐标为(3,−4), ∴角α的终边经过点M (3,−4),∴OM =√32+(−4)2=5(O 为坐标原点), 根据三角函数的定义可知sinα=−45,cosα=35,∴sinα−2cosα=−45−2×35=−2. (2)sin (π+α)+cos(π2+α)cos (2π+α)+sin (−α)−tan (5π+α)=−sinα−sinαcosα−sinα−tanα=−2sinαcosα−sinα−(−43) =−2×(−45)35−(−45)+43=87+43=5221.。

高中三角函数题型总结

高中三角函数题型总结

高中三角函数题型总结三角函数是高中数学中较重要的一部分,也是许多学生认为难以掌握的内容之一。

在学习三角函数过程中,掌握各类题型的解题方法和技巧,对于提高解题效率和成绩的提升至关重要。

本文将对高中三角函数常见的题型进行总结,希望对同学们的学习有所帮助。

一、基本概念题在学习三角函数时,首先需要掌握的是基本的概念。

这类题目常常出现在选择题或填空题中。

例如:1. sin30°等于多少?2. cos(π/3)等于多少?3. tan45°等于多少?对于这类题目,我们需要熟练掌握三角函数在常见角度下的取值,并能够准确地计算出对应的数值。

二、三角函数的运算题除了基本的概念题外,三角函数的运算也是高中数学中常见的题型之一。

这类题目常常需要用到三角函数的基本性质和恒等式来进行推导和计算。

例如:1. 已知sinθ=1/2,cosθ=√3/2 ,求tanθ的值。

2. 已知sinα+cosα=1/√2,求tan(α+45°)的值。

对于这类题目,我们需要熟练掌握三角函数的基本性质和恒等式,运用这些性质和恒等式,灵活推导和计算出所需的结果。

三、图像性质题三角函数的图像性质也是需要掌握的一部分,这类题目要求我们根据图像的变化特点来判断和计算。

例如:1. 已知y=sin x的图像在[-π/2,π/2]区间上是递增的,求sin(7π/6)的值。

2. 已知y=cos 2x的图像在[0,π]区间上取最大值1,求cos 0的值。

对于这类题目,我们需要根据图像的变化规律,运用相关的三角函数性质和公式,来精确地计算出所需的结果。

四、三角方程与不等式题三角方程与不等式也是高中数学中重要的一部分。

这类题目要求我们根据已知的方程或不等式条件,求出满足条件的解集或构造出满足条件的角度。

例如:1. 求解方程sinθ=1/2 在[0,2π]上的解集。

2. 求解不等式cosθ>0.5 在[-π,π]上的解集。

对于这类题目,我们需要灵活运用三角函数的定义和性质,结合代数方程与不等式的解题思路,将三角方程与不等式转化为代数方程与不等式,并求出满足条件的解集。

高一三角函数题型总结材料

高一三角函数题型总结材料

高一三角函数题型总结材料实用标准:三角函数的求值方法1.已知角范围和其中一个角的三角函数值,可以求任意角的三角函数值。

具体方法是:(1)画出直角三角形;(2)利用勾股定理算出三角形的大小;(3)根据角的范围判断三角函数的正负,从而求出任意角的三角函数值。

例题1:已知角α为第二象限角,sinα=1/5.求cosα、tanα、cotα的值。

例题2:已知角α为第四象限角,tanα=-3.求cosα、sinα、cotα的值。

2.如果一个式子满足关于sinα和cosα的分式或齐次式,那么可以实现tanα之间的转化。

具体方法是将式子化简成关于tanα的形式。

例题:已知(sinα-2cosα)/(3sinα+5cosα)=-5/13.求tanα的值。

3.已知三角函数sinα和cosα的和或差的形式,可以求出sinα.cosα的值。

具体方法是将等式两边完全平方,注意判断正负。

例题:已知π/4<α<π/2,sinα+cosα=√2/2.求sinα.cosα的值。

4.利用“加减2kπ”大角化小角,负角化正角,可以求出三角函数值。

例题:求值:sin(-2313π/673)+cosπ.tan4π-cosπ。

练题:1.已知sinα=4/5,且α为第二象限角,那么tanα的值等于(B)-3/4.2.已知sinαcosα=3/8,且π/4<α<π/2,则cosα-sinα的值为(C)-3/4.3.设α是第二象限角,则sinα.cosα/(sin2α-1)=-tan2α。

4.若tanθ=1/3,π<θ<3π/2,则sinθ.cosθ的值为(A)-3/10.5.已知sinα-cosα/(2sinα+3cosα)=1/5,则tanα的值是(B)8/3.6.若α是三角形的一个内角,且sinα+cosα=2/3,则三角形为(C)直角三角形。

1.cos(π-A)=cosA/22.如果A为锐角,sin(π+A)=-sinA3.sin^2(π/3-x)+sin^2(π+x)=3/24.α是第四象限角。

((完整版))高中数学三角函数知识点总结和常见题类型归纳,推荐文档

((完整版))高中数学三角函数知识点总结和常见题类型归纳,推荐文档

高中数学三角函数常见习题类型及解法高考试题中出现的三角函数问题,难度相对较低,重点突出。

该类试题集中在第15题的位置,共分为两种考察形式:解三角形和三角函数变换。

因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质,以及化简、求函数值和最值等重点内容的复习;又要注重三角知识的工具性,突出三角与代数、几何的综合联系,以及三角知识的应用意识。

一、知识整合1.熟练掌握三角变换公式,理解每个公式的含义以及常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能灵活应用这些方法进行三角函数的求值、化简;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题。

2.熟练掌握正弦函数、余弦函数、正切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数的图象特点,会用五点作图法画出函数y=Asin( x+ )的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化。

3.熟练掌握三角形中的正弦定理和余弦定理,明确两个定理的应用条件。

能够依托题目给的不同已知条件,灵活运用两个定理解决实际问题。

二、高考考点分析近些年北京高考中本部分所占分值大约是13-18分,主要以解答题的形式出现,少数时候会有填空题。

主要考察内容按难度分,我认为有以下两个层次:第一层次:通过对诱导公式和倍角公式等公式的灵活运用,解决有关三角函数基本性质的问题,如判断符号、求值、求周期、判断奇偶性等;通过正弦定理和余弦定理的灵活运用,解决有关三角形的简单问题,如求角、边长等。

第二层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题,如:求复合函数值域。

三、方法技巧(1)常数的代换:特别是:1=cos2θ+sin2θ。

(2)项的分拆与角的配凑。

(3)降幂扩角法和升幂半角法。

三角函数经典题型总结

三角函数经典题型总结

三角函数的经典题型主要包括以下几个方面:
1. 三角函数的基本性质和公式应用:
-三角函数的基本关系:sin²θ+ cos²θ= 1,tanθ= sinθ/cos θ等。

-诱导公式:sin(α±β),cos(α±β),tan(α±β)等的公式。

-二倍角公式、半角公式、和差化积、积化和差公式等。

2. 解三角形问题:
-正弦定理:a/sinA = b/sinB = c/sinC。

-余弦定理:a²= b²+ c²- 2bc cosA,同理可得其他边和角的关系。

-利用正弦定理和余弦定理解决边角关系问题。

3. 三角函数图像和性质:
-正弦函数、余弦函数、正切函数的图像及其周期性、奇偶性、单调性、对称性等性质。

-利用图像解三角函数方程和不等式。

4. 三角函数的应用问题:
-在物理中的应用,如振动问题、波动问题、光学问题等。

-在地理学中的应用,如地图上的方位角、距离计算等。

-在工程学中的应用,如结构力学、电路分析等。

5. 三角函数的复合与逆运算:
-复合三角函数的运算,如sin(cosx),cos(sinx)等。

-三角函数的反函数,如arcsin(x),arccos(x),arctan(x)等。

6. 三角恒等式的证明:
-利用三角函数的基本关系和公式进行恒等式的变形和证明。

以上就是三角函数的一些经典题型总结,掌握这些题型的解题方法和技巧,可以有效地提高解决三角函数问题的能力。

高考三角函数题型归纳总结

高考三角函数题型归纳总结

高考三角函数题型归纳总结
高考解三角函数题型归纳总结
一、函数值的计算
1.由某个函数的定义求指定的函数值
2.由表达式求某个函数的值
3.由一切三角函数的基本等式求某个函数的值
二、函数的延长
1.函数的延长:对某个函数的符号或值作一定重新定义,以推广原函数的定义域,使原值可以成为新函数的值
2.求函数值时把原函数的值替换新定义的函数的值
三、函数的平移
1.对某个函数作一定的平移变换,使其实轴、值轴都做出一定的平移
2.函数按照平移变换规则,将原函数的值按比例地经过初始点再离开
四、函数的综合运用
1.记住一些常见的组合等式,如:sinα±cosα=sincosα、sin α-cosα=-2sinsinα/2
2.按延长或平移变换,用组合等式解决具体问题
3.用其他三角函数的关系转换,把一种函数转换成另一种,如tanα=sinα/cosα。

- 1 -。

三角函数题型高一知识点

三角函数题型高一知识点

三角函数题型高一知识点三角函数是高中数学中的重要知识点之一,它是研究角度和边长之间的关系的数学工具。

在高一阶段,学生们需要学习并掌握三角函数的基本概念、性质和运用方法。

本文将介绍几种常见的三角函数题型,帮助高一学生更好地理解和应用这一知识点。

1. 正弦函数题型正弦函数是三角函数中最基本的函数之一,它表示了一个角的正弦值与其对边和斜边之间的关系。

在解题过程中,学生需要注意以下几个常见的正弦函数题型:题型1:已知一个角的正弦值,求其对边和斜边的关系。

解析:可根据正弦函数的定义,将已知的正弦值代入公式,通过求解方程求得对边和斜边的值。

题型2:已知一个锐角的对边和斜边,求其正弦值。

解析:根据正弦函数的定义,将已知的对边和斜边代入公式,计算得到其正弦值。

2. 余弦函数题型余弦函数是三角函数中另一个基本函数,它表示了一个角的余弦值与其邻边和斜边之间的关系。

在解题过程中,学生需要注意以下几个常见的余弦函数题型:题型1:已知一个角的余弦值,求其邻边和斜边的关系。

解析:可根据余弦函数的定义,将已知的余弦值代入公式,通过求解方程求得邻边和斜边的值。

题型2:已知一个锐角的邻边和斜边,求其余弦值。

解析:根据余弦函数的定义,将已知的邻边和斜边代入公式,计算得到其余弦值。

3. 正切函数题型正切函数是三角函数中最常用的函数之一,它表示了一个角的正切值与其对边和邻边之间的关系。

在解题过程中,学生需要注意以下几个常见的正切函数题型:题型1:已知一个角的正切值,求其对边和邻边的关系。

解析:可根据正切函数的定义,将已知的正切值代入公式,通过求解方程求得对边和邻边的值。

题型2:已知一个锐角的对边和邻边,求其正切值。

解析:根据正切函数的定义,将已知的对边和邻边代入公式,计算得到其正切值。

总结三角函数是高一阶段重要的数学知识点,掌握并熟练运用三角函数的基本概念、性质和解题方法对于理解和应用相关数学知识具有重要意义。

本文介绍了几种常见的三角函数题型,希望能够帮助高一学生更好地理解和掌握这一知识点,提高解题能力和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型总结1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:画直角三角形 利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,135sin =α求αcos 、αtan 、αcot 的值2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值2.一个式子如果满足关于αsin 和αcos 的分式齐次式 可以实现αtan 之间的转化例题:1.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为_____________.2.已知2tan =α,则1.ααααcos sin cos sin -+=_____________.2.αααα22cos sin cos sin -=_____________.3.1cos sin +αα=_____________.(“1”的代换)3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍) 例题:已知πα<∠<0,αsin +αcos =21,求αsin .αcos αcos -αsin4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133π= ;练习题1.已知sin α=45,且α为第二象限角,那么tan α的值等于 ( )(A)34(B)43- (C)43(D)43-2.已知sin αcos α=81,且4π<α<2π,则cos α-sin α的值为( ) (A)23 (B)43(C)3 (D)±233.设是第二象限角,则sin cos αα=( )(A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ=31,π<θ<32π,则sin θ·co s θ的值为( ) (A)±310(B)3105.已知sin cos 2sin 3cos αααα-+=51,则tan α的值是 ( )(A)±83(B)83(C)83-(D)无法确定*6.若α是三角形的一个内角,且sin α+cos α=32,则三角形为 ( )(A)钝角三角形 (B)锐角三角形 (C)直角三角形(D)等腰三角形三角函数诱导公式诱导公式可概括为把απ±⋅k 2的三角函数值转化成角α的三角函数值。

(k 指奇数或者偶数,α相当锐角)口诀“奇变偶不变,符号看象限。

”其中奇偶是指2π的奇数倍还是偶数倍,变与不变指函数名称的变化。

公式一:=+)2sin(απk =+)2cos(απk =+)2tan(απk公式二:=-)sin(α =-)cos(α =-)tan(α(可根据奇偶函数记忆) 公式三:=-)sin(απ =-)cos(απ =-)tan(απ (两角互补)公式四:=+)sin(απ =+)cos(απ =+)tan(απ 公式五:=-)2sin(απ=-)2cos(απ(两角互余,实现αsin 与αcos 的转化)公式六:=+)2sin(απ=+)2cos(απ两角互补的应用:=π65sinπ32cos = =π43tan 三角形内角中:=+)sin(B A =+)cos(C B =+)tan(C A 两角互余应用:sin )4cos(=+απ( ) cos )23sin(=-απ( )奇偶性质应用:=-)cos(πα )232sin(πα-三角函数诱导公式练习题1.若(),2,53cos παππα<≤=+则()πα2sin --的值是 ( ) A .53 B . 53- C .54D . 54-2.sin (-6π19)的值是( ) A .21B .-21 C .23 D .-23 3.3、sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .434.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( )A .-36 B .36C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( ) A .cos (A +B )=cos C B .sin (A +B )=sin C C .tan (A +B )=tan C D.sin 2B A +=sin 2C6.已知()21sin -=+πα,则()πα7cos 1+的值为 ( )A .332 B . -2 C . 332- D . 332±7.若1sin()22πα-=-,则tan(2)πα-=________.8.如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π ________. 9.sin2(3π-x )+sin 2(6π+x )= .10.α是第四象限角,1312cos =α,则αsin 等于________.三角函数图像及其性质1.正弦函数、余弦函数、正切函数的图像三角函数图像变换函数图象平移变换:即:“左加,右减” 针对x 变化即“上加,下减” 在等号右侧加或者减函数图像伸缩变换:如果x 扩大到原来A 倍(A>0)x Ax 1→针对x 的变化 如果y 扩大到原来A 倍(A>0)y Ay 1→ 针对y 的变化 可理解为“针对y x ,的相反变化”图像变换一:左右平移1、把函数R x x y ∈=,sin 图像上所有的点向左平移4π个单位,所得函数的解析式为 _________2、把函数R x x y ∈=,cos 图像上所有的点向右平移5π个单位,所得函数的解析式为 _________图像变换二:纵向伸缩3、对于函数R x x y ∈=,sin 3的图像是将R x x y ∈=,sin 的图像上所有点的______(“横”或”纵”)坐标______(伸长或缩短)为原来的______而得到的图像。

4、由函数R x x y ∈=,sin 4的图像得到R x x y ∈=,sin 的图像,应该是将函数R x x y ∈=,sin 4上所有点的______(“横”或“纵”)坐标______(“伸长”或“缩短”)为原来的______(横坐标不变)而得到的图像。

图像变换三:横向伸缩5、对于函数R x x y ∈=,3sin 的图像是将R x x y ∈=,sin 的图像上所有点的______(“横”或“纵”)坐标______(“伸长”或“缩短”)为原来的______(纵坐标不变)而得到的图像。

图像变换四:综合变换6、用两种方法将函数x y sin =的图像变换为函数)32sin(π+=x y 的图像解:方法一:x y sin =−−−−−→−)(x y 2sin =−−−−→−)()32sin(6(2sin ππ+=⎥⎦⎤⎢⎣⎡+=x x y方法二:x y sin =−−−−→−)()3sin(π+=x y −−−−→−)()32sin(π+=x y总结:方法一: 先伸缩后平移()A →→ϕω 方法二:先平移后伸缩()A →→ωϕ7、用两种方法将函数x y 2sin =的图像变换为函数)4sin(π+=x y 的图像方法一:x y 2sin =−−−−−→−)(x y sin =−−−−→−)()4sin(π+=x y方法二:x y 2sin =−−−−→−)()42sin()8(2sin ππ+=+=x x y −−−−→−)(1.要得到函数)42sin(3π+=x y 的图象,只需将函数x y 2sin 3=的图象( )(A )向左平移4π个单位 (B )向右平移4π个单位 (C )向左平移8π个单位 (D )向右平移8π个单位 2.将函数y=sin3x 的图象作下列平移可得y=sin(3x+6π)的图象 (A) 向右平移6π 个单位 (B) 向左平移6π个单位 (C )向右平移18π 个单位 (D )向左平移18π个单3.将函数sin y x =的图象上每点的横坐标缩小为原来的12(纵坐标不变),再把所得图象向左平移6π个单位,得到的函数解析式为( ) ()sin 26A y x π⎛⎫=+⎪⎝⎭()sin 23B y x π⎛⎫=+⎪⎝⎭ ()sin 26x C y π⎛⎫=+ ⎪⎝⎭ ()sin 212x D y π⎛⎫=+ ⎪⎝⎭4.把函数x y cos =的图象上所有的点的横坐标缩小到原来的一半,纵坐标保持不变,然后把图象向左平移4π个单位长度,得到新的函数图象,那么这个新函数的解析式为(A )⎪⎭⎫ ⎝⎛+=42cos πx y (B )⎪⎭⎫⎝⎛+=42cos πx y (C )x y 2sin = (D )x y 2sin -=不同名三角函数图像的平移问题:化同名,利用ααπcos )2sin(=-,ααcos )cos(=-一定正弦化余弦。

把x 系数变成“1”再进行平移。

5.为了得到函数)62sin(π+=x y 的图象,可以将函数x y 2cos =的图象( )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度 (C)向左平移6π个单位长度 (D)向左平移3π个单位长度6.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位 7.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向左平移3π个单位长度根据图像求三角函数表达式)sin(ϕω+=x A y 三角函数一般表达式:2)()(min max x f x f A -=Tπω2=ϕ:代图像上已知点坐标(注意是图像上向上的点还是向下的点,最好代入图像的最高点或者最低点) 1.2.下列函数中,图像的一部分如右图所示的是( )(A )sin()6y x π=+ (B )cos(2)6y x π=- (C )cos(4)3y x π=- (D )sin(2)6y x π=-3.已知函数()⎪⎭⎫⎝⎛<>+=2,0sin πϕωϕωx y 的部分图象如右上图所示,则( )A. 6,1πϕω== B. 6,1πϕω-==C. 6,2πϕω== D. 6,2πϕω-==4.下列函数中,图象的一部分如右图所示的是A.sin 6y x π⎛⎫=+ ⎪⎝⎭B.sin 26y x π⎛⎫=- ⎪⎝⎭C.cos 43y x π⎛⎫=- ⎪⎝⎭D.cos 26y x π⎛⎫=- ⎪⎝⎭5.函数()ϕω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。

相关文档
最新文档