暨南大学810高等代数2019考研专业课真题

合集下载

2019年暨南大学研究生入学试题811普通物理A

2019年暨南大学研究生入学试题811普通物理A

(C)减小 b
(D)减小 λ
考试科目:普通物理
].
共 4 页,第1页
9.一平面衍射的光栅具有 N 条光缝,则中央零级干涉明条纹和一侧第一级干涉明纹之间将出
现的暗条纹的数目为 [
(A)
].
(B) − 1
(C) − 2
(D) 2
10.用激光作为全息照相的光源主要是利用激光的什么特性[
]
(A)方向性好 (B)单色性好 (C)相干性好 (D)能量集中
].
(A)反射光一定是部分偏振光
(B)折射光一定是部分偏振光
(C)没有反射光
(D)没有折射光
6.在垂直入射的劈尖干涉实验中,若减小劈尖的夹角,则[
].
(A)干涉条纹变弯曲
(B)相邻干涉条纹间距变小
(C) 相邻干涉条纹间距不变
(D)相邻干涉条纹间距变大
7.对于动量和位置的不确定关系,以下说法正确的是[
dt
断其方向.
Q
26. (10 分)如图所示,在边长为 a 的正方形的四个顶点分别固定有
Q
q
电量均为 Q 的点电荷.在正方形对角线的交点上放置一个电量为
q( q 与 Q 同号)的自由点电荷.今将 q 沿某一对角线移动一个很
小的距离 x (x<<a).试证明 q 所受的库仑力正比于 x.
Q
Q
第 26 题图
长增加了 50%,求反冲电子的动能.
29. (4 分)在单缝衍射实验中,波长为 = 490 的单色光的第二级亮纹与波长为′的单色光
的第三级亮纹恰好重合,求′的值.
30. (6 分)薄钢片上有两条紧靠的平行细缝,用波长 500nm 的平面光波正入射到薄钢片

985院校数学系2019年考研数学分析高等代数试题及部分解答

985院校数学系2019年考研数学分析高等代数试题及部分解答

15 武汉大学
39
15.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
16 华中科大 2012 年数学分析试题解析
40
17 武汉大学 2018 年数学分析试题解析
44
18 中南大学 2010 年数学分析试题解析
6 浙江大学
16
6.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 2019 年高等代数真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7 华中科技大学
18
7.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 2019 年高等代数真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
13 大连理工大学
35
13.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
14 电子科技大学
37
14.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 天津大学
13
5.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

暨南大学810高等代数2010--2020年考研专业课真题

暨南大学810高等代数2010--2020年考研专业课真题
招生专业与代码:070101基础数学、070102计算数学、070103概率论与数理统计、070104应用数学、070105运筹学与控制论
考试科目名称及代码:810高等代数(A卷)
考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分。
一、(10分)设 为给定正整数, 为给定常数,计算对角线上元素均为 、其它位置元素均为1的 阶矩阵 的行列式 .
2证明 在某基下的矩阵是
六(15分)1设 ,证明秩 =秩 =秩 。
2设 是实对称矩阵, ,证明 。
七(15分)已知矩阵 是数域 上的一个 级方阵,如果存在 上的一个 级可逆方阵 ,使得 为对角矩阵,那么称 在 上可对角化。分别判断 能否在实数域上和复数域上可对角化,并给出理由。
八(16分)用 表示实数域 上次数小于4的一元多项式组成的集合,它是一个欧几里得空间,内积为 。设 是由零次多项式及零多项式组成的子空间,求 以及它上的一个基。
研究方向:各专业研究方向
考试科目名称:810高等代数
考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分
一、判断下列命题的正误(只需回答“正确”或“错误”并将你的答案写在答题纸上,不需说明理由,每题2分,共20分):
1唯一解,并求其解;
2无穷多解,给出解的表达式;
3无解。
四(15分)设
1求 的全部特征值;
2对 的每个特征值 ,求 的属于特征值 的特征子空间的维数和一组基;
3求正交矩阵 ,使 是对角矩阵,并给出此对角矩阵。
五(15分)设 是数域 上的一个n维线性空间 ,若有线性变换 与向量 使得 ,但 。
1证明 线性无关;
2020年招收攻读硕士学位研究生入学考试试题
********************************************************************************************

2019暨南大学考研709数学分析与810高等代数复习全析(含真题)

2019暨南大学考研709数学分析与810高等代数复习全析(含真题)

2019暨南大学考研709数学分析与810高等代数复习全析(含真题)《2019暨南大学考研709数学分析复习全析(含真题,共三册)》《2019暨南大学考研709数学分析复习全析(含历年真题,共三册)》由鸿知暨大考研网依托多年丰富的教学与辅导经验,与该专业课优秀研究生合作汇编而成。

全书内容紧凑权威细致,编排结构科学合理,为参加2019暨南大学考研的考生量身定做的必备专业课资料。

《2019暨南大学考研709数学分析复习全析(含历年真题)》全书编排根据:《数学分析》(华东师大,高教第四版,上下册)2018暨南大学709数学分析考试大纲官方规定的参考书目为:《数学分析》(华东师范大学,高教第四版,上下册)结合提供的往年暨大考研真题内容,帮助报考暨南大学硕士研究生的同学通过暨大教材章节框架分解、配套的课后习题讲解及相关985、211名校考研真题与解答,帮助考生梳理指定教材的各章节内容,深入理解核心重难点知识,把握考试要求与考题命题特征。

通过研读演练本书,达到把握教材重点知识点、适应多样化的专业课考研命题方式、提高备考针对性、提升复习效率与答题技巧的目的。

同时,透过测试演练,以便查缺补漏,为初试高分奠定坚实基础。

适用院系:经济学院:071400统计学(数学方向)信息科学技术学院:基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论适用科目:709数学分析内容详情本书包括以下几个部分内容:Part 1 - 考试重难点:通过总结和梳理《数学分析》(华东师大,高教第四版,上册)、《数学分析》(华东师大,高教第四版,下册)各章节复习和考试的重难点,建构教材宏观思维及核心知识框架,浓缩精华内容,令考生对各章节内容考察情况一目了然,从而明确复习方向,提高复习效率。

Part 2 - 教材课后习题与解答针对《数学分析》(华东师大,高教第四版,上册)、《数学分析》(华东师大,高教第四版,下册)教材课后习题配备详细解读,以供考生加深对教材基本知识点的理解掌握,做到对暨大考研核心考点及参考书目内在重难点内容的深度领会与运用。

985院校数学系2019年考研数学分析高等代数试题及部分解答

985院校数学系2019年考研数学分析高等代数试题及部分解答
B 7 ! AB BA
, 2. 定义 Mn.C / 上的变
(1)求变换 T 的特征值. (2)若 A 可对角化,证明 T 也可对角化.
四.(20 分) A 为 n 阶实对称矩阵,令
S D fX jX T AX D 0, X 2 Rng
(1)求 S 为 Rn 中的一个子空间的充要条件并证明. (2)若 S 为 Rn 中的一个子空间,求 di mS .
C pn n
二.(15 分) 设 f .x/ 2 C Œa, b,f .a/ D f .b/,证明 9xn, yn 2 Œa, b, s.t . lim .xn yn/ D n!1 0,且 f .xn/ D f .yn/.
三.(15 分) 证明
Xn .
kD0
1/k
Cnk
k
C
1 m
C
1
D
X m .
kD0
1/k
Cmk
k
C
1 n
C
1
其中m, n是正整数
Y 1
X 1
四.(15 分) 无穷乘积 .1 C an/ 收敛,是否无穷级数 an 收敛?若是,证明这个
nD1
nD1
结论;若不是,请给出反例.
X 1
ż1
五.(15 分) 设 f .x/ D xn ln x,计算 f .x/dx.
0
nD1
六.(15 分) 设定义 .0, C1/ 上的函数 f .x/ 二阶可导,且 lim f .x/ 存在,f 00.x/ 有 x!C1 界,证明 lim f 0.x/ D 0. x!C1
(1)证明存在正交矩阵 P 使得
0
P T AP
D
BB@
a 0
0
1

暨南大学811普通物理2010--2014,2016--2019年考研专业课真题

暨南大学811普通物理2010--2014,2016--2019年考研专业课真题

二、 综合计算题(共 90 分)
21. (10 分)两根直导线沿铜环的半径方向在 A、B 两点与铜环连接,
I1
铜环粗细均匀,半径为 a. 现向直导线中通入强度为 I 的电流,流 向如图所示,求铜环中心 O 处的磁感应强度.
aO
A
B
I
I2
I
22. (12 分)真空中有一半径为 R 的均匀带电球体,电量为 Q,求: (1) 球内外的电场分布; (2) 球心处的电势; (3) 体系的静电能.
第 21 题图
23. (10 分)如图所示,在垂直纸面向外的匀强磁场中有一半圆形的导 线,导线所在平面与磁场方向垂直,导线两个端点 ab 间的距离为 l. 现让导线绕其端点 a 在垂直于磁场的平面内匀速地沿顺时针方向转 动,角速度为 ω.求: (1) 导线中感应电动势的大小 (2) 导线的两个端点 a、b 谁的电势谁高?
20. 北京正负电子对撞机是一个典型的回旋加速器,电子在其中可加速到能量为 2.8 109 eV ,
此时高能电子的能量 E 和动量 p 的关系为 E=pc,其中 c 是光速。已知加速器的周长为 240m,
则维持电子运动的磁场的磁感应强度约为[ ].
(A) 0.02T
(B)0.25T
(C)25T
(D)250T
(A) 质量大的物体,其德布罗意波长一定小
(B) 动量大的物体,其德布罗意波长一定小
(C) 速度大的物体,其德布罗意波长一定小
(D) 动能大的物体,其德布罗意波长一定小
12.已知粒子在一维矩形无限深势阱中运动,其波函数为
那么粒子在
处出现的概率密度为 [ ].
(A)
(B)2/
(C)1/
(D)
13.以下选项中,能同时提高激光束的方向性和单色性的是[ ].

暨南大学810高等代数专业课考研真题(2019年)

暨南大学810高等代数专业课考研真题(2019年)
2 2

2 2
1 2
2 1

证明:由 −α1 + α2 , −α1 + α3 生成的子空间W =L(-α1 + α2,-α1 + α3)是 χ 的不变子空 间. 九、(10 分= ) 设αi (αi,1,αi,2,,⋅⋅⋅,= αi,n )T (i 1, 2,..., r ; r < n) 是 n 维实向量,且向
2019年暨南大学硕士研究生入学考试试题
2019 年招收攻读硕士学位研究生入学考试试题
********************************************************************************************
招生专业与代码:070101 基础数学、070102 计算数学、070103 概率论与数理统计、070104 应用数学、070105 运筹学与控制论
七、(15 分) 设数域F上的3× 4矩阵A为
定义线性变换
1 0 1 1
A=

3
1
4
7

−1 1 0 3 ,
= Q(a) Aa, ∀a ∈ F 4 .
分别求 Im Q和KerQ的一个基和维数.
八、(10 分)设 3 维线性空间 V 的线性变换 χ 在基α1,α2,α3 下的矩阵为
2 2 −2
b

五、(20 分) 已= 知矩阵 A

2
5
−4

与矩阵B=

−2 −4 a

1

相似,求
10
a,b 的值,并求一正交矩阵 P 使得P−1AP = B.

2019年全国硕士研究生招生考试研究生高等代数A卷试题及参考答案

2019年全国硕士研究生招生考试研究生高等代数A卷试题及参考答案

姓名: 报考专业: 准考证号码:密封线内不要写题2019年全国硕士研究生招生考试初试自命题试题科目名称:高等代数(√A 卷□B 卷)科目代码:614考试时间: 3 小时 满分 150 分可使用的常用工具:□无 □计算器 □√直尺 □√圆规(请在使用工具前打√)注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效;考完后试题随答题纸交回。

一、选择题(共8小题,每小题5分,共40分)1、设,A B 均是可逆矩阵,且A 与B 相似,则下列结论错误的是( )。

(A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A --与1B B --相似2、设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件是 ( )。

(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω3、二次型()123,,f x x x 在正交变换X PY = 下的标准形为2221232+-y y y ,其中123(,,)P e e e =,若132(,,)Q e e e =-,则()123,,f x x x 在变换X QY =下的标准形是( )。

(A) 2221232-+y y y(B) 2221232+-y y y (C) 2221232--y y y(D) 2221232++y y y4、所有4阶对称矩阵按矩阵的加法和数乘所组成的线性空间V 的维数是 ( )。

(A ) 4维 (B ) 16维 (C ) 8维 (D ) 10维5、设1α,2α,3α均为3维向量,则对任意常数k ,l ,向量组1α+3αk ,2α+3αl 线性无关是向量组1α,2α,3α线性无关的( )。

(A )必要非充分条件(B )充分非必要条件(C )充分必要条件(D )非充分非必要条件6、设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年招收攻读硕士学位研究生入学考试试题
********************************************************************************************招生专业与代码:070101基础数学、070102计算数学、070103概率论与数理统计、070104应用数学、070105运筹学与控制论
考试科目名称及代码:810高等代数(A 卷)考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分。

一、(10分)设为给定正整数,为给定常数,计算对角线上元素均为、其它位置
n a a 元素均为1的阶矩阵的行列式.n A 1111
1
111||1
1111
1111111a a A a a a
= 二、(10分)设 证明:(),()[],[]f x g x F x F x F ∈其中表示数域上一元多项式集合.
(1)()|()(),((),())1,()|();
(2)()|(),()|(),((),())1,()()|().
f x
g x
h x f x g x f x h x f x h x x h x f x g x f x g x h x ==如果那么如果g 那么三、(15分)设是阶方阵的一个特征值, 证明:
λn A 22*(1);(2)(2)2(3)A E A
A A A A λλλ
--是矩阵的一个特征值是矩阵的一个特征值;若可逆,则是的伴随矩阵的一个特征值.四、(20分)设线性方程组
12342342341234321221(3)20
x x x x x x x x x x x x x x λλμ
+++=-⎧⎪++=⎪⎨-+--=⎪⎪+++=⎩讨论参量取何值时,上述方程则有唯一解?无解?有无穷多解?有解时写出所,λμ有解.
五、(20分) 已知矩阵求
222254=12410b A B a -⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭
与矩阵相似,的值,并求一正交矩阵,a b 1.P P AP B -=使得六、 (20分)。

相关文档
最新文档