半导体物理复习归纳

合集下载

(完整word版)半导体物理知识点总结.doc

(完整word版)半导体物理知识点总结.doc

一、半导体物理知识大纲核心知识单元 A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)半导体中的电子状态(第 1 章)半导体中的杂质和缺陷能级(第 2 章)核心知识单元 B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)半导体中载流子的统计分布(第 3 章)半导体的导电性(第 4 章)非平衡载流子(第 5 章)核心知识单元 C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)半导体光学性质(第10 章)半导体热电性质(第11 章)半导体磁和压阻效应(第12 章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。

主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。

阐述本征半导体的导电机构,引入了空穴散射的概念。

最后,介绍了Si、Ge 和 GaAs 的能带结构。

在 1.1 节,半导体的几种常见晶体结构及结合性质。

(重点掌握)在 1.2 节,为了深入理解能带的形成,介绍了电子的共有化运动。

介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。

(重点掌握)在 1.3 节,引入有效质量的概念。

讨论半导体中电子的平均速度和加速度。

(重点掌握)在1.4 节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。

(重点掌握)在 1.5 节,介绍回旋共振测试有效质量的原理和方法。

(理解即可)在 1.6 节,介绍 Si 、Ge 的能带结构。

(掌握能带结构特征)在 1.7 节,介绍Ⅲ -Ⅴ族化合物的能带结构,主要了解GaAs 的能带结构。

(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。

半导体物理归纳总结

半导体物理归纳总结

半导体物理归纳总结半导体物理是研究半导体材料及其在电子器件中的应用特性的学科领域。

在过去几十年里,半导体技术的飞速发展对我们的生活产生了巨大的影响。

本文将对半导体物理的一些重要概念和原理进行归纳总结,帮助读者更好地理解半导体器件的工作原理及其应用。

1. 半导体的基本概念半导体是介于导体和绝缘体之间的一类物质,具有中等电导率。

它的导电性质可以通过控制掺杂和温度来进行调节。

常见的半导体材料有硅和锗,它们的物理性质决定了半导体器件的性能。

2. 半导体材料的能带结构半导体材料的能带结构直接影响其导电性质。

能带是描述电子能量和电子分布的概念。

在半导体中,价带是最高的填满电子的能带,而导带是电子可以自由移动的能带。

半导体的导电性取决于导带和价带之间的能隙大小。

3. 掺杂与载流子掺杂是将某种杂质引入到半导体材料中,以改变半导体的导电特性。

掺杂可以分为施主掺杂和受主掺杂两种。

施主掺杂会引入额外的自由电子,增加半导体的导电性,而受主掺杂引入额外的空穴,减少导电性。

掺杂后产生的自由电子和空穴被称为载流子,它们在半导体中的运动导致了电流的流动。

4. pn结及其特性pn结是由p型半导体和n型半导体相接触形成的结构。

在pn结中,p区富含空穴,n区富含自由电子。

当p区和n区相接触时,会发生空穴和自由电子的复合过程,形成耗尽区。

耗尽区内形成了电场,阻止了进一步的复合。

这种特殊的结构使得pn结具有整流特性,即在正向偏置下电流可以流动,而在反向偏置下电流几乎不流动。

5. 半导体器件的应用半导体器件包括二极管、场效应晶体管、晶体管等,它们在各种电子设备中起着重要作用。

二极管是一种具有单向导电性的器件,广泛应用在电源供电和信号处理中。

场效应晶体管是一种高度可控的电流放大器,常用于放大和开关电路。

晶体管则是一种功率放大器,被广泛应用在音频和无线通讯领域。

总结:半导体物理是一门涉及半导体材料特性和器件应用的重要学科。

通过对半导体的能带结构、掺杂与载流子、pn结特性以及器件应用的介绍,我们对半导体器件的工作原理有了更深入的理解。

半导体物理总复习资料

半导体物理总复习资料
半导体的电阻率或电导率与那些因素有关n型半导体p型半导体本征半导体pinipinippnnqnqnqnqnpqpqnqnq??????????????????????111电阻率与载流子浓度与迁移率有关二者均与杂质浓度和温度有关
半导体物理学复习资料
第一章
一、基本概念
1. 能带,允带,禁带,K空间的能带图 能带: 在晶体中可以容纳电子的一系列能级 允带:分裂的每一个能带都称为允带。 禁带:晶体中不可以容纳电子的一系列能级 K空间的能带图:晶体中的电子能量随电子波矢k
2。受主杂质,受主能级,受主杂质电离能
受主杂质:能够能够接受电子而在价带中产生空穴,并形 成负电中心的杂质,称为受主杂质,掺有受主杂质的半导 体叫P型半导体。
受主能级:被受主杂质束缚的空穴的能量状态称为受主能 级EA,受主能级位于离价带低很近的禁带中。 受主杂质电离能:价带顶EV与受主能级EA的能量之差 EA=EV-EA就是受主杂质的电离能。受主杂质未电离时是 中性的,电离后成为负电中心
Байду номын сангаас
3.电子的有效质量
(1) 晶体中的电子在外加电场作用下,电子除受外电场 的作用力,还受到内部原子核和其它电子的作用力,但 内部势场的作用力难以精确确定。电子的有效质量将晶 体导带中电子的加速度与外加作用力联系起来,电子有 效质量概括了晶体中内部势场对电子的作用力。这样仍 能用经典力学的方法来描述晶体中电子运动规律。即:
4. 半导体的电阻率(或电导率)与那些因素有关
n型半导体 p型半导体 本征半导体


nqn ,

1
nq n


pq p ,

1
pq p


ni qn

半导体物理考研知识点归纳

半导体物理考研知识点归纳

半导体物理考研知识点归纳半导体物理是研究半导体材料的物理性质及其在电子器件中的应用的学科。

在考研中,半导体物理的知识点主要包括以下几个方面:1. 半导体的基本性质- 半导体材料的分类,包括元素半导体和化合物半导体。

- 半导体的能带结构,包括导带、价带以及禁带的概念。

- 半导体的载流子类型,即电子和空穴。

2. 半导体的掺杂- 掺杂原理,包括n型和p型掺杂。

- 掺杂对半导体电导率的影响。

- 杂质能级和费米能级的移动。

3. 半导体的载流子运动- 载流子的漂移和扩散运动。

- 载流子的迁移率和扩散常数。

- 霍尔效应及其在半导体中的应用。

4. pn结和半导体器件- pn结的形成原理和特性。

- 正向和反向偏置下的pn结特性。

- 金属-半导体接触和肖特基势垒。

5. 半导体的光电效应- 本征吸收和杂质吸收。

- 光生载流子的产生和复合。

- 光电二极管和光电晶体管的工作原理。

6. 半导体的热电效应- 塞贝克效应和皮尔逊效应。

- 热电材料的热电性能。

7. 半导体的量子效应- 量子阱、量子线和量子点的概念。

- 量子效应对半导体器件性能的影响。

8. 半导体的物理量测量技术- 电阻率、载流子浓度和迁移率的测量方法。

- 光致发光和电致发光技术。

9. 半导体器件的制造工艺- 晶体生长技术,如Czochralski法和布里奇曼法。

- 光刻、蚀刻和掺杂工艺。

结束语半导体物理是一门综合性很强的学科,它不仅涉及到材料科学、固体物理,还与电子工程和微电子技术紧密相关。

掌握这些基础知识点对于深入理解半导体器件的工作原理和优化设计至关重要。

希望以上的归纳能够帮助考研学子们更好地复习和掌握半导体物理的相关知识。

半导体物理复习资料

半导体物理复习资料

第一章 半导体中的电子状态1.导体、半导体、绝缘体的划分:Ⅰ导体内部存在部分充满的能带,在电场作用下形成电流;Ⅱ绝缘体内部不存在部分充满的能带,在电场作用下无电流产生; Ⅲ半导体的价带是完全充满的,但与之上面靠近的能带间的能隙很小,电子易被激发到上面的能带,使这两个能带都变成部分充满,使固体导电。

2.电子的有效质量是*n m ,空穴的有效质量是*p m ;**np m m -=,电量等值反号,波矢k 与电子相同 能带底电子的有效质量是正值,能带顶电子的有效质量是负值。

能带底空穴的有效质量是负值,能带顶空穴的有效质量是正值。

3.半导体中电子所受的外力dtdkh f ⋅=的计算。

4.引进有效质量的意义:概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

第二章 半导体中杂质和缺陷能级1.施主能级:被施主杂质束缚的电子的能量状态称为施主能级E D ;施主能级很接近于导带底;受主能级:被受主杂质束缚的空穴的能量状态称为受主能级E A ;受主能级很接近于价带顶。

施主能级图 受主能级图2.浅能级杂质:杂质的电离能远小于本征半导体禁带宽度的杂质,电离后向相应的能带提供电子或空穴。

深能级杂质:能级位于禁带中央位置附近,距离相应允带差值较大。

深能级杂质起复合中心、陷阱作用;浅能级杂质起施主、受主作用。

3.杂质的补偿作用:半导体中同时含有施主和受主杂质,施主和受主先相互抵消,剩余的杂质发生电离。

在Ⅲ-Ⅴ族半导体中(Ga-As )掺入Ⅳ族杂质原子(Si ),Si 为两性杂质,既可作施主,亦可作受主。

设315100.1-⨯=cm N A ,316101.1-⨯=cm N D ;则316100.1-⨯=-=cm N N n A D 由p n n i ⋅=2,可得p 值;①p n ≈时,近似认为本征半导体,i F E E =;②p n μμ=时,本征电导p n σσ=; p n >>时,杂质能级靠近导带底;第三章 半导体中载流子的统计分布1.费米分布函数(简并半导体)⎪⎪⎭⎫ ⎝⎛⋅-+=Tk E E E f F 0exp 11)((本征);⎪⎪⎭⎫ ⎝⎛⋅-+=T k E E E f F 0exp 2111)((杂质);玻尔兹曼分布函数(非简并半导体) ⎪⎪⎭⎫ ⎝⎛⋅-=T k E A E f B0exp )(;2.费米能级:TF N F E ⎪⎭⎫⎝⎛∂∂==μ;系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。

半导体物理复习资料全

半导体物理复习资料全

第一章 半导体中的电子状态1. 如何表示晶胞中的几何元素?规定以阵胞的基矢群为坐标轴,即以阵胞的三个棱为坐标轴,并且以各自的棱长为单位,也称晶轴。

2. 什么是倒易点阵(倒格矢)?为什么要引入倒易点阵的概念?它有哪些基本性质? 倒格子: 2311232()a a b a a a π⨯=⋅⨯3122312()a a b a a a π⨯=⋅⨯1233122()a a b a a a π⨯=⋅⨯倒格子空间实际上是波矢空间,用它可很方便地将周期性函数展开为傅里叶级数,而傅里叶级数是研究周期性函数的基本数学工具。

3. 波尔的氢原子理论基本假设是什么?(1)原子只能处在一系列不连续的稳定状态。

处在这些稳定状态的原子不辐射。

(2)原子吸收或发射光子的频率必须满足。

(3)电子与核之间的相互作用力主要是库仑力,万有引力相对很小,可忽略不计。

(4)电子轨道角动量满足:h m vr nn π== 1,2,3,24. 波尔氢原子理论基本结论是什么? (1) 电子轨道方程:0224πεe r mv = (2) 电子第n 个无辐射轨道半径为:2022meh n r n πε= (3) 电子在第n 个无辐射轨道大巷的能量为:222042821hn me mv E n n ε== 5. 晶体中的电子状态与孤立原子中的电子状态有哪些不同?(1)与孤立原子不同,由于电子壳层的交迭,晶体中的电子不再属于某个原子,使得电子在整个晶体中运动,这样的运动称为电子共有化运动,这种运动只能在相似壳间进行,也只有在最外层的电子共有化运动才最为显著。

(2)孤立原子钟的电子运动状态由四个量子数决定,用非连续的能级描述电子的能量状态,在晶体中由于电子共有化运动使能级分裂为而成能带,用准连续的能带来描述电子的运动状态。

6. 硅、锗原子的电子结构特点是什么?硅电子排布:2262233221p s p s s锗电子排布:22106262244333221p s d p s p s s价电子有四个:2个s 电子,2个p 电子。

半导体物理学期末总复习

半导体物理学期末总复习
半导体检测器
半导体物理器件在传感与检测领域中的应用
发展趋势
了解半导体物理器件的发展趋势,包括更高性能、更低功耗、更小体积等。
面临的挑战
分析半导体物理器件在发展中面临的挑战,包括工艺复杂度、成本、可靠性等。ຫໍສະໝຸດ 半导体物理器件的发展趋势与挑战
THANK YOU.
谢谢您的观看
半导体激光器
介绍半导体激光器的原理、结构、制造工艺和应用,包括分布反馈式激光器、布拉格光栅激光器等。
半导体物理器件在光电子中的应用
介绍半导体传感器的基本原理、分类、应用和制造工艺,重点了解气体传感器和生物传感器。
半导体传感器
介绍半导体检测器的基本原理、分类、应用和制造工艺,包括光电检测器、热电检测器等。
半导体二极管及其特性
半导体二极管伏安特性
半导体二极管的伏安特性曲线反映了二极管在不同电压下的电流密度和电阻率,从而表现出单向导电性。
半导体二极管温度特性
半导体二极管的温度系数表示温度对二极管电压的影响,温度升高会使二极管正向电压降低。
双极型晶体管结构
01
双极型晶体管由三个半导体材料区域组成,两个P型区域和一个N型区域,通过三个区域的组合和连接形成NPN或PNP结构。
双极型晶体管及其特性
双极型晶体管的电流放大效应
02
双极型晶体管的基极电流对集电极电流的控制作用称为电流放大效应,这种效应是双极型晶体管的核心特性。
双极型晶体管的击穿特性
03
双极型晶体管在特定电压和电流条件下会发生击穿,导致电流突然增加,失去单向导电性。
场效应晶体管结构
场效应晶体管的电压控制特性
场效应晶体管的频率特性
双极型晶体管的模型与仿真
场效应晶体管的模型与仿真

半导体物理知识要点总结

半导体物理知识要点总结

第一章 半导体的能带理论1. 基本概念✧ 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不在局限在某一个原子上,可以由一个原子转移到相邻的原子上去,因而电子可以在整个晶体中运动,这种运动称为电子的共有化运动。

✧ 单电子近似:假设每个电子是在大量周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。

该势场也是周期性变化的。

✧ 能带的形成:原子相互接近,形成壳层交替→电子共有化运动→能级分裂(分成允带、禁带)→形成能带✧ 能带:晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。

这些区间在能级图中表现为带状,称之为能带。

✧ 价带:P6✧ 导带:P6✧ 禁带:P5✧ 导体✧ 半导体✧ 绝缘体的能带✧ 本征激发:价带上的电子激发成为准自由电子,即价带电子激发成为导带电子的过程,称为本征激发。

✧ 空穴:具有正电荷q 和正有效质量的粒子✧ 电子空穴对✧ 有效质量:有效质量是在描述晶体中载流子运动时引进的物理量。

它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。

其大小由晶体自身的E-k 关系决定。

✧ 载流子及载流子浓度2. 基本理论✧ 晶体中的电子共有化运动✧ 载流子有效质量的物理意义 :当电子在外力作用下运动时,它一方面受到外电场力f的作用,同时还和半导体内部原子、电子相互作用着,电子的加速度应该是半导体内部势场和外电场作用的综合效果。

但是,要找出内部势场的具体形式并且求得加速度遇到一定的困难,引进有效质量后可使问题变得简单,直接把外力f 和电子的加速度联系起来,而内部势场的作用则由有效质量加以概括,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

第二章 半导体中的杂质与缺陷能级1. 基本概念✧ 杂质存在的两种形式:间隙式杂质:杂质原子位于晶格原子间的间隙位置。

替位式杂质:杂质原子取代晶格原子而位于晶格点处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、半导体的电子状态)Ge、金刚石结构(Si、1个空间对角线4对角线互相平移1/Si、Ge原子组成,正四面体结构,由两个面心立方沿空间长度套构而成。

由相同原子构成的复式格子。

)2、闪锌矿结构(GaAs对角线族化合物分子构成,与金刚石结构类似,由两类原子各自形成的面心立方沿空间3-5。

由不同原子构成有一定离子键/4个空间对角线长度套构而成。

由共价键结合,相互平移1 的复式格子。

)3、纤锌矿结构(ZnS六方由两类原子各自组成的以正四面体结构为基础,具有六方对称性,与闪锌矿结构类似,。

而成。

是共价化合物,但具有离子性,且离子性占优排列的双原子层堆积)、氯化钠结构(NaCl4 ,形成的复式格子。

/2沿棱方向平移1、原子能级与晶体能带5导致能由于原子间距非常小,于是电子可以在整个晶体中做共有化运动,原子组成晶体时,级劈裂形成能带。

、脱离共价键所需的最低能量就是禁带宽度。

价带上的电子激发为准自由电子,即价带电6 子激发为导带电子的过程,称为本征激发。

7、有效质量的意义有效质量为负说明晶格对粒子做负功)a.有效质量概括了半导体内部势场的作用( b.有效质量可以直接由实验测定有效质量越大。

能带越窄,二次微商越小,c.有效质量与能量函数对于k的二次微商成反比。

的方法、8测量有效质量。

测出共振吸收时共振吸收角频率等于回旋频率时,就可以发生回旋共振。

当交变电磁场要求为能观测出明显的共振吸收峰,电磁波的角频率和磁感应强度,就可以算出有效质量。

下进行。

,且实验要在低温样品纯度较高、空穴9,+q价带中空着的状态被看成带正电的粒子,称为空穴。

这是一种假想的粒子,其带正电荷。

m*而且具有正的有效质量p /重空穴10、轻重空穴:有效质量较大的空穴轻空穴:有效质量较小的空穴11、间接带隙半导体的半导体。

不同k值价带顶导带底和处于二、半导体中的杂质和缺陷能级、晶胞空间体积计算1 8个原子占晶胞空间的百分数:个硅原子,每个原子看做半径为晶胞中有8r的圆球,则Si且等于,4体对角线长度处的圆球中心间的距离为2r/立方体某顶角的圆球中心与距此顶角13a)的1/4。

边长为a的立方体体对角线长(2、杂质类型:原子较小,存在于晶格原子间的间隙位置间隙式替位式:原子大小及价电子壳层结构与晶格原子相近,取代晶格原子而位于晶格格点处(3、5族元素属于替位式)3、杂质能级被施主/受主杂质束缚的电子/空穴的能量状态称为施主E/受主E能级,位于离导带/价带很AD近的禁带中。

电子/空穴挣脱杂质束缚成为导电粒子所需的能量称为杂质电离能。

杂质电离能小的杂质能级很接近导带底/价带顶,称为浅能级,在室温下就几乎全部离化。

4、杂质补偿施主、受主杂质间的相互抵消作用称为杂质补偿。

高度补偿的半导体虽然导电性类似高纯半导体,但实际性能很差。

5、深能级杂质施主杂质能级距离导带底、受主杂质能级距离价带顶很远的能级称为深能级。

深能级杂质能够多次电离,往往在禁带引入若干个能级。

有的杂质既能引入施主能级,又能引入受主能级。

深能级杂质对载流子浓度和导电类型的影响没有浅能级杂质显著,但对于载流子复合作用比浅能级杂质强,故也称为复合中心。

6、缺陷点缺陷、位错三、载流子统计分布1、热平衡载流子产生:本征激发(电子从晶格获取能量从价带跃迁到导带形成导带电子和价带空穴)杂质电离(电子从施主能级跃迁到导带产生导带电子,从价带跃迁到受主能级产生价带空穴)载流子复合:电子从高能量量子态跃迁到低能量量子态,并向晶格放出能量。

载流子产生与复合达到动态平衡,称为热平衡,此时导电的电子与空穴浓度均保持稳定。

2、获得热平衡载流子浓度的思路:A.允许的量子态按能量如何分布——状态密度B.电子在允许的量子态中如何分布——分布函数3、状态密度状态密度g(E)是能带中,能量E附近每单位能量间隔内的量子态数。

电子/空穴能量越高,状态密度越大。

计算步骤:A.算出k空间中的量子态密度(量子态数除以k空间体积)3等于晶体体积)的整数倍,每个单位半导体晶体线度,LL是k(在k空间中坐标是2π/L立方体中有1个量子态(计入电子自旋则为2个量子态)B.算出k空间中与能量E~(E+dE)间所对应的k空间体积2dkπk4等能球面的球壳体积C.两者相乘即为能量E~(E+dE)间的量子态数D.g(E)=dZ/dE,由E-k关系化简得4、费米分布电子占据费米能级的概率在各种温度下总是1/2。

费米能级标志了电子填充能级的水平。

5、玻尔兹曼分布6、热平衡条件7、杂质能级与能带中的能级有区别:能带中的能级可以容纳自旋方向相反的两个电子,而施主能级不允许同时被自旋方向相反的两个电子占据(要么容纳一个,要么空着)。

8、费米能级远在施主能级下时施主杂质几乎完全电离,费米能级远在受主能级上时受主杂质几乎完全电离。

(简并。

重掺杂时费米能级很靠近甚至进入导带/价带)9、载流子浓度随温度变化A.低温弱电离区:杂质少量电离,本征激发可忽略。

该段E随温度先上升再下降,在温度上F升到使N=0.11N时E达到极值。

杂质浓度越高,达到极值的温度越高。

FDCB.中间电离区C.强电离区(饱和区):杂质几乎完全电离。

载流子浓度随温度保持不变。

D.过渡区E.本征激发区10、费米能级随温度及杂质浓度变化11、简并半导体重掺杂情况下,费米能级进入导带(或价带)的情况。

此时必须考虑泡利不相容原理,因而不能再使用玻尔兹曼分布,必须使用费米分布。

发生简并时的杂质浓度与杂质电离能△E D(掺杂类型)和温度T有关。

△E越小,则发生简并的杂质浓度较小时。

发生简并化有一D个温度范围,杂质浓度越大,发生简并的温度范围越宽。

12、禁带变窄效应简并半导体中,杂质浓度高,杂质原子相互间比较靠近,导致孤立的杂质能级扩展为杂质能带。

这会使杂质电离能减小。

当杂质能带与导带或价带相连,将使禁带宽度变窄。

杂质能带中的电子在杂质原子间做共有化运动参与导电,称为杂质带导电。

13、载流子冻析效应温度低于100K时,施主杂质部分电离,尚有部分载流子被冻析在杂质能级上,对导电没有贡献,这称为低温载流子冻析效应。

四、导电性1、迁移率表示单位场强下电子的平均漂移速率,习惯上迁移率只取正值。

2、连续两次散射间自由运动的平均路程称为平均自由程,平均时间称为平均自由时间。

3、载流子在外电场作用下的实际运动轨迹是热运动和漂移运动的叠加。

4、恒定电场下,电流密度恒定。

5、主要散射机制A.电离杂质散射:- 3/2散射概率Pi∝Ni*TB.晶格振动散射晶格中原子的振动都是由若干不同基本波叠加,这些基本波称为格波。

对于Si等半导体,原胞中有2个原子,对应每个q有6个格波(1个原子对应每个q有一纵两横),频率最低的3个是声学波,频率最高的3个是光学波。

晶格振动散射起主要作用3/2 T ∝。

的是长纵声学波Ps6、迁移率随温度和杂质浓度变化五、非平衡载流子1、外界作用破坏了热平衡状态,此时比平衡状态多出来的这部分载流子称为非平衡载流子。

2、小注入条件:注入的非平衡载流子浓度比平衡时多子浓度小的多。

3、非平衡载流子的平均生存时间称为非平衡载流子的寿命,寿命的倒数称为单位时间内非平衡载流子的复合概率。

单位时间单位体积内净复合的电子空穴对数称为复合率。

寿命标志着非平衡载流子浓度减少到原值的1/e所经历的时间。

4、非平衡时导带和价带分别处于平衡状态,而导带和价带间处于不平衡状态。

于是引入导带费米能级和价带费米能级,它们都是局部的费米能级,称为准费米能级。

非平衡载流子越多,准费米能级偏离费米能级越远。

在非平衡态,多子的准费米能级与费米能级相差不远,而少子的准费米能级与费米能级相差较远。

两者靠的越近,说明越接近平衡态。

5、复合按复合过程分为:直接复合:电子在导带和价带间直接跃迁,引起电子空穴复合间接复合:电子和空穴通过禁带的能级(复合中心)进行复合按复合位置分为:表面复合和体内复合复合时会放出能量,发射光子或者发射声子或者将能量给其他载流子增加它们的动能(俄歇复合)。

6、直接复合禁带越宽,直接复合概率越小产生率基本不变,且等于热平衡时的复合率G=rnp,而复合率R=rnp,故非平衡载流子净002)。

其中rU=R-G=r(np-ni是平均电子空穴复合概率。

复合率7、间接复合杂质和缺陷在禁带中形成能级,对复合有促进作用位于禁带中央附近的深能级是最有效的复合中心。

8、表面复合大多数期间总是希望获得良好的表面,以尽量降低表面复合速度,然而另一方面,在某些物理测量中,为了消除金属探针注入效应的影响,却要设法增大表面复合。

9、陷阱效应杂质能级具有积累非平衡载流子的作用,称为陷阱效应。

所有杂质能级都有一定陷阱效应。

有显著陷阱效应的杂质能级称为陷阱,相应的杂质和缺陷称为陷阱中心。

复合中心:俘获电子和空穴的能力差不多,rp=rn,无显著陷阱效应。

电子陷阱:rn>>rp空穴陷阱:rp>>rn杂质能级与平衡时费米能级重合时最有利于陷阱作用。

陷阱的存在大大增加了从非平衡态恢复到平衡态的弛豫时间。

陷阱效应对多子不明显,对少子明显。

六、金半接触1、表面态对接触势垒的影响表面处的禁带存在表面态。

施主型表面态:能级被电子占据时呈电中性,释放电子后显正电。

要保证这个表面态电中性,就需要他在中性能级以下。

受主型表面态:能级空着时显电中性,接收电子后显负电。

中性能级以上。

处。

3Eg/:电子正好填满中性能级以下所有表面态时,表面显电中性。

距离价带顶中性能级.2、表面态密度很大,只要EF比中性能级高一点,在表面态就会累积很多负电荷(对电子而言是势垒),由于能带向上弯,表面处EF很接近中性能级,势垒高度就等于原来费米能级和中性能级之差,这时势垒高度称为被高表面态密度钉扎,半导体费米能级几乎不随金属改变而改变,只与表面性质有关,即屏蔽金属接触的影响。

(费米能级钉扎效应)因此,Wm<Ws时也可以形成n 型阻挡层。

3、整流接触正偏:势垒高度降低,半导体到金属的电子数增加且大于金属到半导体的电子,形成金属到半导体的正向电流,由n型半导体中多子构成。

外加电压越高,正向电流越大。

反偏:势垒高度增加,半导体到金属的电子数减少且小于金属到半导体的电子,形成半导体到金属的反向电流,由于金属中的电子要越过相当高的势垒(金半功函数差)才能到达半导体,所以反向电流很小。

且由于该势垒高度不随外加电压变化,所以金属到半导体的电子数保持不变,而半导体到金属的电子数减小到忽略不计,反向电流趋于饱和。

4、肖特基势垒二极管利用金半整流接触特性制成的二极管称为肖特基二极管。

优点:多子器件,无论正偏反偏其载流子都不发生明显累积,开关特性好,适合高频。

肖特基二极管具有较低的正向导通电压。

5、金属探针与半导体接触测量半导体电阻率时要避免少子注入,为此需要增加表面复合。

相关文档
最新文档