开关电源变压器的漏感

合集下载

反激开关电源 变压器的励磁电感和 漏感关系

反激开关电源 变压器的励磁电感和 漏感关系

反激开关电源变压器的励磁电感和漏感关系下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!反激开关电源中变压器的励磁电感与漏感关系1. 引言在反激开关电源中,变压器扮演着至关重要的角色,它的设计与性能直接影响着整个电源的效率和稳定性。

变压器漏感等效电路

变压器漏感等效电路

变压器漏感等效电路
变压器漏感等效电路:
①变压器作为电力电子系统中关键元件其性能直接影响到整个系统的效率与可靠性而漏感作为变压器固有特性之一对电路动态行为有着重要影响;
②漏感源于变压器绕组间无法完全耦合磁场部分这部分未耦合磁场在线圈中形成额外电感称为漏感其存在于初级绕组次级绕组中;
③在理想情况下变压器绕组间应完全耦合即不存在漏感但现实中由于物理尺寸限制及磁芯饱和等因素总会存在一定量漏感;
④当电流通过变压器绕组时漏感会产生反电动势阻碍电流变化这一特性在高频开关电源逆变器等应用中尤为显著可能导致额外损耗及电磁干扰问题;
⑤为准确分析含有漏感变压器电路行为通常采用等效电路模型来描述其中最基本模型为T型等效电路该模型将漏感表示为与励磁电感串联形式;
⑥T型等效电路中初级绕组漏感L1σ次级绕组漏感L2σ分别与理想变压器模型中励磁支路串联形成两个分支而励磁电感Lm则与负载支路并联;
⑦在某些情况下为简化分析也可采用π型等效电路此时漏感被放置于理想变压器两侧分别与输入输出端相连而励磁电感则位于中央;
⑧无论是T型还是π型等效电路都能够较好地反映实际变压器
行为特别是在高频开关条件下漏感效应对电路动态特性影响尤为明显;
⑨设计时工程师需根据具体应用需求选择合适拓扑结构并通过合理布局优化磁芯设计等手段尽量减小不利影响同时利用漏感特性改善电路性能;
⑩例如在某些软开关技术中适当利用漏感能够实现零电压开通或零电流关断从而降低开关损耗提高系统效率;
⑪此外在电机驱动电源逆变等领域中通过精确建模分析漏感行为有助于提升控制系统响应速度及稳定性;
⑫总之正确理解和应用变压器漏感等效电路对于设计高效可靠电力电子装置具有重要意义。

减小开关变压器漏感的方法

减小开关变压器漏感的方法

减小开关变压器漏感的方法
开关变压器漏感是指变压器在工作时,由于电磁感应作用而产生的漏磁通量,在传输过程中会有一定的损耗和浪费。

如果能够减小开关变压器的漏感,就能提高变压器的效率,降低能耗。

以下是减小开关变压器漏感的方法:
1. 采用高磁导材料:高磁导材料可以有效地提高变压器的磁通量,从而减小漏感。

常用的高磁导材料有铁素体材料和铁氧体材料。

2. 使用磁屏蔽:在变压器的绕组周围加上磁屏蔽,可以防止漏磁通量的泄漏,从而降低漏感。

常用的磁屏蔽材料有镍铁合金和铁氧体材料。

3. 优化绕组结构:通过设计优化绕组结构,可以减小漏感。

例如,采用交错绕组、漏磁补偿绕组等方式都可以减小漏感。

4. 采用磁芯的预紧设计:在变压器的磁芯上采用预紧设计,可以减小磁芯的振动和噪音,从而降低漏感。

5. 采用新型材料:近年来,一些新型材料的出现,如纳米晶铁芯、非晶合金等,具有良好的磁导率和磁饱和度,可以有效地减小漏感。

总之,减小开关变压器漏感是一个复杂的过程,需要综合考虑多种因素。

通过上述方法的应用,可以有效地降低漏感,提高变压器的效率和性能。

变压器的漏感与分布电容影响分析

变压器的漏感与分布电容影响分析

变压器的漏感与分布电容影响分析漏感与分布电容对输出波形的影响开关电源变压器一般可以等效成图2-43所示电路。

在图2-43中,Ls为漏感,也可称为分布电感,Cs为分布电容,为励磁电感,R为等效负载电阻。

其中分布电容Cs还应该包括次级线圈等效到初级线圈一侧的分布电容,即次级线圈的分布电容也可以等效到初级线圈回路中。

图2-43 开关电源变压器等效电路设次级线圈的分布电容为C2,等效到初级线圈后的分布电容为C1,则有下面关系式:上式中,Wc2为次级线圈分布电容C2存储的能量,Wc1为C2等效到初级线圈后的分布电容C1存储的能量;U1、U2分别为初、次级线圈的电压,U2 = nU1,n = N2/N1为变压比,N1 、N2分别为初、次级线圈的匝数。

由此可以求得C1为:C1 = n2C2 (2-121)(2-120)式不但可以用于对初、次级线圈分布电容等效电路的换算,同样可以用于对初、次级线圈电路中其它电容等效电路的换算。

所以,C2亦可以是次级线圈电路中的任意电容,C1为C2等效到初级线圈电路中的电容。

由此可以求得图2-43中,变压器的总分布电容Cs为:Cs = Cs1 + C1 = Cs1 +n2C2 (2-122)(2-122)式中,Cs为变压器的总分布电容,Cs1为变压器初级线圈的分布电容;C1为次级线圈电路中总电容C2(包括分布电容与电路中的电容)等效到初级线圈电路中的电容;n = N2/N1为变压比。

图2-43开关变压器的等效电路与一般变压器的等效电路,虽然看起来基本没有区别,但开关变压器的等效电路一般是不能用稳态电路进行分析的;即:图2-43中的等效负载电阻不是一个固定参数,它会随着开关电源的工作状态不断改变。

例如,在反激式开关电源中,当开关管导通时,开关变压器是没有功率输出的,即负载电阻R等于无限大;而对于正激式开关电源,当开关管导通时,开关变压器是有功率输出的,即负载电阻R既不等于无限大,也不等于0 。

变压器漏感

变压器漏感

7
7
VOLTECHNOTES
Voltech Instruments Ltd.
148 Sixth Street Harwell International Business Centre Harwell, Didcot, Ox11 0RA United Kingdom Telephone: +44 (0) 1235 834555 Facsimile: +44 (0) 1235 835016 E-mail: sales@
图 5. 变压器短路
零。测量得到的电感值因此就是真实的漏感 (LL)。
图 6. 变压器次级完全短路
4
4
Leakage I nductance
VOLTECHNOTES
图 7.变压器短路阻抗误差。说明:匝数比 = 2
5
图 8. 矢量图显示漏感与短路误差
5
VOLTECHNOTES
传统方案
图 2. 实际变压器显示出 额外的漏感
2
Leakage I nductance
VOLTECHNOTES
实际的变压器加入空气ຫໍສະໝຸດ 隙在某些变压器的设计中,漏感必须要在总的电感量占更大的比例,并设定一个小的误差。漏感量比例的增加通常 通过在磁芯中引入空气间隙来实现,因而降低磁芯的磁导率以及初级线圈的电感。因此初级线圈与次级线圈磁通 量不耦合部分所占的比例也会增加(图 3)。
Result 150µH 150µH 150µH
pass/fail
180µH ­ 200µH 205µH


总结
漏感是变压器一个重要的特性,对于设计和生产工程师来说是一项特殊的测量挑战。Voltech 通过对影响测量的各种因素的完整分析,开发出了创新的测量技术来克服这些因素,为几乎 所有的变压器制造商提供唯一的解决方案。 如果有关于Voltech AT系列变压器测试仪其它任何测试功能的问题,请与我们联系。

有关漏感不得不说的那些事

有关漏感不得不说的那些事

有关漏感不得不说的那些事
本文分为从五个方面来谈漏感:1、漏感什么?
 2、决定漏感大小的因素;
 3、漏感计算公式;
 4、漏感吸收电路结构;
 5、漏感吸收电路损耗计算。

 以下具体说明:
 1、漏感是什么?
 任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响特别重要。

 由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。

 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。

要计算变压器线圈之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。

 我们知道螺旋线圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场强度分布是基本均匀的,并且磁场能量基本集中在螺旋线圈之中。

另外,在计算螺旋线圈之内或之外的磁场强度分布时,比较复杂的情况可用麦克斯韦定理或毕-沙定理,而比较简单的情况可用安培环路定律或磁路的克希霍夫定律。

 2、决定漏感大小的因素。

变压器的漏感的标准

变压器的漏感的标准

变压器的漏感是指在变压器的工作过程中,由于磁通的不完全闭合而产生的磁通损耗。

漏感是变压器的一个重要参数,它直接影响变压器的效率和性能。

为了确保变压器的正常运行和安全使用,国际上制定了一些标准来规定变压器的漏感。

一、漏感的定义和分类漏感是指在变压器中,由于磁通的不完全闭合而引起的磁通损耗。

根据磁通的路径不同,漏感可以分为主漏感和副漏感两种。

1. 主漏感:主漏感是指在变压器的主磁路中,由于磁通穿过铁心和绕组时引起的漏感。

主漏感主要包括铁心漏感和绕组漏感。

- 铁心漏感:铁心漏感是指在变压器的铁心中,由于磁通在铁心中传播时引起的漏感。

铁心漏感的大小与铁心的材料和结构有关,一般情况下,采用高导磁性和低磁导率的材料可以减小铁心漏感。

- 绕组漏感:绕组漏感是指在变压器的绕组中,由于磁通在绕组中传播时引起的漏感。

绕组漏感的大小与绕组的结构和形状有关,一般情况下,采用紧凑的绕组结构和合适的绕组层数可以减小绕组漏感。

2. 副漏感:副漏感是指在变压器的副磁路中,由于磁通穿过绕组和铁心之间的空气间隙时引起的漏感。

副漏感可以进一步分为窄副漏感和宽副漏感两种。

- 窄副漏感:窄副漏感是指在变压器的副磁路中,由于磁通在窄的空气间隙中传播时引起的漏感。

窄副漏感的大小与空气间隙的宽度有关,一般情况下,减小空气间隙的宽度可以减小窄副漏感。

- 宽副漏感:宽副漏感是指在变压器的副磁路中,由于磁通在宽的空气间隙中传播时引起的漏感。

宽副漏感的大小与空气间隙的宽度和长度有关,一般情况下,减小空气间隙的宽度和长度可以减小宽副漏感。

二、漏感的标准为了确保变压器的正常运行和安全使用,国际上制定了一些标准来规定变压器的漏感。

以下是一些常见的漏感标准:1. 漏感比:漏感比是指变压器的主漏感与副漏感之比。

一般情况下,漏感比在0.85到1.15之间,如果漏感比小于0.85或大于1.15,则说明变压器的设计存在问题,可能会影响变压器的性能。

2. 漏感损耗:漏感损耗是指变压器在工作过程中由于漏感引起的磁通损耗。

详解开关电源变压器的漏感

详解开关电源变压器的漏感

详解开关电源变压器的漏感任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响特别重要。

由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。

因此,分析漏感产生的原理和减少漏感的产生也是开关变压器设计的重要内容之一。

开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。

要计算变压器线圈之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。

我们知道螺旋线圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场强度分布是基本均匀的,并且磁场能量基本集中在螺旋线圈之中。

另外,在计算螺旋线圈之内或之外的磁场强度分布时,比较复杂的情况可用麦克斯韦定理或毕-沙定理,而比较简单的情况可用安培环路定律或磁路的克希霍夫定律。

在设铁芯的截面积为S,S=πr2;初级线圈的截面积为S1,S1=πr21;次级线圈的截面积为S2,S2=πr22;初级线圈与铁芯的间隔截面积为Sd1,Sd1=S1-S;次级线圈与初级线圈的间隙截面积为Sd2,Sd2=S2-S1;电流I1流过初级线圈产生的磁场强度为H1,在面积S1之内产生的磁通量为φ1,在面积Sd2之内产生的磁通量为φ1’;电流I2流过次级线圈产生的的磁场强度为H2,磁通量为φ2。

由此可以求得电流I2流过变压器次级线圈N2产生的磁通量为:电流I2流过变压器次级线圈N2产生的磁通量(2-95)、(2-96)式中,μ0sd2H2=φ2就是变压器次级线圈N2对初级线圈N1的漏磁通;因为,这一部分磁通没有穿过变压器初级线圈N1。

漏磁通可以等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源变压器的漏感
任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响特别重要。

由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。

因此,分析漏感产生的原
理和减少漏感的产生也是开关变压器设计的重要内容之一。

开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。

要计算变压器线圈之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。

我们知道螺旋线圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场强度分布是基本均匀的,并且磁场能量基本集中在螺旋线圈之中。

另外,在计算螺旋线圈之内或之外的磁场强度分布时,比较复杂的情况可用麦克斯韦定理或毕-沙定理,而比较简单的情况可用安培环路定律或磁路的克希霍夫定律。

图2-30是分析计算开关变压器线圈之间漏感的原理图。

下面我们就用图2-30来简单分析开关变压器线圈之间产生漏感的原理,并进行一些比较简单的计算。

在图2-30中,N1、N2分别为变压器的初、次级线圈,Tc 是变压器铁芯。

r 是变压器铁芯的半径,r1、r2分别是变压器初、次级线圈的半径;d1为初级线圈到铁芯的距离,d2为初、次级线圈之间的距离。

为了分析计算简单,这里假设变压器初、次级线圈的匝数以及线大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m
径相等,流过线圈的电流全部集中在线径的中心;因此,它们之间的距离全部是两线圈之间的中心距离,如虚线所示。

设铁芯的截面积为S ,S=πr2;初级线圈的截面积为S1,S1=πr 21;次级线圈的截面积为S2,S2=πr22;初级线圈与铁芯的间隔截面积为Sd1,Sd1=S1-S ;次级线圈与初级线圈的间隙截面积为Sd2,Sd2=S2-S1;电流I1流过初级线圈产生的磁场强度为H1,
在面积S1之内产生的磁通量为φ1,在面积Sd2之内产生的磁通量
为φ1';电流I2流过次级线圈产生的的磁场强度为H2,磁通量为φ2。

图2.30
由此可以求得电流I2流过变压器次级线圈N2产生的磁通量为:大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m
(2-95)、(2-96)式中,μ0sd2H2=φ2就是变压器次级线圈N 2对初级线圈N1的漏磁通;因为,这一部分磁通没有穿过变压器初级线圈N1。

漏磁通可以等效成是由一个电感单独产生,这个电感就称为漏感,记为Ls 。

同理,也可以求得流过变压器初级线圈N1中的电流I1产生的磁通量为:(2-96)式中,咋看起来,变压器初级线圈N1产生的磁通量φ1全部穿过变压器次级线圈N2,它们之间应该不存在漏磁通;但是,初级线圈在面积S1中产生的磁通φ1的方向与在面积Sd2中产生的磁通φ1的方向,正好互相相反;因此,变压器初级线圈N1在面积Sd2中产生的磁通φ1,仍然称为变压器初级线圈N1对变压器次级线
圈N2的漏磁通,其等效电感同样称为漏感。

下面我们根据图2-30来简单计算变压器初、次级线圈之间的漏感Ls 。

设两个线圈的间隙为d ,高度为h ,平均周长为g ,那么,次级线圈与初级线圈的间隙截面积Sd2,sd2=gd ,间隙的体积Vd2=gdh 。

当h >>d 时,可以认为在两个线圈的间隙中磁场强度是均匀的。

根据安培环路定律:磁场强度沿任何闭合回路的线积分,等于穿过该环大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m
路所有电流强度的代数和。

由于磁场能量或强度以及电流强度基本都集中在级线圈之内,沿经过级线圈之内的磁闭合回路进行线积分的结果,主要也是对经过级线圈的路径进行积分,因此,在间隙面积hd 中的磁场强度为:
H=NI/h (2-97)
(2-97)式中,H 为漏感的磁场强度;N 为产生漏感线圈的匝数,
这里N 可以是N1或者N2;I 为流过线圈N1或者N2的电流;h 为两个线圈的高度。

[NextPage]由此我们可以求得漏感Ls 的漏磁通能量为:(2-98)、(2-99)式中,Ls 为漏感;μ0为空气的导磁率,在C
GS 绝对单位制中μ0=1,在SI 国际单位制中μ0=4π10-7(H/m ,亨利/米);g 为两个线圈之间的平均周长;d 为两个线圈之间的距离;h 为两个线圈之间的高度,N 为需要计算漏感线圈的匝数,可以是N1或N2。

如果我们拿(2-99)式与(2-67)式或(2-94)式进行对比,可以看出,线圈漏感与线圈的电感是没有本质区别的,只是磁路和磁通密度以及介质导磁率等参数需要根据实际情况来决定。

大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m
对于计算多层线圈的漏感可以用上述方法,逐层进行计算,然后求代数和;或者把多层线圈等效成一层,然后按单层来计算。

实际中使用的变压器,其初、次级线圈的匝数不一定完全一样,导线的直径也不可能一样,还有线圈的高度也不可能一样,因此,精确计算每个线圈之间的漏感并不是一件很容易的事。

为了减少变压器初、次级线圈之间的漏感,在绕制变压器线圈的
时候可以把初、次级线圈层与层之间互相错开,如图2-31所示。

图2.31
在图2-31中,两个线圈之间实线箭头表示正磁通的方向,虚线表示反磁通的方向。

从图中可以看出,多层线圈间隙与间隙之间的正、反向磁通是可以部分抵消的,因此,变压器线圈的漏感可以减小。

例如:第2层线圈N2产生的正磁通,一部分落在第1层线圈N1的外面,属于漏磁通;但第2层线圈N2产生的反磁通,正好落在第3层线圈N1的里面;即:第2层次级线圈N2产生的正、反向磁通,正好落在初级线圈N1的第1层与第3层线圈之间,正、反向磁通的大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m
作用可以互相抵消。

而第4层线圈N2产生的正、反向磁通,对第1层与第3层的初级线圈N1就没有太大的影响。

另外,从(2-99)式还可以看出,漏感的大小与两个线圈之间的距离还相关;如果把初、次级线圈用双平行或双交线来绕制,这样,两个线圈之间的距离就会变得小;特别是用双交线来绕制,相当于两层线圈不断交换里外位置,正、反向磁通互相抵消,因此,它们之间
的漏感特别小。

这种初、次级线圈采用双平行或双交线绕制的变压器一般多用于高频变压器,或脉冲变压器。

但这种变压器初、次级线圈之间的绝缘强度不高,很难在大功率开关电源中使用。

一般变压器初、次级线圈的漏感大约在1~2%左右,如果采用分层错开绕制工艺,漏感可以降低到1%之下;若采用双交线绕制工艺,线圈漏感可以降低到5‰以下。

另外,线圈漏感相对值的大小还与变压器铁芯的气隙长度有关,这个用(2-99)式与(2-94)式进行对比就可以知道。

变压器铁芯的气隙长度越大,其有效导磁率就越小,线圈漏感的相对值就越大。

对变压器线圈的漏感进行测试,方法很简单。

例如,要测试变压器初级线圈的漏感,只需要把变压器所有次级线圈的两端进行短路,然后用仪表接到初级线圈的两端进行测试,其结果就是初级线圈的漏感。

同理,需要对变压器次级线圈的漏感进行测试时,只需要把初级线圈的两端进行短路,然后用仪表接到次级线圈的两端进行测试,其结果就是次级线圈的漏感。

大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m。

相关文档
最新文档