2020年深圳市初三数学下期中试卷及答案

合集下载

2020-2021深圳北师大南山附属学校中学部九年级数学下期中试题带答案

2020-2021深圳北师大南山附属学校中学部九年级数学下期中试题带答案

2020-2021深圳北师大南山附属学校中学部九年级数学下期中试题带答案一、选择题1.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是()A.①和②B.②和③C.①和③D.①和④2.如图,△ABC的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O为位似中心,将△ABC 扩大得到△A1B1C1,且△ABC 与△A1B1C1的位似比为1 :3.则下列结论错误的是 ( )A.△ABC∽△A1B1C1B.△A1B1C1的周长为6+32C.△A1B1C1的面积为3D.点B1的坐标可能是(6,6)3.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.D.4.如图所示,在△ABC中, cos B=2,sin C=35,BC=7,则△ABC的面积是()A.212B.12C.14D.215.如图,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过顶点B,则反比例函数的表达式为()A.y=12xB.y=24xC.y=32xD.y=40x6.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=7.如图,在△ABC中,M是AC的中点,P,Q为BC边上的点,且BP=PQ=CQ,BM与AP,AQ分别交于D,E点,则BD∶DE∶EM等于A.3∶2∶1B.4∶2∶1C.5∶3∶2D.5∶2∶18.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:99.如图,∠A PD=90°,AP=PB=BC=CD,则下列结论成立的是()A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA10.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒ 11.在平面直角坐标系中,将点(2,l )向右平移3个单位长度,则所得的点的坐标是( )A .(0,5)B .(5,1)C .(2,4)D .(4,2)12.如图所示,在△ABC 中,AB =6,AC =4,P 是AC 的中点,过 P 点的直线交AB 于点Q ,若以 A 、P 、Q 为顶点的三角形和以A 、B 、C 为顶点的三角形相似,则AQ 的长为 ( )A .3B .3或43C .3或34D .43二、填空题13.如图,P (m ,m )是反比例函数9y x=在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为_____.14.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.15.△ABC 与△A′B′C′是位似图形,且△ABC 与△A′B′C′的位似比是1:2,已知△ABC 的面积是3,则△A′B′C′的面积是_____.16.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.17.如图,点A 在双曲线y=2x 上,点B 在双曲线y= 5x上,且AB ∥y 轴,C ,D 在y 轴上,若四边形ABCD 为平行四边形,则它的面积为________.18.如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则∠1+∠2= .19.如图,在平面直角坐标系中,点A 是函数k y x=(x <0)图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若△ABC 的面积为1,则k 的值为 ______ .20.在 ABC V 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE = ________时,以A 、D 、E 为顶点的三角形与 ABC V 相似.三、解答题21.如图,等边ABC ∆中,D 、E 、F 分别是AB 、AC 、BC 上的点,连接CD 、EF 交于点G ,且60CGF ∠=︒.(1)请直接写出图中所有与BDC ∆相似的三角形(任选一对证明);(2)若45EF DC =,试求AE EC 的值.22.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A 、B 、C 都是格点(每个小方格的顶点叫格点),其中()A 1,8,()B 3,8,()C 4,7. ()1ABC V 外接圆的圆心坐标是______;()2ABC V 外接圆的半径是______;()3已知ABC V 与DEF(V 点D 、E 、F 都是格点)成位似图形,则位似中心M 的坐标是______;()4请在网格图中的空白处画一个格点111A B C V ,使111A B C V ∽ABC V ,且相似比为2:1.23.如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C . (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PMx 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.24.如图,某市郊外景区内一条笔直的公路l 经过A 、B 两个景点,景区管委会又开发了风景优美的景点C .经测量,C 位于A 的北偏东60︒的方向上,B 的北偏东30°的方向上,且10AB km =.(1)求景点B 与C 的距离.(2)求景点A 与C 的距离.(结果保留根号)25.如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y =kx +b 的图象和反比例函数y =m x的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)直接写出一次函数的值小于反比例函数值的x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】设小长方形的长为2a ,宽为a .利用勾股定理求出三角形的三边长即可判断.【详解】由题意可知:小长方形的长是宽的2倍,设小长方形的宽为a ,则长为2a ,∴图①中的三角形三边长分别为2a ==;图②中的三角形三边长分别为5a ==;图③中的三角形三边长分别为==;==、5a =,∴①和②图中三角形不相似;∵22a a ≠≠ ∴②和③图中三角形不相似;∵22a a ≠≠ ∴①和③图中三角形不相似;=== ∴①和④图中三角形相似.故选D【点睛】本题考查相似三角形的判定,勾股定理等知识,解题的关键是熟练掌握熟练掌握基本知识.2.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC ∽△A 1B 1C 1,故A 正确;B. 由图可知,AB=2-1=1,BC=2-1=1,,所以△ABC 的周长为,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+32,故B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A1B1C1时,B1点的横纵坐标均为B的3倍,此时B1的坐标为(6,6),故D正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.3.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.4.A解析:A【解析】【分析】【详解】试题分析:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=4,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A.考点:1.解直角三角形;2.压轴题.5.C解析:C【解析】【分析】过A作AM⊥x轴于M,过B作BN⊥x轴于N,根据菱形性质得出OA=BC=AB=OC,AB ∥OC,OA∥BC,求出∠AOM=∠BCN,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN,求出BN=AM=4,CN=OM=3,ON=8,求出B点的坐标,把B的坐标代入y=kx求出k即可.【详解】过A作AM⊥x轴于M,过B作BN⊥x轴于N,则∠AMO=∠BNC=90°,∵四边形AOCB是菱形,∴OA=BC=AB=OC,AB∥OC,OA∥BC,∴∠AOM=∠BCN,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM和△BCN中AMO BNCAOM BCNOA BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B 点的坐标是(8,4),把B 的坐标代入y=kx 得:k=32,即y=32x, 故答案选C.【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.6.D解析:D【解析】A 选项,在△OAB ∽△OCD 中,OB 和CD 不是对应边,因此它们的比值不一定等于相似比,所以A 选项不一定成立;B 选项,在△OAB ∽△OCD 中,∠A 和∠C 是对应角,因此αβ=,所以B 选项不成立; C 选项,因为相似三角形的面积比等于相似比的平方,所以C 选项不成立;D 选项,因为相似三角形的周长比等于相似比,所以D 选项一定成立.故选D.7.C解析:C【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案.【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC ,∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP ,∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC , ∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.8.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A 、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B 、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C 、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D 、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B .【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.9.B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠P AB≠∠PCA,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=P A,AC=P A,AD=P A,BD=2P A,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.10.C解析:C【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.11.B【解析】【分析】在平面直角坐标系中,将点(2,l )向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l )向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.12.B解析:B【解析】 AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形,有“反A 共角型”、“反A 共角共边型”、 “蝶型”,如下图:二、填空题13.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三解析:933+.【解析】【详解】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△P AB是等边三角形,∴∠P AH=60°.∴根据锐角三角函数,得3∴OB3∴S△POB=12OB•PH933+.14.16【解析】【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE ∴∠CDA=∠OBA∴△AOB∽△E解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.15.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是解析:12【解析】【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为12.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.16.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体然后进一步计算即可得出答案【详解】根据俯解析:7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,∴527+=,∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.17.3【解析】试题分析:由AB ∥y 轴可知AB 两点横坐标相等设A (m )B (m )求出AB=﹣=再根据平行四边形的面积公式进行计算即可得=•m=3考点:反比例函数系数k 的几何意义解析:3【解析】试题分析:由AB ∥y 轴可知,A 、B 两点横坐标相等,设A (m ,2m ),B (m ,5m ),求出AB=5m ﹣2m =3m ,再根据平行四边形的面积公式进行计算即可得ABCD S Y =3m•m=3. 考点:反比例函数系数k 的几何意义18.45°【解析】【分析】首先求出线段ACAFAG 的长度(用a 表示)求出两个三角形对应边的比进而证明△ACF ∽△GCA 问题即可解决【详解】设正方形的边长为a 则AC=∵∴∵∠ACF=∠ACF ∴△ACF ∽△解析:45°.【解析】【分析】首先求出线段AC 、AF 、AG 的长度(用a 表示),求出两个三角形对应边的比,进而证明△ACF ∽△GCA ,问题即可解决.【详解】设正方形的边长为a ,则=,∵ACCF ==CG AC == ∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF∽△GCA,∴∠1=∠CAF,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.19.-2【解析】【分析】根据已知条件得到三角形ABC的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC的面积=1•=12AB OB,得到|k|=2,即可得到结论.【详解】解:∵AB⊥y轴,∴AB∥CO,∴111•1222ABCS AB OB x y k====g三角形,∴2k=,∵0k<,∴2k=-,故答案为:-2.【点睛】本题考查了反比例函数系数k的几何意义,明确1•=12ABCS AB OB=V是解题的关键.20.【解析】当时∵∠A=∠A∴△AED∽△ABC此时AE=;当时∵∠A=∠A∴△ADE∽△ABC此时AE=;故答案是:解析:512 35或【解析】当AE ABAD AC=时,∵∠A=∠A,∴△AED∽△ABC,此时AE=·621255 AB ADAC⨯==;当AD AB AE AC=时, ∵∠A=∠A , ∴△ADE ∽△ABC ,此时AE=·52563AC AD AB ⨯==; 故答案是:12553或. 三、解答题21.(1)GFC CFE ∆∆、;(2)14 【解析】【分析】(1)根据等边三角形的性质及∠CGF=60°,可以得出∠B=∠ACB=∠CGF=60°,可以得出△BDC ∽△GFC ∽△CFE ;(2)由(1)△BDC ∽△CFE 可以得出EF CE DC BC = ,再根据条件45EF DC =和三角形ABC 是等边三角形和线段的转化,就可以得出AE EC 的值. 【详解】解:(1)GFC CFE ∆∆、∵等边ABC ∆,∴∠B=∠ACB =60°∵60CGF ∠=︒∴∠B=∠ACB=∠CGF又∵∠DCB=∠FCG∴GFC BDC ∆∆∽∵∠EFC=∠GFC∴GFC CFE ∆∆∽∴GFC CFE BDC ∆∆∽∽△(2)∵△BDC ∽△CFE454541,54EF CE DC BCEF DC CE BC CE AE AC EC ∴==∴=∆∴∴==Q Q 等边ABC AC=BC即【点睛】 本题考查了相似三角形的判定与性质,等边三角形的性质.22.(1)(2,6);(2)5; (3)(3,6) ;(4)见解析. 【解析】【分析】(1)根据作图,结合网格特点解答;(2)根据线段垂直平分线的性质和三角形的外接圆的概念解答;(3)根据位似变换和位似中心的概念解答;(4)根据相似三角形的对应边的比相等,都等于相似比解答.【详解】解:(1)如图1,由作图可知△ABC 外接圆的圆心坐标是(2,6),故答案为(2,6);(2)作AB 、BC 的垂直平分线交于G ,连接AG ,根据网格特点可知,点G 的坐标为(2,6),则2212+5则△ABC 55(3)如图2,连接BE 、FC ,根据网格特点,BE与FC交于点M,点M的坐标为(3,6),根据位似中心的概念可知,位似中心M的坐标是(3,6),故答案为(3,6);(4)由网格特点可知,AB=2,BC=2,AC=10,∵△A1B1C1∽△ABC,且相似比为2:1,∴A1B1=22,B1C1=2,A1C1=25,所求的△A1B1C1如图3.【点睛】本题考查的是格点正方形、锐角三角函数的定义、位似变换与位似中心与相似三角形的性质,掌握如果两个图形不仅是相似图形,且对应点连线相交于一点,对应线段互相平行,这两个图形是位似图形是解题的关键.23.(1)抛物线的解析式为y=x2+2x;(2)D1(-1,-1),D2(-3,3),D3(1,3);(3)存在,P(,)或(3,15).【解析】【分析】(1)根据抛物线过A(2,0)及原点可设y=a(x-2)x,然后根据抛物线y=a(x-2)x过B(3,3),求出a的值即可;(2)首先由A的坐标可求出OA的长,再根据四边形AODE是平行四边形,D在对称轴直线x=-1右侧,进而可求出D横坐标为:-1+2=1,代入抛物线解析式即可求出其横坐标;(3)分△PMA∽△COB和△PMA∽△BOC表示出PM和AM,从而表示出点P的坐标,代入求得的抛物线的解析式即可求得t的值,从而确定点P的坐标.【详解】解:(1)根据抛物线过A(-2,0)及原点,可设y=a(x+2)(x-0),又∵抛物线y=a(x+2)x过B(-3,3),∴-3(-3+2)a=3,∴a=1,∴抛物线的解析式为y=(x+2)x=x2+2x;(2)①若OA为对角线,则D点与C点重合,点D的坐标应为D(-1,-1);②若OA为平行四边形的一边,则DE=OA,∵点E在抛物线的对称轴上,∴点E横坐标为-1,∴点D的横坐标为1或-3,代入y=x2+2x得D(1,3)和D(-3,3),综上点D坐标为(-1,-1),(-3,3),(1,3).(3)∵点B(-3,3)C(-1,-1),∴△BOC为直角三角形,∠COB=90°,且OC:OB=1:3,①如图1,若△PMA∽△COB,设PM=t,则AM=3t,∴点P(3t-2,t),代入y=x2+2x得(-2+3t)2+2(-2+3t)=t,解得t1=0(舍),t2=79,∴P(13,79);②如图2,若△PMA∽△BOC,设PM=3t,则AM=t,点P(t-2,3t),代入y=x2+2x得(-2+t)2+2(-2+t)=3t,解得t1=0(舍),t2=5,∴P(3,15)综上所述,点P 的坐标为(13,79)或(3,15). 考点:二次函数综合题 24.(1)BC=10km ;(2)AC=103km.【解析】【分析】(1)由题意可求得∠C =30°,进一步根据等角对等边即可求得结果;(2)分别在Rt BCD ∆和Rt ACD ∆中利用锐角三角函数的知识解直角三角形即可求得结果.【详解】解:(1)过点C 作CD ⊥直线l ,垂足为D ,如图所示.根据题意,得:30CAD ∠=︒,60CBD ∠=︒,∴∠C =∠CBD -∠CAD =30°,∴∠CAD =∠C ,∴BC =AB =10km .(2) 在Rt BCD ∆中,sin CD CBD BC ∠=,∴sin 6053CD BC km ==o g , 在Rt ACD ∆中,1sin 2CD CAD AC ∠==,∴2103AC CD km ==.【点睛】本题考查了解直角三角形的应用,属于基本题型,熟练掌握锐角三角函数的知识是解题的关键.25.(1)y =﹣x ﹣2;(2)C (﹣2,0),△AOB =6,,(3)﹣4<x <0或x >2.【解析】【分析】(1)先把B 点坐标代入代入y =m x,求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式; (2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和△AOB 的面积=S △AOC +S △BOC 进行计算;(3)观察函数图象得到当﹣4<x <0或x >2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B (2,﹣4)在反比例函数y =m x的图象上, ∴m =2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣8x,把A(﹣4,n)代入y=﹣8x,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得4224k bk b-+=⎧⎨+=-⎩,解得12kb=-⎧⎨=-⎩,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=12×2×2+12×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.。

2020-2021深圳市松岗中学初三数学下期中第一次模拟试卷带答案

2020-2021深圳市松岗中学初三数学下期中第一次模拟试卷带答案

2020-2021深圳市松岗中学初三数学下期中第一次模拟试卷带答案一、选择题1.如图,菱形OABC 的顶点A 的坐标为(3,4),顶点C 在x 轴的正半轴上,反比例函数y=k x (x >0)的图象经过顶点B ,则反比例函数的表达式为( )A .y=12xB .y=24xC .y=32xD .y=40x2.如图,河堤横断面迎水坡AB 的坡比是1:3,堤高BC =12m ,则坡面AB 的长度是( )A .15mB .203mC .24mD .103m 3.已知两个相似三角形的面积比为 4:9,则周长的比为 ( ) A .2:3B .4:9C .3:2D .2:3 4.反比例函数k y x=与1(0)y kx k =-+≠在同一坐标系的图象可能为( ) A . B . C . D .5.如图▱ABCD ,F 为BC 中点,延长AD 至E ,使:1:3DE AD =,连结EF 交DC 于点G ,则:DEG CFG S S ∆V =( )A .2:3B .3:2C .9:4D .4:96.在同一直角坐标系中,函数k y x=和y=kx ﹣3的图象大致是( ) A . B . C .D .7.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:98.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A .1:3B .1:4C .2:3D .1:29.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒ 10.如图,在平行四边形中,点在边上, 与相交于点,且,则与的周长之比为( )A .1 : 2B .1 : 3C .2 : 3D .4 : 911.若△ABC ∽△A′B′C′且34AB A B ='',△ABC 的周长为15cm ,则△A′B′C′的周长为( )cm.A .18B .20C .154D .80312.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE=0.5m ,EF=0.25m ,目测点D 到地面的距离DG=1.5m ,到旗杆的水平距离DC=20m ,则旗杆的高度为( )A .105 mB .(105 1.5)+ mC .11.5mD .10m二、填空题13.已知反比例函数21k y x+=的图像经过点(2,1)-,那么k 的值是__. 14.如图,已知点A ,C 在反比例函数(0)a y a x =>的图象上,点B ,D 在反比例函(0)b y b x=<的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB=5,CD=4,AB 与CD 的距离为6,则a −b 的值是_______.15.如图,等腰△ABC 中,底边BC 长为8,腰长为6,点D 是BC 边上一点,过点B 作AC 的平行线与过A 、B 、D 三点的圆交于点E ,连接DE ,则DE 的最小值是___.16.如图,在平行四边形ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为_____.17.如图,直立在点B处的标杆AB=2.5m,站立在点F处的观测者从点E看到标杆顶A,树顶C在同一直线上(点F,B,D也在同一直线上).已知BD=10m,FB=3m,人的高度EF =1.7 m,则树高DC是________.(精确到0.1 m)18.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.19.如图,当太阳光与地面成角时,直立于地面的玲玲测得自己的影长为1.25m,则玲玲的身高约为________m.(精确到0. 01m)(参考数据:sin55°≈0.8192,cos55°≈0.5736,tan55°≈1.428).20.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.三、解答题21.如图,在正方形ABCD中,E为边AD上的点,点F在边CD上,且CF=3FD,∠BEF=90°(1)求证:△ABE∽△DEF;(2)若AB=4,延长EF交BC的延长线于点G,求BG的长22.如图,在ABC V 中,AB AC =,点E 在边BC 上移动(点E 不与点B ,C 重合),满足DEF B ∠=∠,且点D 、F 分别在边AB 、AC 上.(1)求证:BDE CEF △∽△.(2)当点E 移动到BC 的中点时,求证:FE 平分DFC ∠.23.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且CD 2=AD •BC .(1)求证:△APD ∽△PBC ;(2)求∠APB 的度数.24.如图,已知∠BAE =∠CAD ,AB =18,AC =48,AE =15,AD =40.求证:△ABC ∽△AED .25.如图,△ABC 是一张锐角三角形的硬纸片.AD 是边BC 上的高,BC=40cm ,AD=30cm .从这张硬纸片剪下一个长HG 是宽HE 的2倍的矩形EFGH .使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上.AD 与HG 的交点为M .(1)求证:AM HG AD BC=; (2)求这个矩形EFGH 的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,根据菱形性质得出OA=BC=AB=OC ,AB ∥OC ,OA ∥BC ,求出∠AOM=∠BCN ,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN ,求出BN=AM=4,CN=OM=3,ON=8,求出B 点的坐标,把B 的坐标代入y=kx 求出k 即可.【详解】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,则∠AMO=∠BNC=90°,∵四边形AOCB 是菱形,∴OA=BC=AB=OC,AB ∥OC,OA ∥BC ,∴∠AOM=∠BCN ,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM 和△BCN 中AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B点的坐标是(8,4),把B的坐标代入y=kx得:k=32,即y=32x,故答案选C.【点睛】本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.2.C解析:C【解析】【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】解:Rt△ABC中,BC=12cm,tanA=1∴AC=BC÷tanA=cm,∴AB24cm.故选:C.【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.3.A解析:A【解析】【分析】由于相似三角形的面积比等于相似比的平方,已知了两个相似三角形的面积比,即可求出它们的相似比;再根据相似三角形的周长比等于相似比即可得解.【详解】∵两个相似三角形的面积之比为4:9,∴两个相似三角形的相似比为2:3,∴这两个相似三角形的周长之比为2:3.故选:A【点睛】本题考查的是相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.4.B解析:B【解析】【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A 根据反比例函数的图象可知,k >0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A 错误;B 根据反比例函数的图象可知,k >0,,因此一次函数的图象应该递减,和图象吻合,所以B 正确;C 根据反比例函数的图象可知,k <0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C 错误;D 根据反比例函数的图象可知,k <0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D 错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.5.D解析:D【解析】【分析】先设出DE x =,进而得出3AD x =,再用平行四边形的性质得出3BC x =,进而求出CF ,最后用相似三角形的性质即可得出结论.【详解】解:设DE x =,∵:1:3DE AD =,∴3AD x =,∵四边形ABCD 是平行四边形,∴//AD BC ,BC AD 3x ==,∵点F 是BC 的中点, ∴1322CF BC x ==, ∵//AD BC , ∴DEG CFG ∆∆∽, ∴224392DEGCFG S DE x S CF x ⎛⎫ ⎪⎛⎫=== ⎪ ⎪⎝⎭ ⎪⎝⎭V V , 故选:D .【点睛】此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义,表示出CF 是解本题的关键.6.A解析:A【解析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.7.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.8.D解析:D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=14DB,则DE:EB=1:3,∴DF:AB=1:3.∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.9.C解析:C【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.10.C解析:C【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的周长比等于相似比就可得到答案.【详解】∵四边形ABCD是平行四边形,∴DC∥AB,CD=AB.∴△DFE∽△BFA,∵DE:EC=1:2,∴EC:DC=CE:AB=2:3,∴C△CEF:C△ABF=2:3.故选C.11.B解析:B【解析】∵△ABC∽△A′B′C′,∴34 ABC ABA B C A B''=''='VV的周长的周长,∵△ABC的周长为15cm,∴△A′B′C′的周长为20cm.故选B.12.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC , ∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.二、填空题13.【解析】【分析】将点的坐标代入可以得到-1=然后解方程便可以得到k 的值【详解】∵反比例函数y =的图象经过点(2-1)∴-1=∴k=−;故答案为k =−【点睛】本题主要考查函数图像上的点满足其解析式可以 解析:32k =- 【解析】【分析】将点的坐标代入,可以得到-1=212k +,然后解方程,便可以得到k 的值. 【详解】∵反比例函数y =21k x +的图象经过点(2,-1), ∴-1=212k +∴k =− 32; 故答案为k =−32.【点睛】 本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答14.【解析】【分析】利用反比例函数k 的几何意义得出a-b=4•OEa -b=5•OF 求出=6即可求出答案【详解】如图∵由题意知:a-b=4•OEa -b=5•OF∴OE=OF=又∵OE+OF=6∴=6∴a -解析:403【解析】【分析】利用反比例函数k 的几何意义得出a-b=4•OE ,a-b=5•OF ,求出45a b a b --+=6,即可求出答案.【详解】如图,∵由题意知:a-b=4•OE ,a-b=5•OF ,∴OE=4a b -,OF=5a b -, 又∵OE+OF=6,∴45a b a b --+=6, ∴a-b=403, 故答案为:403. 【点睛】 本题考查了反比例函数图象上点的坐标特征,能求出方程45a b a b --+=6是解此题的关键.15.【解析】【分析】如图连接AEADOEOD 作AJ⊥BC 于JOK⊥DE 于K 首先证明∠EOD=2∠C=定值推出⊙O 的半径最小时DE 的值最小推出当AB 是直径时DE 的值最小【详解】如图连接AEADOEOD 作A 解析:5【解析】【分析】如图,连接AE ,AD ,OE ,OD ,作AJ ⊥BC 于J ,OK ⊥DE 于K .首先证明∠EOD =2∠C =定值,推出⊙O 的半径最小时,DE 的值最小,推出当AB 是直径时,DE 的值最小.【详解】如图,连接AE ,AD ,OE ,OD ,作AJ ⊥BC 于J ,OK ⊥DE 于K .∵BE ∥AC ,∴∠EBC+∠C =180°,∵∠EBC+∠EAD =180°,∴∠EAD =∠C ,∵∠EOD =2∠EAD ,∴∠EOD =2∠C =定值,∴⊙O 的半径最小时,DE 的值最小,∴当AB 是⊙O 的直径时,DE 的值最小,∵AB =AC =6,AJ ⊥BC ,∴BJ =CJ =4,∴AJ 22A C CJ -2264-5∵OK ⊥DE ,∴EK =DK ,∵AB =6,∴OE =OD =3,∵∠EOK =∠DOK =∠C ,∴sin ∠EOK =sin ∠C 25, ∴3EK =56, ∴EK 5∴DE =5∴DE的最小值为故答案为【点睛】本题考查三角形的外接圆,解直角三角形,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题.16.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AE∥BC,AB∥CD,∴∠CFB=∠FBA,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠CFB=∠CBF,∴CB=CF=8,∴DF=12﹣8=4,∵DE∥CB,∴△DEF∽△CBF,∴EFBF=DFCF,∴2BF=48,∴BF=4,∵CF=CB,CG⊥BF,∴BG=FG=2,在Rt△BCG中,CG=故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.17.2m【解析】【详解】解:过点E作EM⊥CD交AB与点N∴故答案为52m【点睛】本题是考查相似三角形的判定和性质关键是做出辅助线构造相似三角形利用相似三角形的性质得出结论即可这类题型可以作垂直也可以作解析:2m【解析】【详解】解:过点E 作EM ⊥CD,交AB 与点N.∴,EN AN EAN ECM EM CM V V ~∴= 30.82.5, 1.7,0.8,10,313AB m EF m AN m BD m FB m CM ==∴===∴=Q Q ,()3.47CM m ∴≈ ()1.7 3.47 5.2.CD m ∴=+≈故答案为5.2m .【点睛】本题是考查相似三角形的判定和性质.关键是做出辅助线,构造相似三角形,利用相似三角形的性质得出结论即可.这类题型可以作垂直也可以作平行线,构造相似三角形.18.3【解析】试题分析:如图∵CD∥AB∥MN∴△ABE∽△CDE△ABF∽△MNF∴即解得:AB=3m 答:路灯的高为3m 考点:中心投影解析:3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴,CD DE FN MN AB BE FB AB ==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.19.79【解析】【分析】身高影长和光线构成直角三角形根据tan55°=身高:影长即可解答【详解】解:玲玲的身高=影长×tan55°=125×1428≈179(m )故答案为179【点睛】本题考查了解直角三解析:79【解析】【分析】身高、影长和光线构成直角三角形,根据tan55°=身高:影长即可解答.【详解】解:玲玲的身高=影长×tan55°=1.25×1.428≈1.79(m).故答案为1.79.【点睛】本题考查了解直角三角形的应用、正切的概念、计算器的使用.20.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=6三、解答题21.(1)详见解析;(2)10【解析】【分析】(1)由正方形的性质得出∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,证出∠ABE=∠DEF,即可得出△ABE∽△DEF;(2)求出DF=1,CF=3,由相似三角形的性质得出AE ABDF DE=,解得DE=2,证明△EDF∽△GCF,得出DE DFCG CF=,求出CG=6,即可得出答案.【详解】(1)证明:∵四边形ABCD为正方形,∴∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,∵∠BEF=90°,∵∠AEB+∠EBA=∠DEF+∠EBA=90°,∴∠ABE=∠DEF,∴△ABE∽△DEF;(2)解:∵AB=BC=CD=AD=4,CF=3FD,∴DF=1,CF=3,∵△ABE ∽△DEF , ∴AE AB DF DE =,即441DE DE-= , 解得:DE =2,∵AD ∥BC ,∴△EDF ∽△GCF , ∴DE DF CG CF =,即213CG =, ∴CG =6,∴BG =BC +CG =4+6=10.【点睛】 本题考查了相似三角形的判定及性质、正方形的性质,掌握相似三角形的判定和性质是解题的关键.22.见解析【解析】试题分析:(1)由三角形内角和定理可得:∠BDE=180°-∠B-∠DEB ,∠CEF=180°-∠DEF-∠DEB ,结合∠B=∠DEF ,可得∠BDE=∠CEF ;由AB=AC 可得∠B=∠C ,由此即可证得:△BDE ∽△CEF ;(2)由(1)中结论:△BDE ∽△CEF 可得:BE DE CF EF=,结合BE=EC 可得:CE DE CF EF=,再结合∠C=∠B=∠DEF ,证得:△DEF ∽△ECF ,由此可得∠DFE=∠EFC ,从而得到结论EF 平分∠DFC.试题解析:(1)∵AB AC =,∴B C ∠=∠,∵180BDE B DAB ∠=︒-∠-∠,180CEF DEF DEB ∠=︒-∠-∠,∵DEF B ∠=∠,∴BDE CEF ∠=∠,BDE CEF V V ∽.(2)∵BDE CEF V V ∽, ∴BE DE CF EF=, ∵E 是BC 中点,BE CE =, ∴CE DE CF EF =, ∵DEF B C ∠=∠=∠,∴DEF ECF V V ∽,∴DFE CFE ∠=∠,∴EF 平分DFC ∠.23.(1)见解析;(2)120°【解析】【分析】(1)CD 2=AD •BC 可得AD :PC =PD :BC ,又由△PCD 是等边三角形,所以可求出∠ADP =∠BCP =120°,进而证明△ACP ∽△PDB ;(2)由△APD ∽△PBC ,可得∠APD =∠B ,则可求得∠APB 的大小.【详解】(1)证明:∵△PCD 是等边三角形,∴PD =PC =DC ,∠PDC =∠PCD =60°,∴∠ADP =∠BCP =120°,∵CD 2=AD •BC ,∴AD :PC =PD :BC ,∴△APD ∽△PBC ;(2)∵△APD ∽△PBC ,∴∠APD =∠B ,∵∠B +∠BPC =60°,∴∠APD +∠BPC =60°,∴∠APB =60°+∠DPC =120°.【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,熟练掌握相似三角形的性质是解题的关键.24.证明见解析.【解析】【分析】由∠BAE=∠CAD 知∠BAE+∠EAC=∠CAD+∠EAC ,即∠BAC=∠EAD ,再根据线段的长得出65AB AC AE AD ==,据此即可得证. 【详解】 ∵∠BAE =∠CAD ,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∵AB=18,AC=48,AE=15,AD=40,∴65 AB ACAE AD==,∴△ABC∽△AED.【点睛】本题主要考查相似三角形的判定,解题的关键是掌握两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.25.(1)证明见解析;(2)72cm.【解析】【分析】(1)根据矩形性质得出∠AHG=∠ABC,再证明△AHG∽△ABC,即可得出结论;(2)根据(1)中比例式即可求出HE的长度,以及矩形的周长.【详解】解:(1)证明:∵四边形EFGH为矩形,∴EF∥GH,∴∠AHG=∠ABC,又∵∠HAG=∠BAC,∴△AHG∽△ABC,∴AM HG AD BC=;(2)解:由(1)AM HGAD BC=得:设HE=xcm,则MD=HE=xcm.∵AD=30cm,∴AM=(30﹣x)cm.∵HG=2HE,∴HG=(2x)cm,可得:303040x x-=,解得:x=12,故HG=2x=24,所以矩形EFGH的周长为:2×(12+24)=72(cm).答:矩形EFGH的周长为72cm.【点睛】本题主要考查了相似三角形的判定与性质,根据矩形性质得出△AHG∽△ABC是解决问题的关键.。

2019-2020学年广东省深圳高级中学九年级下学期期中数学试卷 (解析版)

2019-2020学年广东省深圳高级中学九年级下学期期中数学试卷 (解析版)

2019-2020学年九年级第二学期期中数学试卷一、选择题(共12小题).1.下列各数中,()是无理数.A.0B.﹣2C.D.0.42.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×1083.如图所示的几何体,它的左视图是()A.B.C.D.4.下列运算正确的是()A.2a3÷a=6B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b25.代数式有意义的x的取值范围是()A.x≥﹣1且x≠0B.x≥﹣1C.x<﹣1D.x>﹣1且x≠0 6.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠AOC 的度数是()A.70°B.110°C.140°D.160°7.若一个多边形的内角和等于1620°,则这个多边形的边数为()A.9B.10C.11D.128.将抛物线y=(x+2)2﹣5向右平移2个单位,再向上平移5个单位,平移后所得抛物线解析式为()A.y=(x+4)2B.y=x2C.y=x2﹣10D.y=(x+4)2﹣109.为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.B.C.D.10.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=CA,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°11.定义新运算:a※b=,则函数y=3※x的图象大致是()A.B.C.D.12.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…,按如图所示的方式放置,点A1A2A3,…和点B1B2B3,…分别在直线y=x+1和x轴上,则点C2020的纵坐标是()A.22020B.22019C.22020﹣1D.22019﹣1二、填空题(每题3分,共12分)13.因式分解:(x﹣y)2﹣6(x﹣y)+9=.14.如果x1,x2是关于x的一元二次方程x2+x﹣k=0的两个实数根,那么x1x2的最大值为.15.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A′处,∠1=∠2=48°,则∠A′的度数为.16.如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF 的距离一定等于正方形的边长;③若tan∠BAE=,则tan∠DAF=;④若BE=2,DF=3,则S△AEF=15.其中结论正确的是.(将正确的序号填写在横线上)三、解答题(共52分)17.计算:(π﹣1)0+|﹣1|+(﹣)﹣1﹣3tan30°.18.先化简,再求值:÷(﹣),其中a=+2.19.在某次数学测验中,一道题满分3分,老师评分只给整数,即得分只能为0分,1分,2分,3分.李老师为了了解学生得分情况和试题的难易情况,对初三(1)班所有学生的试题进行了分析整理,并绘制了两幅尚不完整的统计图,如图所示.解答下列问题:(1)m=,n=,并补全条形统计图;(2)在初三(1)班随机抽取一名学生的成绩,求抽中的成绩为得分众数的概率;(3)根据右侧“小知识”,通过计算判断这道题对于该班级来说,属于哪一类难度的试题?20.如图,AB是垂直于水平面的建筑物,为测量AB的高度,小红从建筑物底端B出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D在同一平面内),斜坡CD的坡度(或坡比)i=1:2.4,求建筑物AB的高度.(精确到个位)(参考数据:sin=27°≈0.45,cos27°≈0.89,tan27°≈0.5l)21.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M,填空:的值为;∠AMB的度数为,(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M,请判断的值及∠AMB的度数,并说明理由.22.如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD 的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=,CD=a,请用a表示⊙O的半径;(3)求证:GF2﹣GB2=DF•GF.23.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点F恰好落在y轴上,求出对应的点P的坐标.参考答案一、选择题(每题3分,共36分)1.下列各数中,()是无理数.A.0B.﹣2C.D.0.4【分析】根据无理数的定义对各选项进行逐一分析即可.解:A.0是整数,属于有理数;B.﹣2是整数,属于有理数;C.是无理数;D.0.4是有限小数,属于有理数.故选:C.2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000000076用科学记数法表示为7.6×10﹣9.故选:A.3.如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据左视图的画法画出相应的图形即可;注意看不到的线用虚线表示.解:根据三视图的画法,从左面看到的图形为,A选项的图形,故选:A.4.下列运算正确的是()A.2a3÷a=6B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2【分析】根据单项式的除法法则,以及幂的乘方,平方差公式以及完全平方公式即可作出判断.解:A、2a3÷a=2a2,故选项错误;B、(ab2)2=a2b4,故选项错误;C、正确;D、(a+b)2=a2+2ab+b2,故选项错误.故选:C.5.代数式有意义的x的取值范围是()A.x≥﹣1且x≠0B.x≥﹣1C.x<﹣1D.x>﹣1且x≠0【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,就可以求解.解:根据题意,得,解得:x≥﹣1且x≠0.故选:A.6.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠AOC 的度数是()A.70°B.110°C.140°D.160°【分析】根据补角的概念求出∠ADC,根据圆周角定理计算.解:∵∠ADE=110°,∴∠ADC=70°,∵四边形ABCD内接于⊙O,∴∠AOC=2∠ADC=140°,故选:C.7.若一个多边形的内角和等于1620°,则这个多边形的边数为()A.9B.10C.11D.12【分析】首先设多边形的边数为n,再根据多边形内角和公式可得方程180(n﹣2)=1620,再解即可.解:设多边形的边数为n,由题意得:180(n﹣2)=1620,解得:n=11,故选:C.8.将抛物线y=(x+2)2﹣5向右平移2个单位,再向上平移5个单位,平移后所得抛物线解析式为()A.y=(x+4)2B.y=x2C.y=x2﹣10D.y=(x+4)2﹣10【分析】根据平移规律即可求出新抛物线的解析式.解:将抛物线y=(x+2)2﹣5向右平移2个单位,再向上平移5个单位,平移后所得抛物线解析式为y=(x+2﹣2)2﹣5+5,即y=x2,故选:B.9.为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.B.C.D.【分析】关键描述语为:提前20分钟完成任务;等量关系为:原计划用的时间﹣提前的时间=实际用的时间.解:原计划植树用的时间应该表示为,而实际用的时间为.那么方程可表示为.故选:A.10.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=CA,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°【分析】想办法求出∠B,再利用三角形内角和定理即可解决问题.解:由作图可知,MN垂直平分线段BC,∴DB=DC,∴∠B=∠DCB,∵CD=CA,∴∠A=∠CDA=50°,∵∠CDA=∠B+∠DCB,∴∠B=∠DCB=25°,∴∠ACB=180°﹣25°﹣50°=105°,故选:D.11.定义新运算:a※b=,则函数y=3※x的图象大致是()A.B.C.D.【分析】先根据新定义运算列出y的关系式,再根据此关系式及x的取值范围画出函数图象即可.解:根据新定义运算可知,y=3※x=,(1)当x≥3时,此函数解析式为y=2,函数图象在第一象限,以(3,2)为端点平行于x轴的射线,故可排除C、D;(2)当x<3时,此函数是反比例函数,图象在二、四象限,可排除A.故选:B.12.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…,按如图所示的方式放置,点A1A2A3,…和点B1B2B3,…分别在直线y=x+1和x轴上,则点C2020的纵坐标是()A.22020B.22019C.22020﹣1D.22019﹣1【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A1,A2,A3,A4,A5的坐标,即可根据正方形的性质得出C1,C2,C3,C4,C5的纵坐标,根据点的坐标的变化可找出变化规律点∁n的纵坐标为2n﹣1,再代入n=2020即可得出结论.解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1A2为正方形,∴点C1的纵坐标为1,当x=1时,y=x+1=2,∴点A2的坐标为(1,2).∵A2B2C2A3为正方形,∴点C2的纵坐标为2.同理,可知:点A3的坐标为(3,4),点C3的纵坐标为4.∴点∁n的纵坐标为2n﹣1∴点C2020的纵坐标为22019.故选:B.二、填空题(每题3分,共12分)13.因式分解:(x﹣y)2﹣6(x﹣y)+9=(x﹣y﹣3)2.【分析】原式利用完全平方公式分解即可.解:原式=(x﹣y﹣3)2.故答案为:(x﹣y﹣3)214.如果x1,x2是关于x的一元二次方程x2+x﹣k=0的两个实数根,那么x1x2的最大值为.【分析】根据根与系数的关系以及根的判别式即可求出答案.解:△=1+4k≥0,∴k≥﹣,∵x1x2=﹣k≤,∴x1x2的最大值为,故答案为:15.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A′处,∠1=∠2=48°,则∠A′的度数为108°.【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=24°,再由三角形内角和定理求出∠A,即可得到结果.解:∵AD∥BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=48°,∴∠ADB=∠BDG=24°,又∵∠2=48°,∴△ABD中,∠A=108°,∴∠A'=∠A=108°,故答案为:108°16.如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF 的距离一定等于正方形的边长;③若tan∠BAE=,则tan∠DAF=;④若BE=2,DF=3,则S△AEF=15.其中结论正确的是①②③④.(将正确的序号填写在横线上)【分析】如图,根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH =∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长;故②正确;根据三角函数的定义设BE=m,AB=2m,求得CE=m,设DF=x,则CF=2m﹣x,EF=BE+DF =m+x,根据勾股定理得到x=m,于是得到tan∠DAF===;故③正确;求得EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到结论.解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵tan∠BAE==,∴设BE=m,AB=2m,∴CE=m,设DF=x,则CF=2m﹣x,EF=BE+DF=m+x,∵CF2+CE2=EF2,∴(2m﹣x)2+m2=(m+x)2,∴x=m,∴tan∠DAF===;故③正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n﹣2,CF=n﹣3,∴EF2=CE2+CF2,∴25=(n﹣2)2+(n﹣3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=×6×5=15.故④正确,故答案为:①②③④.三、解答题(共52分)17.计算:(π﹣1)0+|﹣1|+(﹣)﹣1﹣3tan30°.【分析】直接利用绝对值的性质以及零指数幂的性质、负整数指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式=1+﹣1﹣3﹣3×=1+﹣1﹣3﹣=﹣3.18.先化简,再求值:÷(﹣),其中a=+2.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.解:÷(﹣),=÷,=÷,=•,=.当a=+2时,原式==1+2.19.在某次数学测验中,一道题满分3分,老师评分只给整数,即得分只能为0分,1分,2分,3分.李老师为了了解学生得分情况和试题的难易情况,对初三(1)班所有学生的试题进行了分析整理,并绘制了两幅尚不完整的统计图,如图所示.解答下列问题:(1)m=25,n=20,并补全条形统计图;(2)在初三(1)班随机抽取一名学生的成绩,求抽中的成绩为得分众数的概率;(3)根据右侧“小知识”,通过计算判断这道题对于该班级来说,属于哪一类难度的试题?【分析】(1)根据条形统计图和扇形统计图可以得到m和n的值,从而可以得到得1分的人数将条形统计图补充完整;(2)根据(1)中学生人数,进而利用众数的定义、概率求法得出答案;(3)根据题意可以算出L的值,从而可以判断试题的难度系数.解:(1)由条形统计图可知0分的同学有6人,由扇形统计图可知,0分的同学占10%,则抽取的总人数是:6÷10%=60(人),故得1分的学生数是;60﹣27﹣12﹣6=15(人),则m%=×100%,解得:m=25,n%=×100%=20%,如图所示:(2)总人数为60人,众数为2分有27人,概率为=;(3)平均数为:=1.75(分),L==≈0.58.因为0.58在0.4﹣0.7中间,所以这道题为中档题.故答案为:25,20.20.如图,AB是垂直于水平面的建筑物,为测量AB的高度,小红从建筑物底端B出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D在同一平面内),斜坡CD的坡度(或坡比)i=1:2.4,求建筑物AB的高度.(精确到个位)(参考数据:sin=27°≈0.45,cos27°≈0.89,tan27°≈0.5l)【分析】过点E作EM⊥AB与点M,根据斜坡CD的坡度(或坡比)i=1:2.4可设DG =x,则CG=2.4x,利用勾股定理求出x的值,进而可得出CG与DG的长,故可得出EG的长.由矩形的判定定理得出四边形EGBM是矩形,故可得出EM=BG,BM=EG,再由锐角三角函数的定义求出AM的长,进而可得出结论.解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8≈72(米).答:建筑物AB的高度约为72米.21.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M,填空:的值为1;∠AMB的度数为40°,(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M,请判断的值及∠AMB的度数,并说明理由.【分析】(1)证明△AOC≌△BOD,根据全等三角形的性质得到AC=BD,∠CAO=∠DBO,求出,根据三角形内角和定理计算求出∠AMB;(2)证明△AOC∽△BOD,根据相似三角形的性质解答.解:(1)∵∠AOB=∠COD=40°,OA=OB,∴∠AOB+∠AOD=∠COD+∠AOD,∠OAB+∠OBA=180°﹣40°=140°,∴∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS)∴AC=BD,∠CAO=∠DBO,∴=1,∠AMB=180°﹣∠MAH﹣∠HAB﹣∠MBA=180°﹣∠HAB﹣∠MBA﹣∠DBO=40°,故答案为:1;40°;(2)∵∠AOB=∠COD,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在Rt△AOB中,∠OAB=30°,∴=tan30°=,同理,=,∴=,∴=,又∠AOC=∠BOD,∴△AOC∽△BOD,∴==,∠CAO=∠DBO,∴∠AMB=180°﹣∠CAO﹣∠OAB﹣∠MBA=180°﹣∠HAB﹣∠MBA﹣∠DBO=90°,∴=,∠AMB=90°.22.如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=,CD=a,请用a表示⊙O的半径;(3)求证:GF2﹣GB2=DF•GF.【分析】(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可;(2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r;(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°,又∵∠FGB=∠FBG,∠FGB=∠AGC,∴∠FBG+∠OBA=90°,即∠OBF=90°,∴OB⊥FB,∵AB是⊙O的弦,∴点B在⊙O上,∴BF是⊙O的切线;(2)解:∵AC∥BF,∴∠ACF=∠F,∵CD=a,OA⊥CD,∴CE=CD=a,∵tan F=,∴tan∠ACF==,即=,解得AE=a,连接OC,设圆的半径为r,则OE=r﹣a,在Rt△OCE中,CE2+OE2=OC2,即(a)2+(r﹣a)2=r2,解得r=a;(3)证明:连接BD,∵∠DBG=∠ACF,∠ACF=∠F(已证),∴∠DBG=∠F,又∵∠FGB=∠BGF,∴△BDG∽△FBG,∴=,即GB2=DG•GF,∴GF2﹣GB2=GF2﹣DG•GF=GF(GF﹣DG)=GF•DF,即GF2﹣GB2=DF•GF.23.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点F恰好落在y轴上,求出对应的点P的坐标.【分析】(1)求出A(﹣4,0),B(0,4),把A,B两点的坐标代入抛物线解析式,即可求解;(2)①证明△PFD∽△OBD,则,而PF==,当x=﹣2时,PF有最大值,此时PF=2,故;②证明△CPH≌△FCO(AAS),则PH=CO=2,即可求解.解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入抛物线解析式得,解得,∴抛物线的解析式为;(2)①如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,则,∵OB=4为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵﹣<0且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,∴;②∵点C(2,0),∴CO=2,如图2,点F在y轴上时,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,∠HPC=∠OCF,∠PHC=∠COF,PC=FC,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,∴,.。

2020-2021深圳市初三数学下期中一模试题含答案

2020-2021深圳市初三数学下期中一模试题含答案

2020-2021深圳市初三数学下期中一模试题含答案一、选择题1.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图不一定相似的是()A.B.C.D.2.如果反比例函数y=kx(k≠0)的图象经过点(﹣3,2),则它一定还经过()A.(﹣12,8)B.(﹣3,﹣2)C.(12,12)D.(1,﹣6)3.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.D.4.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大5.若35xx y=+,则xy等于()A.32B.38C.23D.856.对于反比例函数y=1x,下列说法正确的是()A.图象经过点(1,﹣1)B.图象关于y轴对称C.图象位于第二、四象限D.当x<0时,y随x的增大而减小7.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A .aB .aC .aD .a8.如图,点D ,E 分别在△ABC 的AB ,AC 边上,增加下列条件中的一个:①∠AED =∠B ,②∠ADE =∠C ,③AE DE AB BC =,④AD AE AC AB =,⑤AC 2=AD •AE ,使△ADE 与△ACB 一定相似的有( )A .①②④B .②④⑤C .①②③④D .①②③⑤9.如图,BC 是半圆O 的直径,D ,E 是BC 上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒10.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .16511.如图所示,在△ABC 中,AB =6,AC =4,P 是AC 的中点,过 P 点的直线交AB 于点Q ,若以 A 、P 、Q 为顶点的三角形和以A 、B 、C 为顶点的三角形相似,则AQ 的长为 ( )A .3B .3或43C .3或34D .4312.给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( ) A .①③ B .③④C .②④D .②③ 二、填空题13.如图,在△ABC 中,CD 、BE 分别是△ABC 的边AB 、AC 上的中线,则DF EF BF CF++=________。

2020-2021深圳市初三数学下期中一模试题(附答案)

2020-2021深圳市初三数学下期中一模试题(附答案)

2020-2021深圳市初三数学下期中一模试题(附答案)一、选择题1.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.D.2.在Rt△ABC中,∠ACB=90°,AB=5,tan∠B=2,则AC的长为()A.1B.2C.5D.253.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDFVV,那么S EAFS EBCVV的值是()A.12B.13C.14D.194.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.43B.42C.6D.45.如图,在正方形ABCD中,N为边AD上一点,连接BN.过点A作AP⊥BN于点P,连接CP,M为边AB上一点,连接PM,∠PMA=∠PCB,连接CM,有以下结论:①△PAM∽△PBC;②PM⊥PC;③M、P、C、B四点共圆;④AN=AM.其中正确的个数为()A.4B.3C.2D.16.如图,过反比例函数的图像上一点A 作AB ⊥轴于点B ,连接AO ,若S △AOB =2,则的值为( )A .2B .3C .4D .57.如图,一张矩形纸片ABCD 的长BC =xcm ,宽AB =ycm ,以宽AB 为边剪去一个最大的正方形ABEF ,若剩下的矩形ECDF 与原矩形ABCD 相似,则x y 的值为( )A .51-B .51+C .2D .212+ 8.在平面直角坐标系中,将点(2,l )向右平移3个单位长度,则所得的点的坐标是( )A .(0,5)B .(5,1)C .(2,4)D .(4,2)9.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( ) A .360元 B .720元 C .1080元 D .2160元10.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <211.若270x y -=. 则下列式子正确的是( )A .72x y =B .27x y =C .27x y =D .27x y = 12.给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( )A .①③B .③④C .②④D .②③ 二、填空题13.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m .14.如图,在直角坐标系中,点(2,0)A ,点(0,1)B ,过点A 的直线l 垂直于线段AB ,点P 是直线l 上在第一象限内的一动点,过点P 作PC x ⊥轴,垂足为C ,把ACP △沿AP 翻折180︒,使点C 落在点D 处,若以A ,D ,P 为顶点的三角形与△ABP 相似,则满足此条件的点P 的坐标为__________.15.如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且43OE EA =,则FG BC=______.16.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .17.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.18.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.19.如图,在平行四边形ABCD 中,点E 在边BC 上,2EC BE =,联结AE 交BD 于点F ,若BFE ∆的面积为2,则AFD ∆的面积为______.20.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm ),请你帮小华算出圆盘的半径是_____cm .三、解答题21.如图,∠ABD =∠BCD =90°,AB •CD =BC •BD ,BM ∥CD 交AD 于点M .连接CM 交DB 于点N .(1)求证:△ABD ∽△BCD ;(2)若CD =6,AD =8,求MC 的长.22.计算:(1)20(3)3cos 30π︒-+ (2)214tan 45|5|2-︒⎛⎫-+- ⎪⎝⎭(3)已知α为锐角,()2sin 152α︒-=,计算2cos 3tan 12αα-+-的值. 23.如图,直线123l //l //l ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,若AB 4AC 7=,DE 2=,求EF 的长.24.如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D 处测得楼房顶部A 的仰角为30°,沿坡面向下走到坡脚C 处,然后向楼房方向继续行走10米到达E 处,测得楼房顶部A 的仰角为60︒.已知坡面10CD =米,山坡的坡度1:3i =(坡度i 是指坡面的铅直高度与水平宽度的比),求楼房AB 高度.(结果精确到0.1米)(参考数据:3 1.73≈,2 1.41≈)25.如图,△ABC 是一张锐角三角形的硬纸片.AD 是边BC 上的高,BC=40cm ,AD=30cm .从这张硬纸片剪下一个长HG 是宽HE 的2倍的矩形EFGH .使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上.AD 与HG 的交点为M .(1)求证:AM HG AD BC=; (2)求这个矩形EFGH 的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.2.B解析:B【解析】【分析】根据正切的定义得到BC=12AC,根据勾股定理列式计算即可.【详解】在Rt△ABC中,∠ACB=90°,tan∠B=2,∴ACBC=2,∴BC=12 AC,由勾股定理得,AB2=AC2+BC25)2=AC2+(12AC)2,解得,AC=2,【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A 的对边a 与邻边b 的比叫做∠A 的正切是解题的关键.3.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD 中,∴AE ∥CD ,∴△EAF ∽△CDF , ∵12EAF CDF C C V V ,= ∴12AF DF =, ∴11123AF BC ==+, ∵AF ∥BC ,∴△EAF ∽△EBC , ∴21139EAF EBC S S ⎛⎫== ⎪⎝⎭V V , 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方. 4.B解析:B【解析】【分析】由已知条件可得ABC DAC ~V V ,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~V V ,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC= 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 5.A解析:A【分析】根据互余角性质得∠PAM=∠PBC,进而得△PAM∽△PBC,可以判断①;由相似三角形得∠APM=∠BPC,进而得∠CPM=∠APB,从而判断②;根据对角互补,进而判断③;由△APB∽△NAB得AP ANBP AB=,再结合△PAM∽△PBC便可判断④.【详解】解:∵AP⊥BN,∴∠PAM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠PAM=∠PBC,∵∠PMA=∠PCB,∴△PAM∽△PBC,故①正确;∵△PAM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故②正确;∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故③正确;∵AP⊥BN,∴∠APN=∠APB=90°,∴∠PAN+∠ANB=90°,∵∠ANB+∠ABN=90°,∴∠PAN=∠ABN,∵∠APN=∠BPA=90°,∴△PAN∽△PBA,∴AN PA BA PB=,∵△PAM∽△PBC,∴Al AP BC BP=,∴AN AM AB BC=,∵AB=BC,∴AM=AN,故选:A.【点睛】本题考查了相似三角形的判定和性质,正方形的性质、四点共圆,同角的余角相等,判断出PM⊥PC是解题的关键.6.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.7.B解析:B【解析】【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD是矩形,∴AD=BC=xcm,∵四边形ABEF是正方形,∴EF=AB=ycm,∴DF=EC=(x﹣y)cm,∵矩形FDCE与原矩形ADCB相似,∴DF:AB=CD:AD,即:x y y y x -=∴xy5+1故选B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.8.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.9.C解析:C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.10.C解析:C【解析】【分析】一次函数y1=kx+b落在与反比例函数y2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.11.A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y =,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.12.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案. 详解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误;②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误; ③y =2x 2,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确;④y =3x ,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确.故选B . 点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.二、填空题13.5【解析】【分析】根据同一时刻身长和影长成比例求出举起手臂之后的身高与身高做差即可解题【详解】解:设举起手臂之后的身高为x 由题可得:17:085=x :11解得x=22则小刚举起的手臂超出头顶的高度为解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.14.或【解析】【分析】求出直线l 的解析式证出△AOB ∽△PCA 得出设AC=m (m >0)则PC=2m 根据△PCA ≌△PDA 得出当△PAD ∽△PBA 时根据得出m=2从而求出P 点的坐标为(44)(0-4)若△ 解析:5,12⎛⎫ ⎪⎝⎭或(4,4) 【解析】【分析】求出直线l 的解析式,证出△AOB ∽△PCA ,得出12BO AC AO PC ==,设AC=m (m >0),则PC=2m ,根据△PCA ≌△PDA ,得出 12AD AC PD PC ==,当△PAD ∽△PBA 时,根据12AD BA PD PA ==,222(2)AP m m =+=,得出m=2,从而求出P 点的坐标为(4,4)、(0,-4),若△PAD ∽△BPA ,得出12PA AD BA PD ==,求出PA =,从而得出222(2)m m +=⎝⎭,求出12m =,即可得出P 点的坐标为5,12⎛⎫ ⎪⎝⎭. 【详解】∵点A (2,0),点B (0,1),∴直线AB 的解析式为y=-12x+1 ∵直线l 过点A (4,0),且l ⊥AB ,∴直线l 的解析式为;y=2x-4,∠BAO+∠PAC=90°,∵PC ⊥x 轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC ,∵∠AOB=∠ACP ,∴△AOB ∽△PCA , ∴BO AO CA PC=,∴12BO AC AO PC ==, 设AC=m (m >0),则PC=2m ,∵△PCA ≌△PDA ,∴AC=AD ,PC=PD ,∴12AD AC PD PC ==, 如图1:当△PAD ∽△PBA 时,则AD PD BA PA =, 则12AD BA PD PA ==, ∵AB=22152=+,∴AP=25,∴222(2)(25)m m +=,∴m=±2,(负失去) ∴m=2,当m=2时,PC=4,OC=4,P 点的坐标为(4,4),如图2,若△PAD ∽△BPA ,则12PA AD BA PD ==, ∴152PA AB ==,则2 22(2)m m+=⎝⎭,∴m=±12,(负舍去)∴m=12,当m=12时,PC=1,OC=52,∴P点的坐标为(52,1),故答案为:P(4,4),P(52,1).【点睛】此题考查了一次函数的综合,用到的知识点是相似三角形和全等三角形的判定与性质、勾股定理、一次函数等,关键是根据题意画出图形,注意点P在第一象限有两个点.15.【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案【详解】四边形ABCD与四边形EFGH位似其位似中心为点O且则故答案为:【点睛】本题考查了位似的性质熟练掌握位似的性质是解题的关键解析:4 7【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案.【详解】Q四边形ABCD与四边形EFGH位似,其位似中心为点O,且OE4 EA3=,OE4 OA7∴=,则FG OE4 BC OA7==,故答案为:47.【点睛】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.16.2【解析】【分析】【详解】如图过A点作AE⊥y轴垂足为E∵点A在双曲线上∴四边形AEOD的面积为1∵点B在双曲线上且AB∥x轴∴四边形BEOC的面积为3∴四边形ABCD为矩形则它的面积为3-1=2解析:2【解析】【分析】【详解】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线1y=x上,∴四边形AEOD的面积为1∵点B在双曲线3y=x上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=217.14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14点睛:主视图是从物体的正面看得到的视图左视图是从物体的左面看得到的视图;注意主视图主要告解析:14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14.点睛:主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.18.【解析】【分析】如图根据正方形的性质得:DE∥BC则△ADE∽△ACB列比例式可得结论【详解】如图∵四边形CDEF是正方形∴CD=EDDE∥CF设ED=x则CD=xAD=12-x∵DE∥CF∴∠AD解析:60 17.【解析】【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C ,∠AED=∠B ,∴△ADE ∽△ACB , ∴DE BC =AD AC , ∴x 5=12-x 12, ∴x=6017, 故答案为6017.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.19.18【解析】【分析】根据求得BC=3BE 再由平行四边形得到AD∥BC 判定△ADF∽△EBF 再根据相似三角形的面积的比等于相似比的平方求得结果【详解】∵∴BC=3BE∵四边形ABCD 是平行四边形∴AD解析:18【解析】【分析】根据2EC BE =求得BC=3BE,再由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF,再根据相似三角形的面积的比等于相似比的平方求得结果.【详解】∵2EC BE =,∴BC=3BE,∵四边形ABCD 是平行四边形,∴AD ∥BC,AD=BC,∴△ADF ∽△EBF,∴AD=3BE,∴AFD ∆的面积=9S △EBF =18,【点睛】此题考查相似三角形的判定与性质,由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF 是解题的关键,再求得对应边的关系AD=3BE,即可求得AFD ∆的面积.20.10【解析】【分析】如图先利用垂径定理得BD=6再利用勾股定理建立方程求解即可得出结论【详解】如图记圆的圆心为O连接OBOC交AB于D∴OC⊥ABBD =AB由图知AB=16﹣4=12cmCD=2cm解析:10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=12 AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.三、解答题21.(1)见解析;(2)MC=7.【解析】【分析】(1)由两组边成比例,夹角相等来证明即可;(2)由相似三角形的性质得边成比例,进而利用勾股定理求得BC,再判定∠MBC=90°,最后由勾股定理求得MC的值即可.【详解】(1)证明:∵AB•CD=BC•BD∴ABBC=BDCD在△ABD 和△BCD 中,∠ABD =∠BCD =90°∴△ABD ∽△BCD ;(2)∵△ABD ∽△BCD ∴AD BD =BD CD,∠ADB =∠BDC 又∵CD =6,AD =8∴BD 2=AD •CD =48∴BC ∵BM ∥CD∴∠MBD =∠BDC ,∠MBC =∠BCD =90°∴∠ADB =∠MBD ,且∠ABD =90°∴BM =MD ,∠MAB =∠MBA∴BM =MD =AM =4∴MC .【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理与勾股定理的运用.22.(1)72.(2)7;(3)﹣ 【解析】【分析】(1)先计算乘方和三角函数值,再计算加减法即可;(2先计算乘方和三角函数值、绝对值,再计算加减法即可;(3)先由特殊角的三角函数值计算出α,再代入求值即可.【详解】解:(1)原式=3﹣2 =2+32 =72. (2)原式=4﹣2×1+5 =4﹣2+5=7.(3)∵α为锐角,()sin 152α︒-=, ∴α﹣15°=45°.∴α=60°.∴2cos 3tan αα-+=﹣2×12﹣=﹣﹣=﹣.【点睛】本题考查了含特殊角的三角函数值的四则运算,掌握特殊角的三角函数值是解题的关键. 23.5【解析】【分析】 利用平行线分线段成比例定理得到AB DE AC DF=,然后把有关数据代入计算即可. 【详解】 123l //l //l Q ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,AB DE AC DF ∴=, AB 4AC 7=Q ,DE 2=, 427DF∴=, 解得:DF 3.5=,EF DF DE 3.52 1.5∴=-=-=.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.24.楼房AB 高度约为23.7米【解析】【分析】过D 作DG BC ⊥于G ,DH AB ⊥于H ,交AE 于F ,作FP BC ⊥于P ,则DG FP BH ==,DF GP =,求出30DCG ∠=︒,得出152FP DG CD ===,CG ==103DF GP ==+,证出30DAF ADF ∠=︒=∠,得出10AF DF ==+,得出152FH AF ==,因此10AH ==+【详解】解:过D 作DG BC ⊥于G ,DH AB ⊥于H ,交AE 于F ,作FP BC ⊥于P ,如图所示:则,DG FP BH DF GP ===,∵坡面10CD =米,山坡的坡度3i =∴30DCG ∠=︒, ∴152FP DG CD ===, ∴353CG DG ==∵60FEP ∠=︒, ∴35FP EP ==, ∴53EP = ∴53203531010DF GP ==+=, ∵60AEB ∠=︒,∴30EAB ∠=︒,∵30ADH ∠=︒,∴60DAH ∠=︒,∴30DAF ADF ∠=︒=∠, ∴203103AF DF ==+, ∴110352FH AF ==, ∴31053AH FH ==+ ∴105351553155 1.7323.7AB AH BH =+=+=+≈+⨯≈(米), 答:楼房AB 高度约为23.7米.【点睛】此题是解直角三角形的应用--仰角,俯角问题,主要考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.25.(1)证明见解析;(2)72cm .【解析】【分析】(1)根据矩形性质得出∠AHG=∠ABC,再证明△AHG∽△ABC,即可得出结论;(2)根据(1)中比例式即可求出HE的长度,以及矩形的周长.【详解】解:(1)证明:∵四边形EFGH为矩形,∴EF∥GH,∴∠AHG=∠ABC,又∵∠HAG=∠BAC,∴△AHG∽△ABC,∴AM HG AD BC=;(2)解:由(1)AM HGAD BC=得:设HE=xcm,则MD=HE=xcm.∵AD=30cm,∴AM=(30﹣x)cm.∵HG=2HE,∴HG=(2x)cm,可得:303040x x-=,解得:x=12,故HG=2x=24,所以矩形EFGH的周长为:2×(12+24)=72(cm).答:矩形EFGH的周长为72cm.【点睛】本题主要考查了相似三角形的判定与性质,根据矩形性质得出△AHG∽△ABC是解决问题的关键.。

2020-2021深圳市宝安区实验学校九年级数学下期中试题(带答案)

2020-2021深圳市宝安区实验学校九年级数学下期中试题(带答案)

2020-2021深圳市宝安区实验学校九年级数学下期中试题(带答案)一、选择题1.有一块直角边AB=3cm ,BC=4cm 的Rt △ABC 的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为( )A .67B .3037C .127D .60372.若反比例函数k y x=(x<0)的图象如图所示,则k 的值可以是( )A .-1B .-2C .-3D .-43.P 是△ABC 一边上的一点(P 不与A 、B 、C 重合),过点P 的一条直线截△ABC,如果截得的三角形与△ABC 相似,我们称这条直线为过点P 的△ABC 的“相似线”.Rt△ABC 中,∠C=90°,∠A=30°,当点P 为AC 的中点时,过点P 的△ABC 的“相似线”最多有几条?( )A .1条B .2条C .3条D .4条 4.如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x =-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .1 5.已知两个相似三角形的面积比为 4:9,则周长的比为 ( )A .2:3B .4:9C .3:2D 236.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)7.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米8.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:3 B.1:4 C.2:3 D.1:29.如图,在平行四边形中,点在边上, 与相交于点,且,则与的周长之比为()A.1 : 2B.1 : 3C.2 : 3D.4 : 910.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°11.如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是( )A .2B .1C .4D .2512.如图所示,在△ABC 中,AB =6,AC =4,P 是AC 的中点,过 P 点的直线交AB 于点Q ,若以 A 、P 、Q 为顶点的三角形和以A 、B 、C 为顶点的三角形相似,则AQ 的长为 ( )A .3B .3或43C .3或34D .43二、填空题13.如图,在△ABC 中,CD 、BE 分别是△ABC 的边AB 、AC 上的中线,则DF EF BF CF++=________。

2020-2021深圳市蛇口学校(中学部)九年级数学下期中试题及答案

2020-2021深圳市蛇口学校(中学部)九年级数学下期中试题及答案

2020-2021深圳市蛇口学校(中学部)九年级数学下期中试题及答案一、选择题1.已知线段a 、b ,求作线段x ,使22b x a=,正确的作法是( ) A .B .C .D .2.在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( )A 25B 5C 5D .123.P 是△ABC 一边上的一点(P 不与A 、B 、C 重合),过点P 的一条直线截△ABC,如果截得的三角形与△ABC 相似,我们称这条直线为过点P 的△ABC 的“相似线”.Rt△ABC 中,∠C=90°,∠A=30°,当点P 为AC 的中点时,过点P 的△ABC 的“相似线”最多有几条?( )A .1条B .2条C .3条D .4条4.在Rt △ABC 中,∠ACB =90°,AB 5tan ∠B =2,则AC 的长为 ( ) A .1 B .2 C 5D .55.若35x x y =+,则x y 等于 ( ) A .32 B .38 C .23 D .856.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( )A .AB 2=AC •BC B .BC 2=AC •BC C .AC 51-BCD .BC 51-AC7.在函数y =21a x +(a 为常数)的图象上有三个点(﹣1,y 1),(﹣14,y 2),(12,y 3),则函数值y 1、y 2、y 3的大小关系是( )A .y 2<y 1<y 3B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 3<y 1<y 2 8.在△ABC 中,若=0,则∠C 的度数是( ) A .45° B .60° C .75° D .105°9.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .16510.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变11.如图所示,在平面直角坐标系中,已知点A (2,4),过点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是( )A .2B .1C .4D .25 12.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个二、填空题13.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m .14.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .15.如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.16.如图,直立在点B 处的标杆AB =2.5m ,站立在点F 处的观测者从点E 看到标杆顶A ,树顶C 在同一直线上(点F ,B ,D 也在同一直线上).已知BD =10m,FB =3m,人的高度EF =1.7 m,则树高DC 是________.(精确到0.1 m)17.如图,Rt ABC V 中,90ACB ∠=︒,直线EF BD P ,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S V 四边形,=则CF AD= .18.已知线段AB 的长为10米,P 是AB 的黄金分割点(AP >BP ),则AP 的长_____米.(精确到0.01米)19.如果点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项,那么:AP AB 的值为________.20.如图,若点 A 的坐标为 ()1,3 ,则 sin 1∠ =________.三、解答题21.某学校数学兴趣小组想利用数学知识测量某座山的海拔高度,如图,他们在山腰A 处测得山顶B 的仰角为45°,他们从A 处沿着坡度为i=1 : 3的斜坡前进1000 m 到达D 处,在D 处测得山顶B 的仰角为58°,若点A 处的海拔为12米,求该座山顶点B 处的海拔高度,(结果保留整数,参考数据:tan 58°≈1.60,sin 58°≈0. 85,cos 58°≈0.53,3≈1. 732)22.如图,△ABC 中,CD 是边AB 上的高,且AD CD CD BD=.(1)求证:△ACD ∽△CBD ;(2)求∠ACB 的大小.23.如图,平面直角坐标系xOy 中,A (2,1),B (3,﹣1),C (﹣2,1),D (0,2).已知线段AB 绕着点P 逆时针旋转得到线段CD ,其中C 是点A 的对应点.(1)用尺规作图的方法确定旋转中心P ,并直接写出点P 的坐标;(要求保留作图痕迹,不写作法)(2)若以P 为圆心的圆与直线CD 相切,求⊙P 的半径24.如图,某市郊外景区内一条笔直的公路l 经过A 、B 两个景点,景区管委会又开发了风景优美的景点C .经测量,C 位于A 的北偏东60︒的方向上,B 的北偏东30°的方向上,且10AB km =.(1)求景点B 与C 的距离.(2)求景点A 与C 的距离.(结果保留根号)25.如图,在△ABC 中,DE ∥BC ,23AD AB =,M 为BC 上一点,AM 交DE 于N. (1)若AE =4,求EC 的长;(2)若M 为BC 的中点,S △ABC =36,求S △ADN 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.2.A解析:A【解析】【分析】根据勾股定理,可得AB的长,根据余弦函数等于邻边比斜边,可得答案.【详解】如图,在Rt△ABC中,∠C=90°,由勾股定理,得22=5AC BC+∴cosA=2555ACAB==,故选A.【点睛】本题考查了锐角三角函数的定义以及勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时,根据相似三角形的判定:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,根据∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A时:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,∵∠CPB=∠A+∠ABP,∴PB>PC,PC=PA,∴PB>PA,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C.4.B解析:B【解析】【分析】根据正切的定义得到BC=12AC,根据勾股定理列式计算即可.【详解】在Rt△ABC中,∠ACB=90°,tan∠B=2,∴ACBC=2,∴BC=12 AC,由勾股定理得,AB2=AC2+BC25)2=AC2+(12AC)2,解得,AC=2,故选B.【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A的对边a与邻边b的比叫做∠A的正切是解题的关键.5.A解析:A【解析】【分析】先根据比例的基本性质进行变形,得到2x=3y,再根据比例的基本性质转化成比例式即可得.【详解】根据比例的基本性质得:5x=3(x+y ),即2x=3y , 即得32x y =, 故选A .【点睛】本题考查了比例的基本性质,熟练掌握比例的基本性质是解本题的关键.6.D解析:D【解析】【分析】根据黄金分割的定义得出BC AC AC AB ==,从而判断各选项. 【详解】∵点C 是线段AB 的黄金分割点且AC >BC ,∴BC AC AC AB ==,即AC 2=BC•AB,故A 、B 错误;∴AC=12AB ,故C 错误;BC=12AC ,故D 正确; 故选D .【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.7.A解析:A【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y 1,y 2,y 3的大小关系即可.【详解】∵反比例函数的比例系数为a 2+1>0,∴图象的两个分支在一、三象限,且在每个象限y 随x 的增大而减小.∵﹣114-<<0,∴点(﹣1,y 1),(14-,y 2)在第三象限,∴y 2<y 1<0. ∵12>0,∴点(12,y 3)在第一象限,∴y 3>0,∴y 2<y 1<y 3. 故选A .【点睛】 本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.8.C解析:C【解析】【分析】根据非负数的性质可得出cosA 及tanB 的值,继而可得出A 和B 的度数,根据三角形的内角和定理可得出∠C 的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C .9.C解析:C【解析】【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==, ∴AD=BC 22222520533AC AB ⎛⎫-=-= ⎪⎝⎭. 故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.10.D解析:D【解析】【分析】由于等腰直角三角形AEF 的斜边EF 过C 点,则△BEC 和△DCF 都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x =3时,y =3,即BC=CD=3,根据等腰直角三角形的性质得2,CF=32,则C 点与M 点重合;当y =9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以,而;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于x=2xy,其值为定值.【详解】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;观察反比例函数图像得x=3,y=3,则反比例解析式为y=9x.A、当x=3时,y=3,即BC=CD=3,所以,,C点与M点重合,则EC=EM,所以A选项错误;B、当y=9时,x=1,即BC=1,CD=9,所以,,,所以B选项错误;C、因为x y=2×xy=18,所以,EC•CF为定值,所以C选项错误;D、因为BE•DF=BC•CD=xy=9,即BE•DF的值不变,所以D选项正确.故选:D.【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.11.A解析:A【解析】【分析】直接利用位似图形的性质结合A点坐标可直接得出点C的坐标,即可得出答案.【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,∴C(1,2),则CD的长度是2,故选A.【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.12.D解析:D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.二、填空题13.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.14.2【解析】【分析】【详解】如图过A点作AE⊥y轴垂足为E∵点A在双曲线上∴四边形AEOD的面积为1∵点B在双曲线上且AB∥x轴∴四边形BEOC的面积为3∴四边形ABCD为矩形则它的面积为3-1=2解析:2【解析】【分析】【详解】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线1y=x上,∴四边形AEOD的面积为1∵点B在双曲线3y=x上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=215.【解析】试题解析:连接CE如图:∵△ABC和△ADE为等腰直角三角形∴AC =ABAE=AD∠BAC=45°∠DAE=45°即∠1+∠2=45°∠2+∠3=45°∴∠1=∠3∵∴△ACE ∽△ABD∴∠解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴AC=2AB ,AE=2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD==, ∴△ACE ∽△ABD , ∴∠ACE=∠ABC=90°,∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,AB=2AB=42,当点D 运动到点C 时,CE=AC=42,∴点E 移动的路线长为42cm .16.2m 【解析】【详解】解:过点E 作EM ⊥CD 交AB 与点N ∴故答案为52m 【点睛】本题是考查相似三角形的判定和性质关键是做出辅助线构造相似三角形利用相似三角形的性质得出结论即可这类题型可以作垂直也可以作解析:2m【解析】【详解】解:过点E 作EM ⊥CD,交AB 与点N.∴,EN AN EAN ECM EM CMV V ~∴= 30.82.5, 1.7,0.8,10,313AB m EF m AN m BD m FB m CM ==∴===∴=Q Q ,()3.47CM m ∴≈ ()1.7 3.47 5.2.CD m ∴=+≈故答案为5.2m .【点睛】本题是考查相似三角形的判定和性质.关键是做出辅助线,构造相似三角形,利用相似三角形的性质得出结论即可.这类题型可以作垂直也可以作平行线,构造相似三角形.17.【解析】【分析】先证△AEG∽△ABC△AGF∽△ACD再利用相似三角形的对应边成比例求解【详解】解:∵EF∥BD∴∠AEG=∠ABC∠AGE=∠ACB∴△AEG∽△ABC且S△AEG=S四边形EB解析:1 2【解析】【分析】先证△AEG∽△ABC,△AGF∽△ACD再利用相似三角形的对应边成比例求解.【详解】解:∵EF∥BD∴∠AEG=∠ABC,∠AGE=∠ACB,∴△AEG∽△ABC,且S△AEG=13S四边形EBCG∴S△AEG:S△ABC=1:4,∴AG:AC=1:2,又EF∥BD∴∠AGF=∠ACD,∠AFG=∠ADC,∴△AGF∽△ACD,且相似比为1:2,∴S△AFG:S△ACD=1:4,∴S△AFG1=3S四边形FDCGS△AFG1=4S△ADC∵AF:AD=GF:CD=AG:AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF:AD=1:2.18.18【解析】【分析】根据黄金分割定义:列方程即可求解【详解】解:设AP为x米根据题意得整理得x2+10x﹣100=0解得x1=5﹣5≈618x2=﹣5﹣5(不符合题意舍去)经检验x=5﹣5是原方程的解析:18【解析】【分析】根据黄金分割定义:AP BPAB AP列方程即可求解.【详解】解:设AP为x米,根据题意,得x 1010x x-= 整理,得x 2+10x ﹣100=0解得x 1=﹣5≈6.18,x 2=﹣5(不符合题意,舍去)经检验x =5是原方程的根,∴AP 的长为6.18米.故答案为6.18.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.19.【解析】【分析】根据黄金分割的概念和黄金比是解答即可【详解】∵点把线段分割成和两段()其中是与的比例中项∴点P 是线段AB 的黄金分割点∴=故填【点睛】此题考察黄金分割是与的比例中项即点P 是线段AB 的黄【解析】【分析】根据黄金分割的概念和黄金比是12解答即可. 【详解】∵点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项, ∴点P 是线段AB 的黄金分割点,∴:AP AB ,. 【点睛】此题考察黄金分割,AP 是AB 与PB 的比例中项即点P 是线段AB 的黄金分割点,即可得到:AP AB =12. 20.【解析】【分析】根据勾股定理可得OA 的长根据正弦是对边比斜边可得答案【详解】如图由勾股定理得:OA==2sin ∠1=故答案为【解析】 【分析】根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA=22OB AB+=2.sin∠1=32ABOA=,故答案为32.三、解答题21.1488米.【解析】【分析】过D作DE⊥BC于点E,作DF⊥AC于点F,易知四边形DECF为矩形,在Rt△ADF中,利用三角函数可求出DF和AF,设BE=x米,在Rt△BDE中,利用三角函数可表示出DE 的长度,再根据AC=BC建立方程求出x的值,最后用BC加上A点的海拔高度即为B处的海拔高度.【详解】解:如图,过D作DE⊥BC于点E,作DF⊥AC于点F,∵DE⊥BC,DF⊥AC,∠C=90°∴四边形DECF为矩形,∴DE=FC,DF=EC∵山坡AD的坡度为3∴∠DAF=30°,∴1DF=AD sin30=1000=5002⋅⨯o米,3AF=AD cos30=1000=5003⋅o设BE=x米,在Rt△BDE中,∠BDE=58°,∴BE DE=tan 58 1.6≈o x 米, 在Rt △ABC 中,∠BAC=45°,∴AC=BC∴AF+FC=BE+EC ,即5001.6=+x x解得40009763=≈x ∴BC=BE+EC=976+500=1476米∵A 处的海拔高度为12米,∴B 处的海拔高度为1476+12=1488米答:该座山顶点B 处的海拔高度为1488米.【点睛】本题考查解直角三角形的应用,作辅助线构造直角三角形,再根据三角函数建立方程是解题的关键.22.(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD 是边AB 上的高,∴∠ADC=∠CDB=90°, ∵AD CD CD BD=. ∴△ACD ∽△CBD ;(2)∵△ACD ∽△CBD ,∴∠A=∠BCD ,在△ACD 中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.23.(1)如图点P 即为所求.见解析;(2)以P 为圆心的圆与直线CD 相切,⊙P 的半径为5. 【解析】【分析】(1)作相对AC ,BD 的垂直平分线,两条垂直平分线的交点P 即为所求.(2)作PE ⊥CD 于E ,求出点E 的坐标,利用相似三角形的性质求出PE 即可.【详解】(1)如图点P 即为所求.(2)作PE ⊥CD 于E ,设AC 交PD 于K .∵∠CDO =∠PDE ,∠CKD =∠PED =90°,∴△COD ∽△PED , ∴CO PE =CD PD , ∴2PE 5 ∴PE =55, ∵以P 为圆心的圆与直线CD 相切, ∴⊙P 65. 【点睛】本题考查作图,相似三角形的判定和性质,切线的性质等知识,解题的关键是熟练掌握基本知识.24.(1)BC=10km ;3【解析】【分析】(1)由题意可求得∠C =30°,进一步根据等角对等边即可求得结果;(2)分别在Rt BCD ∆和Rt ACD ∆中利用锐角三角函数的知识解直角三角形即可求得结果.【详解】解:(1)过点C 作CD ⊥直线l ,垂足为D ,如图所示.根据题意,得:30CAD ∠=︒,60CBD ∠=︒,∴∠C =∠CBD -∠CAD =30°,∴∠CAD =∠C ,∴BC =AB =10km .(2) 在Rt BCD ∆中,sin CD CBD BC ∠=,∴sin 6053CD BC km ==o g , 在Rt ACD ∆中,1sin 2CD CAD AC ∠==,∴2103AC CD km ==.【点睛】本题考查了解直角三角形的应用,属于基本题型,熟练掌握锐角三角函数的知识是解题的关键.25.(1)2(2)8 【解析】【分析】(1)首先根据DE ∥BC 得到△ADE 和△ABC 相似,求出AC 的长度,然后根据CE=AC -AE 求出长度;(2)根据△ABC 的面积求出△ABM 的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN 的面积.【详解】解:(1)∵DE ∥BC∴△ADE ∽△ABC∴23AE AD AC AB == ∵AE=4∴AC=6 ∴EC=AC -AE=6-4=2(2)∵△ABC 的面积为36,点M 为BC 的中点∴△ABM 的面积为:36÷2=18 ∵△ADN 和△ABM 的相似比为23 ∴:4:9ADN ABM S S ∆∆=∴ADN S V =8考点: 相似三角形的判定与性质。

2020-2021深圳育才中学(初中)九年级数学下期中一模试卷带答案

2020-2021深圳育才中学(初中)九年级数学下期中一模试卷带答案

2020-2021深圳育才中学(初中)九年级数学下期中一模试卷带答案一、选择题1.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是( )A .①和②B .②和③C .①和③D .①和④ 2.已知4A 纸的宽度为21cm ,如图对折后所得的两个矩形都和原来的矩形相似,则4A 纸的高度约为( )A .29.7cmB .26.7cmC .24.8cmD .无法确定 3.在反比例函数y =1k x -的每一条曲线上,y 都随着x 的增大而减小,则k 的值可以是( )A .-1B .1C .2D .34.在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( )A .25B .5C .5D .125.如图,用放大镜看△ABC ,若边BC 的长度变为原来的2倍,那么下列说法中,不正确的是( ).A .边AB 的长度也变为原来的2倍;B .∠BAC 的度数也变为原来的2倍; C .△ABC 的周长变为原来的2倍;D .△ABC 的面积变为原来的4倍;6.如图,菱形OABC 的顶点A 的坐标为(3,4),顶点C 在x 轴的正半轴上,反比例函数y=k x(x >0)的图象经过顶点B ,则反比例函数的表达式为( )A .y=12xB .y=24xC .y=32xD .y=40x 7.若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .378.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( )A .AB 2=AC •BC B .BC 2=AC •BC C .AC =512-BCD .BC =512-AC 9.如图,在同一平面直角坐标系中,反比例函数y =k x与一次函数y =kx ﹣1(k 为常数,且k >0)的图象可能是( ) A . B . C . D .10.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A .1:3B .1:4C .2:3D .1:211.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252B .25-C .251D 52 12.在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( )A.B. C.D.二、填空题13.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH=__里.14.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.15.计算:cos245°-tan30°sin60°=______.16.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.17.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.18.如图,点A在双曲线y=2x上,点B在双曲线y=5x上,且AB∥y轴,C,D在y轴上,若四边形ABCD为平行四边形,则它的面积为________.19.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左侧墙上与地面成60°角时,梯子顶端距离地面23米,若保持梯子底端位置不动,将梯子斜靠在右端时,与地面成45°,则小巷的宽度为_____米(结果保留根号).20.若函数y=(k-2)2k5x 是反比例函数,则k=______.三、解答题21.已知:如图,点C,D在线段AB上,△PCD是等边三角形,且AC=1,CD=2,DB=4.求证:△ACP∽△PDB.22.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A 2B 2C 2,并写出A 2点的坐标 .23.计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒. 24.如图,在△ABC 中,DE ∥BC ,23AD AB =,M 为BC 上一点,AM 交DE 于N. (1)若AE =4,求EC 的长; (2)若M 为BC 的中点,S △ABC =36,求S △ADN 的值.25.如图,已知O 是原点,,B C 两点的坐标分别为()3,1-,()2,1.(1)以点O 为位似中心,在y 轴的左侧将OBC V 扩大为原来的两倍(即新图与原图的相似比为2),画出图形,并写出点,B C 的对应点的坐标;(2)如果OBC V 内部一点M 的坐标为(),x y ,写出点M 的对应点M '的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】 设小长方形的长为2a ,宽为a .利用勾股定理求出三角形的三边长即可判断.【详解】由题意可知:小长方形的长是宽的2倍,设小长方形的宽为a ,则长为2a ,∴图①中的三角形三边长分别为2a 2222(2)(2)22(2)(4)25a a a a a a +=+=; 图②中的三角形三边长分别为2222(2)(3)13(3)(4)5a a a a a a +=+=;图③中的三角形三边长分别为==;==、5a=,∴①和②图中三角形不相似;∵22aa≠≠∴②和③图中三角形不相似;∵22aa≠≠∴①和③图中三角形不相似;55a===∴①和④图中三角形相似.故选D【点睛】本题考查相似三角形的判定,勾股定理等知识,解题的关键是熟练掌握熟练掌握基本知识.2.A解析:A【解析】【分析】设A4纸的高度为xcm,对折后的矩形高度为2xcm,然后根据相似多边形的对应边成比例列方程求解.【详解】设A4纸的高度为xcm,则对折后的矩形高度为2xcm,∵对折后所得的两个矩形都和原来的矩形相似,∴21=212xx解得29.7=≈x故选A.【点睛】本题考查相似多边形的性质,熟记相似多边形对应边成比例,找到对应边列出方程是关键. 3.A解析:A【解析】【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1-k>0即可.【详解】∵反比例函数y=1−kx图象的每一条曲线上,y随x的增大而减小,∴1−k>0,解得k<1.故选A.【点睛】此题考查反比例函数的性质,解题关键在于根据其性质求出k的值.4.A解析:A【解析】【分析】根据勾股定理,可得AB的长,根据余弦函数等于邻边比斜边,可得答案.【详解】如图,在Rt△ABC中,∠C=90°,由勾股定理,得22=5AC BC+∴cosA=2555ACAB==,故选A.【点睛】本题考查了锐角三角函数的定义以及勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC 的度数与原来的角相等,故B 错误;∴△ABC 的周长变为原来的2倍,故C 正确;∴△ABC 的面积变为原来的4倍,故D 正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.6.C解析:C【解析】【分析】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,根据菱形性质得出OA=BC=AB=OC ,AB ∥OC ,OA ∥BC ,求出∠AOM=∠BCN ,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN ,求出BN=AM=4,CN=OM=3,ON=8,求出B 点的坐标,把B 的坐标代入y=kx 求出k 即可.【详解】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,则∠AMO=∠BNC=90°,∵四边形AOCB 是菱形,∴OA=BC=AB=OC,AB ∥OC,OA ∥BC ,∴∠AOM=∠BCN ,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM 和△BCN 中AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B 点的坐标是(8,4),把B 的坐标代入y=kx 得:k=32,即y=32x, 故答案选C.【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.7.B解析:B【解析】由比例的基本性质可知a=37b ,因此b a a -=347337b b b -=. 故选B.8.D解析:D【解析】【分析】根据黄金分割的定义得出12BC AC AC AB ==,从而判断各选项. 【详解】∵点C 是线段AB 的黄金分割点且AC >BC ,∴BC AC AC AB ==,即AC 2=BC•AB,故A 、B 错误;AB ,故C 错误;AC ,故D 正确; 故选D .【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.9.B解析:B【解析】当k >0时,直线从左往右上升,双曲线分别在第一、三象限,故A 、C 选项错误; ∵一次函数y=kx-1与y 轴交于负半轴,∴D 选项错误,B 选项正确,故选B .10.D解析:D【解析】解:在平行四边形ABCD 中,AB ∥DC ,则△DFE ∽△BAE ,∴DF :AB =DE :EB .∵O 为对角线的交点,∴DO =BO .又∵E 为OD 的中点,∴DE =14DB ,则DE :EB =1:3,∴DF :AB =1:3.∵DC =AB ,∴DF :DC =1:3,∴DF :FC =1:2.故选D . 11.A解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 12.B解析:B【解析】【分析】 根据反比例函数k y x=中k 的几何意义,过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|解答即可.【详解】解:A 、图形面积为|k|=4;B 、阴影是梯形,面积为6;C 、D 面积均为两个三角形面积之和,为2×(12|k|)=4. 故选B .【点睛】 主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 二、填空题13.05【解析】∵EG⊥ABFH⊥ADHG 经过A 点∴FA∥EGEA∥FH∴∠HFA=∠AEG=90°∠FHA=∠EAG∴△GEA∽△AFH∴∵AB=9里DA =7里EG =15里∴FA=35里EA =45里∴解析:05【解析】∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴EG EA AF FH=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴15 4.5 3.5FH=,解得FH=1.05里.故答案为1.05.14.16【解析】【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△E 解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.15.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】=故答案为0【点睛】此题主要考查了特殊角的三角函数值正确记忆相关数据是解题关键解析:0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos45tan30sin60︒-︒︒=2110 22=-=.故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.16.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)解析:y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y2)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y2,故答案为:y1<y2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.17.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体然后进一步计算即可得出答案【详解】根据俯解析:7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,∴527+=,∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.18.3【解析】试题分析:由AB∥y轴可知AB两点横坐标相等设A(m)B(m)求出AB=﹣=再根据平行四边形的面积公式进行计算即可得=•m=3考点:反比例函数系数k的几何意义解析:3【解析】试题分析:由AB∥y轴可知,A、B两点横坐标相等,设A(m,2m),B(m,5m),求出AB=5m﹣2m=3m,再根据平行四边形的面积公式进行计算即可得ABCDSY=3m•m=3.考点:反比例函数系数k的几何意义19.【解析】【分析】本题需要分段求出巷子被分成的两部分再加起来即可先在直角三角形ABC中用正切和正弦分别求出BC和AC(即梯子的长度)然后再在直角三角形DCE中用∠DCE的余弦求出DC然后把BC和DC加解析:222【解析】【分析】本题需要分段求出巷子被分成的两部分,再加起来即可.先在直角三角形ABC中,用正切和正弦,分别求出BC和AC(即梯子的长度),然后再在直角三角形DCE中,用∠DCE 的余弦求出DC,然后把BC和DC加起来即为巷子的宽度.【详解】解:如图所示:3米,∠ACB=60°,∠DCE=45°,AC=CE.则在直角三角形ABC中,ABBC=tan∠ACB=tan60°3ABAC=sin∠ACB=sin60°3∴BC3233=2,AC32332=4,∴直角三角形DCE中,CE=AC=4,∴CDCE=cos45°=2,∴CD=CE×22=4×22=22,∴BD=2+22,故答案为:2+22.【点睛】本题需要综合应用正切、正弦.余弦来求解,注意梯子长度不变,属于中档题.20.-2【解析】【分析】根据反比例函数的定义列出方程解出k的值即可【详解】解:若函数y=(k-2)是反比例函数则解得k=﹣2故答案为﹣2解析:-2【解析】【分析】根据反比例函数的定义列出方程2k-5=-1k-20⎧⎨≠⎩,解出k的值即可.【详解】解:若函数y=(k-2)2k5x-是反比例函数,则2k-5=-1 k-20⎧⎨≠⎩解得k=﹣2,故答案为﹣2.三、解答题21.见解析【解析】【分析】先证明∠ACP=∠PDB=120°,然后由△PCD为等边三角形可证明,从而可证明△ACP∽△PD B.【详解】证明:∵△PCD为等边三角形,∴∠PCD=∠PDC=60°,PC=PD=CD=2∴∠ACP=∠PDB=120°∴.∴△ACP∽△PD B.【点睛】本题考查的知识点是相似三角形的判定和等边三角形的性质,解题关键是熟记等边三角形的性质.22.(1)见解析;(2)(﹣4,2).【解析】【分析】(1)根据网格结构找出点A、B、C以点B为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.(2)利用位似图形的性质得出对应点位置即可得出答案.【详解】解:(1)如图所示,△A1BC1即为所求;(2)如图,△A2B2C2,即为所求,A2(﹣4,2);故答案是:(﹣4,2).【点睛】此题主要考查旋转与位似图形的作图,解题的关键是熟知旋转的性质及位似的定义.23.214-.【解析】试题分析:把特殊角的三角函数值代入运算即可.试题解析:原式23321121 22322.124 122=⋅-==+⨯24.(1)2(2)8【解析】【分析】(1)首先根据DE∥BC得到△ADE和△ABC相似,求出AC的长度,然后根据CE=AC-AE 求出长度;(2)根据△ABC 的面积求出△ABM 的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN 的面积.【详解】解:(1)∵DE ∥BC∴△ADE ∽△ABC ∴23AE AD AC AB == ∵AE=4∴AC=6 ∴EC=AC -AE=6-4=2(2)∵△ABC 的面积为36,点M 为BC 的中点∴△ABM 的面积为:36÷2=18 ∵△ADN 和△ABM 的相似比为23 ∴:4:9ADN ABM S S ∆∆=∴ADN S V =8考点: 相似三角形的判定与性质25.(1)如图,OB C ''△即为所求,见解析;点B 的对应点的坐标为()6,2-,点C 的对应点的坐标为()4,2--;(2)点(),M x y 的对应点M '的坐标为()2,2x y --.【解析】【分析】(1)延长BO ,CO 到B′、C′,使OB′、OC′的长度是OB 、OC 的2倍.顺次连接三点即可;(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M 的坐标为(x ,y ),写出M 的对应点M′的坐标为(-2x ,-2y ).【详解】(1)如图,OB C ''△即为所求,点B 的对应点的坐标为()6,2-,点C 的对应点的坐标为()4,2--.(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M 的坐标为(x ,y ),写出M 的对应点M′的坐标为(-2x ,-2y ).【点睛】考查了直角坐标系和相似三角形的有关知识,注意做这类题时,性质是关键,看图也是关键.很多信息是需要从图上看出来的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
2020年深圳市初三数学下期中试卷及答案
一、选择题
1.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为( )
A. B. C. D.
2.已知一次函数y1=x-1和反比例函数y2= 的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是( )
【详解】
∵|sinA− |+(1−tanB)2=0,
∴sinA= ,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故选C.
【点睛】
(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.
12.A
解析:A
25.如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E、F.
求证:四边形AFGE与四边形ABCD相似.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
试题解析:如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.
∵S△ABC= AB•BC= AC•BP,
【解析】
∵BE∥AD,
∴△BCE∽△ACD,
∴ ,即 ,
∵BC=1,DE=1.8,EC=1.2

∴1.2AB=1.8,
∴AB=1.5m.
故选A.
二、填空题
13.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三
19.如图,已知 ,请你添加一个条件,使得 ,你添加的条件是_____.(不添加任何字母和辅助线)
20.近视眼镜的度数 度 与镜片焦距 米 呈反比例,其函数关系式为 如果近似眼镜镜片的焦距 米,那么近视眼镜的度数y为______.
三、解答题
21.如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.
A. B. C. D.
5.如图,直线 与 轴交于点A,与双曲线 交于点B,若 ,则 的值是( )
A.4B.3C.2D.1
6.下列判断中,不正确的有( )
A.三边对应成比例的两个三角形相似
B.两边对应成比例,且有一个角相等的两个三角形相似
C.斜边与一条直角边对应成比例的两个直角三角形相似
D.有一个角是100°的两个等腰三角形相似
9.A
解析:A
【解析】
根据黄金比的定义得: ,得 .故选A.
10.B
解析:B
【解析】
∵△ABC∽△A′B′C′,∴ ,
∵△ABC的周长为15cm,∴△A′B′C′的周长为20cm.故选B.
11.C
解析:C
【解析】
【分析】
先根据非负数的性质求出sinA及tanB的值,再根据特殊角的三角函数值求出∠A及∠B的值,由三角形内角和定理即可得出结论.
6.B
解析:B
【解析】
【分析】
由相似三角形的判定依次判断可求解.
【详解】
解:A、三边对应成比例的两个三角形相似,故A选项不合题意;
B、两边对应成比例,且夹角相等的两个三角形相似,故B选项符合题意;
C、斜边与一条直角边对应成比例的两个直角三角形相似,故C选项不合题意;
D、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D选项不合题意;故选B.
A.18B.20 C. D.
11.在△ABC中,若|sinA- |+(1-tanB)2=0,则∠C的度数是( )
A.45°B.60°C.75°D.105°
12.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为( )
A.1.5mB.1.6mC.1.86mD.2.16m
二、填空题
13.如图,P(m,m)是反比例函数 在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.
14.计算:cos245°-tan30°sin60°=______.
15.利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E.若标杆CD的高为1.5米,测得DE=2米,BD=16米,则建筑物的高AB为_____米.
∴BP= .
∵DE∥AC,
∴∠BDE=∠A,∠BED=∠C,
∴△BDE∽△BAC,
∴ .
设DE=x,则有: ,
解得x= ,
故选D.
2.C
解析:C
【解析】
【分析】
因为一次函数和反比例函数交于A、B两点,可知x-1= ,解得x=-1或x=2,进而可得A、B两点的坐标,据此,再结合函数解析式画图,据图可知当x>2时,以及当-1<x<0时,y1>y2.
解析:3
【解析】
试题分析:由AB∥y轴可知,A、B两点横坐标相等,设A(m, ),B(m, ),求出AB= ﹣ = ,再根据平行四边形的面积公式进行计算即可得 = •m=3.
考点:反比例函数系数k的几何意义
17.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与
解析: .
【解析】
【详解】
如图,过点P作PH⊥OB于点H,
∵点P(m,m)是反比例函数y= 在第一象限内的图象上的一个点,
∴9=m2,且m>0,解得,m=3.∴PH=OH=3.
∵△PAB是等边三角形,∴∠PAH=60°.
∴根据锐角三角函数,得AH= .∴OB=3+
∴S△POB= OB•PH= .
14.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】=故答案为0【点睛】此题主要考查了特殊角的三角函数值正确记忆相关数据是解题关键
【详解】
解方程x−1= ,得
x=−1或x=2,
那么A点坐标是(−1,−2;2时, ,以及当−1<x<0时, .
故选C.
【点睛】
本题考查了反比例函数与一次函数交点问题,解题的关键是能根据解析式画出函数的图象,并能根据图象解決问题
3.A
解析:A
【解析】
【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到 ×|3|+ •|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.
解析:24π
【解析】
解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.
点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.
18.【解析】【分析】分析:设BCAD交于点G过交点G作GF⊥AC与AC交于点F根据AC=8就可求出GF的长从而求解【详解】解:设BCAD交于点G过交点G作GF⊥AC与AC交于点F设FC=x则GF=FC=
解析:
【解析】
【分析】
分析:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,根据AC=8,就可求出GF的长,从而求解.
【详解】
解:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,设FC=x,则GF=FC=x,
8.B
解析:B
【解析】
【分析】
根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.
【详解】
解:A、a:d=c:b⇒ab=cd,故正确;
B、a:b=c:d⇒ad=bc,故错误;
C、d:a=b:c⇒dc=ab,故正确;
D、a:c=d:b⇒ab=cd,故正确.
故选B.
【点睛】
本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.
A.x>2B.-1<x<0C.x>2,-1<x<0D.x<2,x>0
3.如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y= (x>0)、y= (x<0)的图象于B、C两点,若△ABC的面积为2,则k值为( )
A.﹣1B.1C. D.
4.如图,河坝横断面迎水坡 的坡比是 (坡比是坡面的铅直高度 与水平宽度 之比),坝高 ,则坡面 的长度是().
(1)求证:△CDE∽△CBF;
(2)若B为AF的中点,CB=3,DE=1,求CD的长.
22.计算: .
23.已知:如图,在正方形ABCD中,P是BC上的点,Q是CD上的点,且∠AQP=900,
求证:△ADQ∽△QCP.
24.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.
解析:0
【解析】
【分析】
直接利用特殊角的三角函数值代入进而得出答案.
【详解】
= .
故答案为0.
相关文档
最新文档