《概率论与数理统计》答案

合集下载

概率论与数理统计练习册答案

概率论与数理统计练习册答案

概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。

概率论与数理统计答案(汇总版)

概率论与数理统计答案(汇总版)

概率论与数理统计答案(汇总版)篇一:概率论与数理统计教程答案(徐建豪版)习题1、写出下列随机试验的样本空间.(1)生产产品直到有4件正品为正,记录生产产品的总件数.(2)在单位园中任取一点记录其坐标.(3)同时掷三颗骰子,记录出现的点数之和.解:(1)??{4,5,6,7,8?}(2)??{()x2?y2?1}(3)??{3,4,5,6,7,8,9,10,?,18}2、同时掷两颗骰子,x、y分别表示第一、二两颗骰子出现的点数,设事件A表示“两颗骰子出现点数之和为奇数”,B表示“点数之差为零”,C表示“点数之积不超过20”,用样本的集合表示事件B?A,BC,B?C.解:B?A?{(),(),(),(),(),()}BC?{(),(),(),()}B?C?{(),(),(),(),(),(),(),(),(),()}3、设某人向靶子射击3次,用Ai表示“第i次射击击中靶子”(i?1,2,3),试用语言描述下列事件.(1)A1?A2 (2)(A1?A2)A3 (3)A1A2?A2A2解:(1)第1,2次都没有中靶(2)第三次中靶且第1,2中至少有一次中靶(3)第二次中靶4.设某人向一把子射击三次,用Ai表示“第i次射击击中靶子”(i=1,2,3),使用符号及其运算的形式表示以下事件:(1)“至少有一次击中靶子”可表示为;(2)“恰有一次击中靶子”可表示为;(3)“至少有两次击中靶子”可表示为;(4)“三次全部击中靶子”可表示为;(5)“三次均未击中靶子”可表示为;(6)“只在最后一次击中靶子”可表示为 . 解:(1)A1?A2?A3;(2) A123?1A23?12A3;(3)A1A2?A1A3?A2A3; (4) A1A2A3; (5) 123(6) 12A35.证明下列各题(1)A?B?A (2)A?B?(A?B)?(AB)?(B?A)证明:(1)右边=A(??B)?A?AB=A且??B??A?B=左边(2)右边=(AB)?(AB)?(BA)=A或??B??A?B习题1.设A、B、C三事件,P(A)?P(B)?P(C)?14P(AC)?P(BC)?18,P(AB)?0,求A、B、C至少有一个发生的概率.解:?P(AB)?0?P(ABC)?0P(A?B?C).?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC) =3?11 4?2?8?122.已知p()? ,P(B)? , P(B)?,求(1)P(AB)(2)P(A?B),(3)P(A?B), (4)P(AB).解:(1)?A?B,?AB?A?P(AB)?P(A)?(2)?A?B,?A?B?B?P(A?B)?P(B)?3.设P(A)=(A?B)= 互斥,求P(B).解:?A,B互斥,P(A?B)?P(A)?P(B), ,故P(B)?P(A?B)?P(A)4.设A、B是两事件且P(A)=,P(B)?(1)在什么条件下P(AB)取到最大值,最大值是多少?(2)在什么条件下P(AB)取到最小值,最小值是多少?解:由加法公式P(AB)?P(A)?P(B)?P(A?B)=?P(A?B)(1)由于当A?B时A?B?B,P(A?B)达到最小,即P(A?B)?P(B)?,则此时P(AB)取到最大值,最大值为(2)当P(A?B)达到最大,即P(A?B)?P(?)?1,则此时P(AB)取到最小值,最小值为5.设P(A)?P(B)?P(C)?1115,P(AB)?P(BC)?P(AC)?,P(??)?, 4816求P(A?B?C). 解:P(ABC)?1?P(ABC)?1?P(??)?1?151?, 1616P(A?B?C).?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC) =3?1117?3 481616习题1.从一副扑克牌(52张)中任取3张(不重复)求取出的3张牌中至少有2张花色相同的概率.解:设事件A={3张中至少有2张花色相同} 则A={3张中花色各不相同}3111C4C13C13C13P(A)?1?P(A)?1?? 3C52只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱,每个部件用3只铆钉,若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率.3解法一随机试验是从50只铆钉随机地取3个,共有C50种取法,而发生“某3C31一个部件强度太弱”这一事件只有C这一种取法,其概率为3?,而10C501960033个部件发生“强度太弱”这一事件是等可能的,故所求的概率为p??pi?i?110101 ?1960019603解法二样本空间的样本点的总数为C50,而发生“一个部件强度太弱”这13一事件必须将3只强度太弱的铆钉同时取来,并都装在一个部件上,共有C10C3种情况,故发生“一个部件强度太弱”的概率为13C10C31 p??31960C503.从1至9的9个整数中有放回地随机取3次,每次取一个数,求取出的3个数之积能被10整除的概率.解法一设A表示“取出的3个数之积能被10整除”,, A1表示“取出的3个数中含有数字5”, A2表示“取出的3个数中含有数字偶数”P(A)?P(A1A2)?1?P(A1A2)?1?P(A1?A2)?1?P(A1)?P(A2)?P(A1A2)?8??5??4??11???9??9??9?解法二设Ak为“第k次取得数字,Bk为“第k次取得偶数”,5”k?1,2,3。

概率论与数理统计(练习参考答案)

概率论与数理统计(练习参考答案)

一、填空题 (每小题2分,共10分)1、一射手对同一个目标独立地进行4次射击,若至少命中一次的概率为8180,则该射手的命中率为 .2、 设随机变量X 在区间[2,5]上服从均匀分布,则=)(2X E ____13_____ .3、 设X 服从参数为10=θ的指数分布,Y )2,3(~2N ,且X 与Y 相互独立,Y X Z 23-=,则=)(Z D ___916_____.4、已知5.0,9)(,4)(===XY Y D X D ρ,则=+)(Y X D 19_ .5、设总体),(~2σμN X ,n X X X ,,,21Λ为来自X 的简单随机样本,则~11∑==ni iX n X ),(2n N σμ. 二、单项选择题 (每小题2分,共10分)(1)对于任意两事件A 和B ,=-)(B A P C .(A ))()(B P A P - (B ))()()(AB P B P A P +- (C ) )()(AB P A P - (D ))()()(B A P A P A P -+ 2、.对于任意两个随机变量,若)()()(Y E X E XY E =则____B _____.(A))()()(Y D X D XY D = (B))()()(Y D X D Y X D +=+ (C) X 与Y 相互独立 (D)X 与Y 相互不独立 3、设Y X ,相互独立,X 和Y 的分布律分别为,则必有 D .(A )Y X = (B ){}0==Y X P(C ){}1==Y X P (D ){}58.0==Y X P4、 在假设检验中,原假设0H ,备择假设1H ,则称_____D _____ 为犯第二类错误 (A)10H H 为真,接受 (B) 00H H 不真,拒绝 (C) 10H H 为真,拒绝 (D) 00H H 不真,接受5、 已知341.1)15(90.0-=t 。

设随机变量X 服从自由度为15的t 分布,若90.0)(=<a X P ,则=a _____B _____.(A) -1.341 (B) 1.341 (C) 15 (D) -15三、计算题 (共52分)1、 有四位同学报考硕士研究生,他们被录取的概率分别为0.2、0.3、0.45、0.6,试求至少有一位同学被录取的概率. (5分) 解: 设}{个同学被录取第i A i =),4,3,2,1(=i ;}{至少有一位同学被录取=B则有 4321A A A A B +++= ;∑=-=-=41)(1)(1)(i iA PB P B P8768.04.055.07.08.01=⨯⨯⨯-=2、 某年级有甲,乙,丙三个班级,其中各班的人数分别占年级总人数的1/ 4, 1/3, 5/12,已知甲,乙,丙三个班级中是独生子女的人数分别占各班人数的1/ 2, 1/ 4, 1/5, 求:: (1) 从该年级中随机的选一人,该人是独生子女的概率为多少?(2) 从该年级中随机的选一人,发现其为独生子女,则此人是甲班的概率为多少? (8分) 解: 设}{为独生子女从该年级中随机选一人=B }{1选到的是甲班的人=A}{2选到的是乙班的人=A ;}{3选到的是丙班的人=A ;则321,,A A A 为一个分割,41)(1=A P ,1)(2=A P ,125)(3=A P ;21)(1=A B P ,41)(2=A B P ,51)(3=A B P . (1) ∑==31)()()(i i i A P A B P B P =32=⨯+⨯+⨯511254*********7; (2) )(1B A P =)()()(11B P A P A B P =73.3、设有5件产品,其中有两件次品,今从中连取二次,每次任取一件不放回,以X 表示所取得的次品数,试求: : (1)X 的分布律和分布函数)(x F ; (2)122+=X Y 的分布律. (9分) 解: (1)(2)4、 某商品的日销量X (公斤)~)300,10000(2N , 求:日销量在9700到10300公斤之间的概率. (8413.0)1(=Φ 97725.0)2(=Φ备用) (8分)解: 300,10000==σμ)9700()10300(}103009700{F F X P -=≤≤=)3001000010300(-Φ-)300100009700(-Φ=)1()1(--ΦΦ=1)1(2-Φ=6826.018413.02=-⨯5、设随机变量X 的密度函数为⎩⎨⎧≥=-其它0)(2x Ce x f x,求: (1) 常数C ; (2) 概率}2/11{<<-X P ; (3) )(X E ;(4)设X Y 2=,则Y 的密度函数)(y f Y 。

《概率论与数理统计》课后习题答案

《概率论与数理统计》课后习题答案

习题解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。

试写出样本空间及事件C B A ,,中的样本点。

解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)}{=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。

试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。

解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。

试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。

解:(1)C B A ; (2)C AB ;(3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ; (7)CB AC B A C B A C B A +++或C B C A B A ++(8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。

概率论与数理统计课后习题答案(非常全很详细)

概率论与数理统计课后习题答案(非常全很详细)

概率论与数理统计复旦大学此答案非常详细非常全,可供大家在平时作业或考试前使用,预祝大家考试成功习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5 (亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5 (3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)5 9.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1) n 件是同时取出的;(2) n 件是无放回逐件取出的;(3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C mn m n M N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n m N M --种,故P (A )=C P P P mm n m n M N M n N-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n m M N M n N-- 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m n nP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为 ()C 1m n m mn M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A == 【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故 ()6/86()()7/87P AB P B A P A === 或在缩减样本空间中求,此时样本点总数为7. 6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P == 22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率. 【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-== (2) xy =<14. 1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰ 23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+- 24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有30()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯ 即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B }由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+ 2/30.980.994922/30.981/30.01⨯==⨯+⨯ 27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知 111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯ 28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯ 29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得 ()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++ 0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯ 30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==- 12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n ≤故 n ≥11至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B = 亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B =故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则 31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得30()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1) 3101100C(0.35)(0.65)0.5138k k k k p -===∑ (2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”;(3) C =“恰有两位乘客在同一层离开”;(4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型: 224619()C ()()1010P A = (2) 6个人在十层中任意六层离开,故6106P ()10P B = (3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++ (4) D=B .故 6106P ()1()110P D P B =-=- 37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率:(1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>- (3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y a x y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n --===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====. 41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A == 因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -= 由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n n n P C C =故 2211()[1C ]22n n n P A =- 44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)kkn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrrm m m n m nm n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

(完整版)概率论与数理统计习题集及答案

(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

《概率论与数理统计教程》课后习题解答

《概率论与数理统计教程》课后习题解答

第一章 事件与概率1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2)C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。

解 (1)n i iA 1=; (2) n i i n i i A A 11===; (3) n i nij j ji A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为nji j i jiAA ≠=1,;1.5 在分别写有2、4、6、7、8、11、12、13的八张卡片中任取两张,把卡片上的两个数字组成一个分数,求所得分数为既约分数的概率。

解 样本点总数为7828⨯=A 。

所得分数为既约分数必须分子分母或为7、11、13中的两个,或为2、4、6、8、12中的一个和7、11、13中的一个组合,所以事件A “所得分数为既约分数”包含6322151323⨯⨯=⨯+A A A 个样本点。

于是14978632)(=⨯⨯⨯=A P 。

1.8 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车”,求它们正好可以相互吃掉的概率。

解 任意固定红“车”的位置,黑“车”可处于891109=-⨯个不同位置,当它处于和红“车”同行或同列的1789=+个位置之一时正好相互“吃掉”。

《概率论与数理统计》复习答案

《概率论与数理统计》复习答案

概率论复习一、单项选择题1.袋中有50个乒乓球,其中20个黄球,30个白球,现在两个人不放回地依次从袋中随机各取一球,则第二人取到黄球的概率是(B).A.51 B.52 C.53 D.54 2.设B A ,为随机事件,且5.0)(=A P ,6.0)(=B P ,=)(A B P 8.0.则=)(B A P U (C).A.0.5B.0.6C.0.7D.0.83.设随机变量X 的分布函数为)(x F X ,则35-=X Y 的分布函数)(y F Y 为(C).A.)35(-y F XB.3)(5-y F XC.⎪⎭⎫⎝⎛+53y F X D.3)(51+y F X4.设二维随机变量),(Y X 的分布律为则==}{Y X P ( A ).A.3.0B.5.0C.7.0D.8.05.设随机变量X 与Y 相互独立,且2)(=X D ,1)(=Y D ,则=+-)32(Y X D (D).A.0B.1C.4D.66.设),(~2σμN X ,2,σμ未知,取样本n X X X ,,,21 ,记2,n S X 分别为样本均值和样本方差.检验:2:,2:10<≥σσH H ,应取检验统计量=2χ(C).A.8)1(2S n -B.2)1(2S n -C.4)1(2S n -D.6)1(2S n -7.在10个乒乓球中,有8个白球,2个黄球,从中任意抽取3个的必然事件是(B).A.三个都是白球B.至少有一个白球C.至少有一个黄球D.三个都是黄球8.设B A ,为随机事件,且B A ⊂,则下列式子正确的是(A).A.)()(A P B A P =UB.)()(A P AB P =C.)()(B P A B P =D.)()()(A P B P A B P -=-9.设随机变量)4 ,1(~N X ,已知标准正态分布函数值8413.0)1(=Φ,为使8413.0}{<<a X P ,则常数<a (C).A.0B.1C.2D.310.设随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F (B).A.0B.)(x F XC.)(y F YD.111.二维随机变量),(Y X 的分布律为设)1,0,(},{====j i j Y i X P P ij,则下列各式中错误..的是( D ). A.0100P P < B.1110P P < C.1100P P < D.0110P P< 12.设)5(~P X ,)5.0,16(~B Y ,则=--)22(Y X E (A).A.0B.0.1C.2.0 D.113.在假设检验问题中,犯第一类错误的概率α的意义是(C).A.在0H 不成立的条件下,经检验0H 被拒绝的概率B.在0H 不成立的条件下,经检验0H 被接受的概率C.在0H 成立的条件下,经检验0H 被拒绝的概率D.在0H 成立的条件下,经检验0H 被接受的概率14.设X 和Y 是方差存在的随机变量,若E (XY )=E (X )E (Y ),则(B) A 、D (XY )=D (X )D (Y )B 、D (X+Y )=D (X )+D (Y ) C 、X 和Y 相互独立D 、X 和Y 相互不独立 15.若X ~()t n 那么21X ~(B ) A 、(1,)F n ;B 、(,1)F n ;C 、2()n χ;D 、()t n16.设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,2σ的无偏估计量是(B )A 、()211n i i X X n =-∑;B 、()2111n i i X X n =--∑;C 、211n i i X n =∑;D 、2X 17、设随机变量X 的概率密度为2(1)2()x f x --=,则(B ) A 、X 服从指数分布B 、1EX =C 、0=DX D 、(0)0.5P X ≤=18、设X 服从()2N σ0,,则服从自由度为()1n -的t 分布的随机变量是(B ) A 、nX S B、2nX S D 19、设总体()2,~σμN X,其中μ已知,2σ未知,123,,X X X 取自总体X 的一个样本,则下列选项中不是统计量的是(B ) A 、31(123X X X ++)B 、)(12322212X X X ++σC 、12X μ+D 、123max{,,}X X X20、设随机变量()1,0~N ξ分布,则(0)P ξ≤等于(C )A 、0B 、0.8413C 、0.5D 、无法判断 21、已知随机变量()p n B ,~ξ,且3,2E D ξξ==,则,n p 的值分别为(D )A 、112,4n p ==B 、312,4n p ==C 、29,3n p ==D 、19,3n p == 22.设321,,X X X 是来自总体X 的样本,EX=μ,则(D )是参数μ的最有效估计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题 1.11、(1)选中乘客是不超过30岁的乘车旅游的男性(2)选中的乘客是不超过30岁的女性或以旅游为乘车目的 (3)选中乘客是不超过30岁的女性或乘车旅游的女性 (4)选中乘客是30岁以上以旅游为目的男性2、(1)2010A B U (2)1053111ijki j k A B C===U U U U U (3)2017ii C =U (4)1010212111i j i j ACD --==UU U U3、(1)1ni i G =I(2)1nii G=U (3)12123121n n n n G G G G G G G G G G G -L U L UL U L &&习题 1.21、(该题题目有误,请将()1/4P A =改作()1/3P A =) (1)1()()()()30P AB P A P B P A B =+-=U (2)3()()()()10P AB P A B P A P AB =-=-= (3)7()1()10P AUB P AB =-=(4)7()()()()()()15P AB AB P AB P AB P AB P B P AB =+=+-=U 2、811877⨯=⨯3、(1)仅考虑末位:1211015C C =(2)末位1和9的数的平方末位是1,故概率为:1211015C C =4、至少两名女生的概率:5412222853010.4046C C C C +-≈5人全为女生的概率:585300.0004C C ≈5、一等奖:86133161 5.643010C C -≈⨯二等奖:6176156133168.464510C C C C -≈⨯ 三等奖:511662716133169.141710C C C C C -≈⨯四等奖:5114216271562716133160.0004C C C C C C C C +≈五等奖:4213316271562716133160.0078C C C C C C C C +≈六等奖:24156627627276133160.0589C C C C C C C ++≈6、双王出现的概率:311333⨯=⨯ 4个2出现的概率:431273=农民手中有双王的概率:22122=习题 1.31、()1(|)()4P AB P A B P B == (())()()4(|())()()()()()()()5P B A B P AB B P B P A A B P A B P A P B P AB P A P B P AB ====+-+-I U U U U(())()(|())1()()P A AB P AB P A A B P AB P AB -===I2、设A 表示事件:取出的两个球中有一个红球,B 表示事件:取出的两个球都是红球,则 2264221010()1,()C C P A P B C C =-=,所求概率为:()()1(|)()()5P AB P B P B A P A P A ===3、用i A 表示第i 次取得黑球,则所求事件可表示为:123123A A A A A A U ,其概率为:123123121312121312()()()()(|)()()(|)281821760.03751099101092025P P A A A P A A A P A P A A P A A A P A P A A P A A A =+=+=⨯⨯+⨯⨯=≈||4、用A 表示事件:任选一人为男生,B 表示事件:任选一人该人参加了社团活动,任选一人该人没有参加社团活动的概率为:1()(|)()(|)()0.30.750.20.250.275P P B P B A P A P B A P A ==+=⨯+⨯= 已知抽取一人参加社团活动,此人为男生的概率为:2(|)()0.70.7521(|)()10.27529P B A P A P P A B P B ⨯====-大于此人是女生的概率。

5、设i A 表示事件:第i 次抽中“恭喜中奖”,i B 表示事件:第i 次抽中抽中“再来一次”,则1121121312()()(|)()(|)(|)2222120.25101091098P P A P B P A B P B P B B P A B B =++=+⨯+⨯⨯=6、()()()()(|)0.3()1()1()P AD P ABC P BC P ABC P D A P A P A P A -====--7、设i A 表示事件:第i 次抽中大奖,则第k 个人中奖概率为: 121121121()()(|)(|)12(1)111(2)(1)k k k k P P A A A A P A P A A P A A A A n n n k n n n k n k n--==----=⨯⨯⨯⨯=-----L L L L (k =1,2,……,n )习题1.41、(())()()()()P A B C P AC BC P AC P BC P ABC ==+-U U()()()()()()()P A P C P B P C P A P B P C =+-[]()()()()()()()P A P B P A P B P C P A B P C =+-=U即A B U 与C 相互独立()()()()()()P ABC P A P B P C P AB P C ==,即AB 与C 独立 (())()()()()()()()()P A B C P ABC P AC P ABC P A P C P A P B P C -==-=-[]()()()()()()P A P A P B P C P A B P C =-=-,即A-B 与C 独立2、设A 概率为0的任一事件,B 为概率为1的任一事件,C 为任一事件 0()()0,()()0()P AC P A P A P C P AC ≤≤===,即A 与C 独立 由该结论可得()()()P BC P B P C =()1()1()()()()(()()()P BC P B C P B P C P BC P B P C P B P B P C =-=--+=-=U ) 即B 与C 独立3、(1)()223150.46(0.54)0.3332P C =≈ (2)()332250.46(0.40)0.1557P C =≈(3)()520.970.8587P =≈4、该人有生之年一共可以买彩票352(7318)8580⨯⨯-=次他中头奖的概率为:858061331611(1)0.0005C C --≈5、(1)()3371100.3(0.7)0.2668P C =⨯≈(2)()81021050.3(0.7)0.1501kk k k P C -==⨯≈∑(3)()21031010.3(0.7)0.6172k kkk P C-==-⨯≈∑(4)()101031090.3(0.7)0.0001kk k k P C -==⨯≈∑6、设至少购买n 瓶,中奖概率为ln 0.110.850.914.1681ln 0.85n P n =-≥⇒≥≈ 至少需要购买15瓶复习题1、0.72、2/33、()0()0P A P B ==或4、5/7, 15、0.256、C7、A8、11()1(1)n k ii nk i n i C n -=---∑ 9、4112A 10、{3}{3|3}{3}{3|4}{4}{3|5}{5}P Y P Y X P X P Y X P X P Y X P X =====+===+===111147()5345300=⨯++=11、(1)1456110111211P =⨯⨯= (2)设A 表示事件:第三次抽到红球,i B 表示事件:第三次抽之前有i 个红球(i=4,5,6) 则45667426446484520(),(),()1011110101110111101011110P B P B P B =⨯==⨯+⨯==⨯=644425486202()(|)()1211012110121105iii P A P A B P B ===⨯+⨯+⨯=∑12、第一柜第一层的两个抽屉被抽中的概率为:111123212⨯⨯=第一柜第二层的四个抽屉被抽中的概率为:121123412⨯⨯=第二柜的各个抽屉被抽中的概率为:111123212⨯⨯=13、设A 表示事件:发生一起交通事故,B 表示事件:酒驾,所求概率为:(|)()27%2%17(|)27%(|)()(|)()6627%2%98%17P A B P B P B A P A B P B P A B P B ⨯===+⨯+⨯14、(1)用A 表示事件:一名患者痊愈,B 表示事件:一名患者服药,则()(|)()(|)()0.90.80.70.20.86P A P A B P B P A B P B =+=⨯+⨯= 所求概率为:(|)()0.90.836(|)(|)()(|)()0.90.80.70.243P A B P B P B A P A B P B P A B P B ⨯===+⨯+⨯ (2)用C 表示事件:三名患者有令人痊愈,D 表示事件:三名患者都服用了药物,则()()222233()()(1())0.86(0.14)0.310632P C C P A P A C =-=⨯=()3()0.80.512P D ==()223(|)0.90.10.243P C D C =⨯=所求概率为:(|)()(|)0.4005()P C D P D P D C P C =≈15、(1)514(2)415130.395544C ⎛⎫⨯⨯≈ ⎪⎝⎭ (3)5553130.103544i iii C -=⎛⎫⎛⎫≈ ⎪ ⎪⎝⎭⎝⎭∑习题 2.11、略2、(1){1}X ≥(2){2}Y ≤(3){1}{2}X Y ≥≤U (4){2|1}Y X ≤≥3、22{1,2025}{2,1924}Y YZ Z X X=≤≤=≤≤U习题 2.21、X 的所有可能取值为0,1,2 3211288282333101010771{0},{1},{2}151515C C C C C P X P X P X C C C ========= Y 的所有可能取值为1,2,3123528337101{1}{1|0}{0}15C C C P Y P Y X P X C C =======g 212152613377777{2}{2|0}{0}{2|1}{1}151515C C C C P Y P Y X P X P Y X P X C C =====+====+=g g2、12p =3、(1)1010(10,0.05),{}(0.05)(0.95)(0,1,,10)kk k X B P X k C k -===:L (2)210100{2}(0.05)(0.95)0.9885k k kk P X C-=≤=≈∑4、设X 表示10台电机中发生异常现象的台数,则(10,0.1)X B :,每天需要检修的概率为:1010106{6}(0.1)(0.9)0.0001k k k k P X C-=≥=≈∑假定每天是否需要检修相互独立,则()(){}1{6}{6}0.00010.9999(0,1,2,)k kP Y k P X P X k ==-≥⨯≥=⨯=L5、(1)0.5{0}0.6065P X e-==≈ (2)0.54(0.5){4}0.0018!k k P X e k +∞-=≥=≈∑6、1110001100001{1}(0.1%)(99.9%)0.7358!k kk kk k P X C e k --==≤=≈≈∑∑7、(1)363{5}0.0839!k k P X e k +∞-=>=≈∑,记10个收银台中等候人数超过5人的个数为Y ,则(10,0.0839)Y B :,10{10}(0.0839)0.0000P Y ==≈(2)3{0}0.0498P X e -==≈,记10个收银台中无人排队的个数为Z ,则(10,0.0498)Y B :,10106{5}(0.0498)(10.0498)0.0000kkk P Z -=>=-≈∑习题 2.31、题目有误,将密度函数改为:222(1),()0,x C x f x ⎧-<<+⎪=⎨⎪⎩其他(1)2222831(1)328C x dx C C -=+=⇒=⎰ (2) 220.5399{0.5}(1)28224P X x dx >=+=⎰,12239{15}(1)2814P X x dx ->>-=+=⎰2、1~(0,3),{1.5 2.5}3X U P X <<=3、(1)0.2210{10}0.20.1353x P X e dx e +∞--≥==≈⎰(2)根据指数分布无记忆性,概率为50.210{5}0.210.6321x P X e dx e --≤==-≈⎰4、记某位顾客的等候时间为Y ,则 0.10.535{5}0.10.6065,{5}(0.6065)0.2231x P X e dx e P Y +∞-->==≈>=≈⎰设n 个窗口能够满足需求,则ln(0.05)1(0.6065)0.95 5.991ln(0.6065)n n -≥⇒≥≈,所以需要增设三个窗口。

相关文档
最新文档