初三数学第一学期期末考试试卷

合集下载

山东省烟台市初三数学第一学期期末考试真题及答案解析

山东省烟台市初三数学第一学期期末考试真题及答案解析

山东省烟台市初三数学第一学期期末考试真题及答案解析(第一部分:基础演练,满分120分)一、 选择题(3′×12=36′)1、 下列智能手机的功能图标中,是中心对称图形但不是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个2、 下列各式从左到右的变形属于因式分解的是( )A.(m -2)(m -3)= (2-m ) (3-m )B. 3a -6b +3=3(a -2b )C. (x +1)(x -1)=x 2-1D. x 2-7x +12=(x -4)(x -3) 3、下列对代数式12---x x 的变形,不正确的是( )A. 1-2--x x B. xx -1-2 C. 12--x x D. xx -12--4、使分式23422++-x x x 的值为零的x 的值是( ) A . x =2 B . x = -2或x =-1 C . x =±2 D . x = -2 5、下列命题中,正确的命题是( )A. 有一个角是直角的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相垂直平分的四边形是正方形D. 对角线互相平分的四边形是平行四边形6、小亮根据演讲比赛中九位评委所给的分数制作了如下表格: 如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A. 平均数B. 众数C. 方差D. 中位数7、在俄罗斯方块游戏中,所有出现的方格体自由下落,如果一行中九个方格齐全,那么这一行会自动消失.已拼好的图案如图所示,现又出现一小方格体,必须进行以下哪项操作,才能拼成一个完整图案,使其全部自动消失( ) A .顺时针旋转90°,向下平移 B .逆时针旋转90°,向下平移 C .顺时针旋转90°,向右平移 D .逆时针旋转90°,向右平移8、如图所示,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,E ,F 是对角线AC 上的两点,当E ,F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形( )A. OE=OFB. ∠ADE=∠CBFC. DE=BFD. ∠ABE=∠CDF 9、如图,在平行四边形ABCD 中,∠A=47°,将平行四边形折叠,使点D ,C 分别落在点F ,E 处(点F ,E 都在AB 所在的直线上),折痕为MN ,则∠AMF 等于( ) A. 47° B. 86° C. 90° D. 94° 10、如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接BO.若∠DAC=29°,则 ∠OBC 的度数为( ) A. 29° B. 58° C. 61° D. 71°11、 某次列车平均提速20km/h ,用相同的时间,列车提速前行驶400km ,提速前比提速后多行驶100km ,平均数 中位数 众数 方差 8.5 8.3 8.1 0.15A. 20100400400-+=x xB. 20100400400++=x xC. 20100400400+-=x xD. 20100400400--=x x12、如图,平行四边形ABCD 中,AB=10cm ,AD=15cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒3cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,点P 到达点D 时停止(同时点Q 也停止运动),在运动以后,当以点P 、D 、Q 、B 为顶点组成平行四边形时,运动时间t 为( ) A. 6秒 B. 6.5秒 C. 7.5秒 D. 15秒 二、填空题(3分×6=18分)13、若关于x 的分式方程33122x m x x +-=--有增根,则m = . 14、用一条宽度相等的足够长的纸条打一个结(如图1所示)然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC= .15、如图,四边形ABCD 是菱形,点O 是对角线的交点,三条直线都经过点O ,图中阴影面积为24cm 2,其中一条对角线长为6cm ,则另一条对角线长为 cm.16、如图,将△ABC 沿射线BC 方向移动,使点B 移动到点C ,得到△DCE ,连接AE ,若△ABC 的面积为4,则△ACF 的面积为 .17、如图所示,在△ABC 中,M 是BC 的中点,AN 平分∠BAC ,BN ⊥AN.若AB=14,AC=19,则MN 的长为 . 18、如图,正方形ABCD 的边长为6,E 为BC 上的一点,BE=1,F 为AB 上的一点,AF=3,P 为AC 上一点,则PF+PE 的最小值为 . 三、解答题(66分)19、(12分)先化简,再求值:(1) 2222a b ab b b aab⎛⎫+--÷ ⎪⎝⎭,已知a =b -8.(2)先化简:⎪⎭⎫ ⎝⎛--÷+-+x x x x x x 1121222,再从-2≤x <3的范围内选取一个适合的整数代入求值.20、(10分)如图,等边△ABC 的边长是4,D 、E 分别为AB 、AC 的中点,延长BC 至点F ,使CF=21BC ,连接CD 和EF.(1)求证:DE=CF ; (2)求EF 的长.21、(10分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)画出△ABC 向下平移5个单位长度后得到的△A 1B 1C 1; (2)画出△ABC 关于原点对称的△A 2B 2C 2; (3)画出△ABC 绕点A 逆时针旋转90°后得到的△AB 3C 3;(3)在x 轴上求作一点P ,使△P AB 的周长最小,画出△P AB ,并直接写出点P 的坐标.22、(12分)某学校在初三级部举行了全员参加的数学运算能力竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下: 整理数据: 分析数据:根据以上信息回答下列问题:(1)a = ,b = ,c = ,d = ;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好,请说明理由; (3)已知三班方差为S 32=141,请计算1班方差S 12并判断1班,3班哪个班的成绩比较稳定;(4)为了让学生重视数学运算学习,学校将给竞赛成绩满分的同学颁发奖状,该校初三共1200人,试估计需要准备多少张奖状?23、(10分)先阅读下面的内容,再解决问题. 例题:若m 2+2mn +2n 2-4n +4=0,求m 和n 的值. 解:∵m 2+2mn +2n 2-4n +4=0 ∴m 2+2mn +n 2+n 2-4n +4=0 ∴(m+n )2+(n -2)2=0 ∴m+n =0,n -2=0 ∴m = -2,n =2.问题解决:(1)若x 2+2y 2-2xy +6y +9=0,求x y 的值;(2)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=8a +6b -25,且c 是△ABC 中最长的边,求c 的取值范围. 班 数 人数 分数 60 70 80 90 100 1班 0 1 6 2 1 2班 1 1 3 a 1 3班 1 1 4 2 2 平均数 中位数 众数 1班 83 80 80 2班 83 c d 3班 b 80 8024、(12分)为落实大美福山“七纵十横”的城区路网大框架,区政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?(第二部分:能力挑战,满分30分)四、附加题25、(14分)某校八年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC 与AFE按如图1所示位置放置,∠A=90°,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图2,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.26、(16分)如图1,已知点E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.初三数学试题参考答案及评分建议(如有错误请组长及时更正)一、选择题(每小题3分,满分36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDAADDCCBCBC二、填空题(每小题3分,满分18分)13. 3 14.36° 15.16 16.2 17.2.5 18.40(102或) 三、解答题(满分66分)19.(本题共2个小题,满分12分)解:(1)原式222=()22()a b ab ab a a b a b +-⋅-2()2a b a a a b-=⋅-………………2分2a b -=. ………………3分 ∵8a b =-,∴a -b =-8.………………4分∴原式=-4. ……………6分(2)原式=2(1)2(1)(1)(1)x x x x x x x +--÷-- =2(1)(1)(1)1x x x x x x +-⋅-+…………2分 =21x x - ……………3分∵x ≠-1,0,1,∴当x =2时,…………4分 原式=21x x -=2221-=4.…………6分(或当-2x =时,原式=34-……6分) 20. (本题满分10分)解:(1)∵ D ,E 分别是AB ,AC 中点 ∴DE 是△ABC 的中位线…………2分∴DE =21BC ,DE ∥BC ∵ CF =21BC ∴DE =CF ……………………5分 (2)∵ DE =CF DE ∥CF ∴四边形EDCF 是平行四边形 ∴EF =CD …………7分 ∵ D 是AB 的中点,等边△ABC 的边长为4∴CD =32 …………9分∴FE =CD =32 …………10分 21.(本题共10分,每小题画图各2分) (1)△111C B A 如图; ………………2分 (2)△222C B A 如图;………………4分(3)△33C AB 如图,3C 的坐标是(-2,3);.…………7分 (4)点P 和△P AB 如图,点P 的坐标是(2,0)…………10分22. (本题满分12分)解:(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为23x 米,…1分 根据题意得:323360360=-x x ………3分 解得:x =40,…………4分 经检验,x =40是原分式方程的解,且符合题意,…………5分 ∴23x =23×40=60. …………6分 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.………7分 (2)设安排甲队工作m 天,则安排乙队工作4060-1200m天,………………8分根据题意得:7m +5×4060-1200m≤145, …………10分解得:m ≥10. …………11分答:至少安排甲队工作10天。

浙江省杭州市余杭区上学期期末考试九年级数学试卷(解析版)

浙江省杭州市余杭区上学期期末考试九年级数学试卷(解析版)

浙江省杭州市余杭区2019-2019学年上学期期末考试九年级数学试卷一、选择题1.(3分)sin30°的值是()A.B.C.D.【专题】常规题型.【分析】根据特殊角的三角函数值可得答案.【解答】解:sin30°=故选:A.【点评】此题主要考查了特殊角的三角函数值,关键是掌握30°、45°、60°角的各种三角函数值.2.(3分)下列事件中,属于必然事件的是()A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意画一个三角形,其内角和为180°D.任意一个二次函数图象与x轴必有交点【专题】常规题型.【分析】直接利用必然事件以及随机事件的定义分别分析得出答案.【解答】解:A、打开电视机正在播放广告,是随机事件,故此选项错误;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50次,是随机事件,故此选项错误;C、意画一个三角形,其内角和为180°,是必然事件,故此选项正确;D、任意一个二次函数图象与x轴必有交点,是随机事件,故此选项错误;故选:C.【点评】此题主要考查了随机事件,正确把握相关事件的定义是解题关键.3.(3分)函数y=x2+2x﹣4的顶点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型;二次函数图象及其性质.【分析】把二次函数化为顶点式则可求得顶点的坐标,则可求得答案.【解答】解:∵y=x2+2x-4=(x+1)2-5,∴抛物线顶点坐标为(-1,-5),∴顶点在第三象限,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中对称轴为x=h,顶点坐标为(h,k).4.(3分)如图,C是圆O上一点,若圆周角∠ACB=36°,则圆心角∠AOB的度数是()A.18°B.36°C.54°D.72°【专题】圆的有关概念及性质.【分析】根据圆周角定理计算即可;【解答】解:∵∠AOB=2∠ACB,∠ACB=36°,∴∠AOB=72°,故选:D.【点评】本题考查圆周角定理,解题的关键是记住在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.(3分)已知AB=2,点P是线段AB上的黄金分割点,且AP>BP,则AP的长为()A.B. C.D.【专题】几何图形.6.(3分)已知(1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x﹣m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y3<y1<y2【专题】常规题型.【分析】求出抛物线的对称轴为直线x=-2,然后根据二次函数的增减性和对称性解答即可.【解答】∵a=-2<0,∴x=-2时,函数值最大,又∵1到-2的距离比-4到-2的距离大,∴y1<y3<y2.故选:C.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.7.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【专题】网格型.【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【点评】此题考查三角形相似判定定理的应用.8.(3分)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.C.8 D.【专题】常规题型.【分析】根据题意作出合适的辅助线,然后根据垂径定理、勾股定理即可求得OP的长,本题得以解决.【解答】解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,如右图所示,则AE=BE,CF=DF,∠OFP=∠OEP=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE=6,同理可得,OF=6,∴EP=6,故选:B.【点评】本题考查垂径定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.9.(3分)如图,抛物线与x轴交于A、B两点,以线段AB为直径的半圆与抛物线在第二象限的交点为C,与y轴交于D点,设∠BCD=α,则的值为()A.sin2α B.cos2α C.tan2α D.tan﹣2α【分析】首先连接AD,BD,由圆周角定理可得∠BAD=∠BCD=α,又由AB是半圆的直径,可得∠ADB=90°,然后根据同角的余角相等,求得∠ODB=∠BAD=α,再利用三角函数的定义,求得OB与OA,【解答】解:连接AD,BD,∴∠BAD=∠BCD=α,∵AB是半圆的直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠ODB+∠OBD=90°,∴∠ODB=∠BAD=α,【点评】此题考查了圆周角定理、直角三角形的性质以及三角函数的知识.此题综合性较强,难度较大,解题的关键是准确作出辅助线,利用数形结合思想求解.10.(3分)一堂数学课上老师给出一题:“已知抛物线与x轴交于点A(﹣1,0),B(,0)(点A在点B的左侧),与y轴交于点C,若△ABC为等腰三角形,试求出满足条件的k值”.学生求出k值的答案有①;;②;③;④2.则本题满足条件的k的值为()A.①②④B.①③④C.② D.①②③④【分析】画出图形分三种情形分别求解即可.【点评】本题考查抛物线与x轴的交点、等腰三角形的判定和性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题11.(4分)若7x=3y,则=.【专题】计算题.【分析】等式两边都除以7y即可得解.【点评】本题考查了比例的性质,主要是两内项之积等于两外项之积的应用,比较简单.12.(4分)在Rt△ABC中,∠C=90°,sinB=,则tanB=.【专题】计算题;解直角三角形及其应用.【点评】本题主要考查锐角的三角函数,解题的关键是掌握正弦函数和正切函数的定义.13.(4分)为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解得:n=20,故答案为:20.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14.(4分)如图,AB是圆O的直径,∠A=30°,BD平分∠ABC,CE⊥AB于E,若CD=6,则CE的长为.【专题】圆的有关概念及性质.【分析】首先证明∠D=∠CBD=30°,推出CD=CB=6,在Rt△ECB中,根据EC=BC•sin60°即可解决问题.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠A=30°,∴∠D=∠A=30°,∠ABC=60°,∵BD平分∠ABC,【点评】本题考查圆周角定理、垂径定理、等腰三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(4分)若函数y=(a﹣2)x2﹣4x+a+1的图象与x轴有且只有一个交点,则a的值为.【专题】方程思想.【分析】直接利用抛物线与x轴相交,b2-4ac=0,进而解方程得出答案.【解答】解:∵函数y=(a-2)x2-4x+a+1的图象与x轴有且只有一个交点,当函数为二次函数时,b2-4ac=16-4(a-2)(a+1)=0,解得:a1=-2,a2=3,当函数为一次函数时,a-2=0,解得:a=2.故答案为:-2或2或3.【点评】此题主要考查了抛物线与x轴的交点,正确得出关于a的方程是解题关键.16.(4分)如图,矩形ABCD的长为6,宽为4,以D为圆心,DC 为半径的圆弧与以BC为直径的半圆O相交于点F,连接CF并延长交BA的延长线于点H,FH•FC=.【专题】圆的有关概念及性质.【分析】连接BF、OF、OD,OD交CH于K.首先证明OD 垂直平分线段CF,利用面积法求出CK、FK,利用勾股定理求出OK,利用三角形的中位线定理求出BF,再利用相似三角形的性质即可解决问题;【解答】解:连接BF、OF、OD,OD交CH于K.∵DF=DC,OF=OC,∴OD垂直平分线段CF,【点评】本题考查相似三角形的判定和性质、矩形的性质、圆周角定理、线段的垂直平分线的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.三、解答题17.(6分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.【专题】常规题型;概率及其应用.【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【解答】解:(1)∵垃圾要按A,B,C、D类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.【点评】此题主要考查了树状图法求概率,正确利用列举出所有可能是解题关键.18.(8分)如图,一艘舰艇在海面下600米A处测得俯角为30°前下方的海底C处有黑匣子信号发出,继续在同一深度直线航行2019米后再次在B点处测得俯角为60°前下方的海底C处有黑匣子信号发出,求海底黑匣子C处距离海面的深度(结果保留根号)【专题】三角形.【分析】易证∠BAC=∠BCA,所以有BA=BC.然后在直角△BCF中,利用正弦函数求出CF即可解决问题..【解答】解:由C点向AB作垂线,交AB的延长线于F点,并交海面于H点.已知AB=2019(米),∠BAC=30°,∠FBC=60°,∵∠BCA=∠FBC﹣∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=2019(米).在Rt△BFC中,FC=BC•sin60°=2019×=1000(米).∴CH=CF+HF=100+600(米).答:海底黑匣子C点处距离海面的深度约为(1000+600)米.【点评】本题考查了仰俯角问题,解决此类问题的关键是正确的将仰俯角转化为直角三角形的内角并选择正确的边角关系解直角三角形,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.(8分)如图,弧AB的半径R为6cm,弓形的高CD=h 为3cm.求弧AB的长和弓形ADB的面积.【专题】圆的有关概念及性质.【分析】首先求得弦心距CO是6-3=3,则在直角三角形中,根据锐角三角函数,可以求得∠AOB=60°×2=120°.再根据弧长公式即可计算.【解答】解:由题意:CO=R﹣h=6﹣3=3(cm)在△BCO中,∵cos∠COB===,∴∠COB=60°,∴∠AOB=60°×2=120°,则==4π(cm).S弓形ADB=S扇形AOB﹣S△AOB=﹣•6•3=12π﹣9.【点评】本题考查扇形的面积公式、弧长公式、锐角三角函数、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(10分)如图,已知二次函数图象的顶点坐标为C(2,0),直线y=x+m与二次函数的图象交于A,B两点,其中点A在y轴上,B点(8,9).(1)求二次函数的表达式;(2)Q为线段AB上一动点(不与A,B重合),过点Q作y轴的平行线与二次函数交于点P,设线段PQ长为h,点Q横坐标为x.求①h与x之间的函数关系式;②△ABP面积的最大值.【专题】综合题.【分析】(1)设顶点式y=a(x-2)2,然后把B点坐标代入求出a即可得到抛物线解析式;(2)①把B点坐标代入y=x+m中求出m得到直线AB的解析式为y=x+1,设P(x,14x2-x+1)(0<x<8),则Q(x,x+1),用Q点的纵坐标减去P点的纵坐标可得到h与x的关系式;②根据三角形面积公式,利用S△ABP=S△APQ+S△BPQ得到S△ABP=4(14x2-2x),然后利用二次函数的性质解决问题.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2,把B(8,9)代入得a(8﹣2)2=9,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+1;(2)①把B(8,9)代入y=x+m得8+m=9,解得m=1,所以直线AB的解析式为y=x+1,设P(x,x2﹣x+1)(0<x<8),则Q(x,x+1),∴h=x+1﹣(x2﹣x+1)=﹣x2+2x(0<x<8);②S△ABP=S△APQ+S△BPQ=•PQ•8=﹣4(x2﹣2x)=﹣x2+8x=﹣(x﹣4)2+16,当x=4时,△ABP面积有最大值,最大值为16.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.21.(10分)如图,四边形ABCD中,∠A=∠B=90°,P是线段AB 上的一个动点.(1)若AD=2,BC=6,AB=8,且以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,求AP的长;(2)若AD=a,BC=b,AB=m,则当a,b,m满足什么关系时,一定存在点P使△ADP∽△BPC?并说明理由.【专题】计算题.【分析】(1)分两种情形构建方程求解即可;整理得:x2-mx+ab=0,由题意△≥0,即可解决问题;【解答】解:(1)设AP=x.∵以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,①当=时,=,解得x=2或8.②当=时,=,解得x=2,∴当A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,AP的值为2或8;(2)设PA=x,∵△ADP∽△BPC,整理得:x2﹣mx+ab=0,由题意△≥0,∴m2﹣4ab≥0.∴当a,b,m满足m2﹣4ab≥0时,一定存在点P使△ADP∽△BPC.【点评】本题考查相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考常考题型.22.(12分)已知二次函数y=x2+2bx+c(1)若b=c,是否存在实数x,使得相应的y的值为1?请说明理由;(2)若b=c﹣2,y在﹣2≤x≤2上的最小值是﹣3,求b的值.【专题】常规题型;分类讨论.【分析】(1)令y=1,判断所得方程的判别式大于0即可求解;(2)求得函数的对称轴是x=-b,然后分成-b≤-2,-2<-b<2和-b≥2三种情况进行讨论,然后根据最小值是-3,即可解方程求解.【解答】解:(1)由y=1得x2+2bx+c=1,∴x2+2bx+c﹣1=0∵△=4b2﹣4b+4=(2b﹣1)2+3>0,则存在两个实数,使得相应的y=1;(2)由b=c﹣2,则抛物线可化为y=x2+2bx+b+2,其对称轴为x=﹣b,①当x=﹣b≤﹣2时,则有抛物线在x=﹣2时取最小值为﹣3,此时﹣3=(﹣2)2+2×(﹣2)b+b+2,解得b=3;②当x=﹣b≥2时,则有抛物线在x=2时取最小值为﹣3,此时﹣3=22+2×2b+b+2,解得b=﹣,不合题意,舍去,③当﹣2<﹣b<2时,则=﹣3,化简得:b2﹣b﹣5=0,解得:b1=(不合题意,舍去),b2=.综上:b=3或.【点评】本题考查了二次函数的性质以及函数的最值,注意讨论对称轴的位置是本题的关键.23.(12分)已知:如图,AB是圆O的直径,CD是圆O的弦,AB⊥CD,E为垂足,AE=CD=8,F是CD延长线上一点,连接AF 交圆O于G,连接AD、DG.(1)求圆O的半径;(2)求证:△ADG∽△AFD;(3)当点G是弧AD的中点时,求△ADG得面积与△AFD的面积比.【专题】综合题.【分析】(1)先表示出OE=8-R,再求出CE=4,利用勾股定理求出R,即可得出结论;(2)利用同角的余角相等,判断出∠ADG=∠F,即可得出结论;(3)先利用勾股定理求出AD,进而得出DF=AD,再利用勾股定理求出AG,即可得出DG,最后用相似三角形的面积比等于相似比的平方即可得出结论.【解答】解:(1)如图1,连接OC,设⊙O的半径为R,∵AE=8,∴OE=8﹣R,∵直径AB⊥CD,∴∠CEO=90°,CE=CD=4,在Rt△CEO中,根据勾股定理得,R2﹣(8﹣R)2=16,∴R=5,即:⊙O的半径为5;(2)如图2,连接BG,∴∠ADG=∠ABG,∵AB是⊙O的直径,∴∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠ADG+∠BAG=90°,∵AB⊥CD,∴∠BAG+∠F=90°,∴∠ADG=∠F,∵∠DAG=∠FAD,∴△ADG∽△AFD;(3)如图3,在Rt△ADE中,AE=8,DE=CD=4,根据勾股定理得,AD=4,连接OG交AD于H,∵点G是的中点,∴AH=AD=2,OG⊥AD,在Rt△AOH中,根据勾股定理得,OH=,在Rt△AHG中,HG=OG﹣OH=5﹣,根据勾股定理得,AG2=AH2+HG2=50﹣10,∵点G是的中点,∴DG=AG=50﹣10,∴∠DAG=∠ADG,由(2)知,∠ADG=∠F,∴∠DAG=∠F,∴DF=AD=4,由(2)知,△ADG∽△AFD,∴=()2===.【点评】此题是圆的综合题,主要考查了垂径定理,勾股定理,圆的性质,相似三角形的判定和性质,解(2)的关键是利用勾股定理建立方程,解(2)的关键是判断出∠ADG=∠F,解(3)的关键是求出DG.。

铁西初三数学期末考试卷

铁西初三数学期末考试卷

铁西初三数学期末考试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.333...D. 1/32. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 下列哪个表达式是正确的?A. (-3)² = -9B. (-2)³ = -8C. (-2)⁴ = 16D. (-1)⁵ = 14. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -25. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π6. 一个正数的倒数是1/4,那么这个数是:A. 4B. 1/4C. 1/2D. 17. 下列哪个是二次根式?A. √3B. √(-1)C. √(2x)D. √(3x²)8. 如果一个二次方程的解是x=2和x=-1,那么这个方程可以是:A. x² - x - 2 = 0B. x² - 3x + 2 = 0C. x² + 3x - 2 = 0D. x² + x - 2 = 09. 一个数的立方根是3,那么这个数是:A. 27B. 81C. 243D. 72910. 一个函数f(x) = 2x - 3,当x=4时,f(x)的值是:A. 5B. 8C. 9D. 10二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。

12. 一个数的平方是36,这个数可以是______或______。

13. 一个数的立方是-27,这个数是______。

14. 一个圆的直径是10,那么它的半径是______。

15. 一个直角三角形的斜边长是13,一个直角边长是5,另一个直角边长是______。

16. 一个数的平方根是4或-4,这个数是______。

17. 一个数的倒数是-2,这个数是______。

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。

第一学期九年级期末考试数学试卷及答案(二)

第一学期九年级期末考试数学试卷及答案(二)

第一学期九年级期末考试数学试卷(二)一、精心选一选(本题共13小题,在每小题所给出的四个选项中,只有一个是正确的,请选出你认为唯一正确的答案,每小题3分,计39分) 1.下列各式,计算正确的是 A .x 8÷x 2=x 6B .(3a )3=9a 3C .4x 3·2x 2=8x 6D .(x 5)2=x 72.比较M=916+与N=916+的大小,其结果是 A .M<NB .M>NC .M=ND .无法比较3.下列各式能用公式法进行因式分解的是 A .a 2+4B .a 2+2a+4C .a 2-a+41D .4b-a 24.下列关于11的说法中,错误的是 A .11是无理数B .3<11<4C .11是11的算术平方根D .11的平方根是115.一次函数y=kx+b 的图象如下图所示,则不等式2≤kx+6≤5的解集是A .x≥0B .x≤3C .0<x<3D .0≤x≤36.下列计算正确的是A .(x+2)2=x 2+2x+4B .(-3-x )(3+x )=9-x 2C .(-3+x )(3-x )=-x 2-9+6xD .(2x-y ) 2=4x-2-2xy+y 27.能表示如下图中一次函数图象的一组函数对应值列表的是A B C D8.已知直线y 1=-x+1和y 2=-2x-1,当x>-2时,y 1>y 2;当x<-2时,y 1<y 2,则直线y 1=-x+1和直线y 2=-2x-1的交点是 A .(-2,3)B .(-2,-5)C .(3,-2)D .(-5,-2)9.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于21CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是A .SASB .SSSC .AASD .ASA10.如下图所示的计算程序中,则y 与x 之间的函数关系所对应的图象应为A B C D11.若点A(0,y1),B(2,y2),C(3,y3)都在直线y=kx+b上,且y1>y2,则下列结论中正确的是A.y3>y1B.y2>y3C.y1=y3D.y3与y2的关系不确定12.BD是等边△ABC的中线,延长BC到E,使CE=CD,已知△ABC的周长为6acm,BD=bcm,则△BDE的周长为A.(3a+b)cm B.(5a+2b)cm C.(3d+2b)cm D.(5a+b)cm 13.均匀地向一容器注水,水面高度h随时间t的变化规律如下图所示(图中OABC为一折线),这个容器的形状是图中A B C D二、细心填一填(本题共7小题,满分21分,只要求填写最后结果,每小题填对得3分)14.一个等腰三角形的两边长分别为4cm和8cm,则这个等腰三角形的周长为_____。

第一学期九年级期末考试数学试卷及答案(一)

第一学期九年级期末考试数学试卷及答案(一)

第一学期九年级期末考试数学试卷(一)(时间:120分钟)一、填空题(每小题3分,共18分)1.如图∠DAB=∠CAE ,请补充一个条件:__________,使△ABC ≌△ADE .2.如图,AM 、AN 分别切⊙O 于M 、N 两点,点B 在⊙O 上,且∠MBN=70°,则∠A=________.3.如图,张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30°,旗杆底部8点的俯角为45°.若旗杆底部B 点到建筑物的水平距离BE=9米,旗杆台阶高l 米,则旗杆顶点A 离地面的高度为___________米(结果保留根号).4.若抛物线22--=x x y 经过点A (3,a )和点B (b ,0),连接AB ,那么线段AB 的长为___________.5.某服装厂制造某种产品,原来每件产品的成本是256元,由于不断改进生产设备,提高生产技术,连续两次降低成本,两次降低后的成本是196元,则平均每次降低成本的百分率是______________.6.已知二次函数c bx ax y ++=2的图象开口向上,图像经过点(-l ,2)和(1,0)且与y 轴交于负半轴.(从以下(1)、(2)两问中选答一问,若两问都答,则只以第(2)问计分) 第(1)问:给出四个结论:①0>a ;②0>b ;③0>c ; ④0=++c b a ,其中正确结论的序号是______________.第(2)问:给出四个结论:①0<abc ②02>+b a ;③1=+c a ;④1>a ,其中正确结论的序号是___________________.二、选择题:下列每小题的四个答案中有且只有一个是正确的,请将正确答案的字母代号填在题后括号内(每小题3分,共36分)7.生活处处皆学问,如图,眼镜镜片所在的两圆的位置关系是( ).A .外离B .外切C .内含D .内切8.关于x 的方程022=-+-k kx x 的根的情况是( ). A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法确定9.二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是( ).A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位10.如图,已知直角三角形ABC 中,斜边AB 的长为m ,∠B=40°,则直角边BC 的长是( ).A .msin40°B .mcos40°C .mtan40°D .︒40tan m11.已知实数x 满足01122=+++x x xx ,那么x x 1+的值是( ) A .1或-2B .-l 或2C .-2D .112.下列说法正确的有( ).(1)如图(a ),可以利用刻度尺和三角板测量圆形工件的直径;(2)如图(b ),可以利用直角曲尺检查工件是否为半圆形;(3)如图(c ),两次使用丁字尺(CD 所在直线垂直平分线段AB )可以找到圆形工件的圆心;(4)如图(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数.A .1个B .2个C .3个D .4个13.如图,在△ABC 中,DE ∥BC ,S △ADE =S 梯形DBCE ,下列关系正确的是( ).A .AD :DB=(2+1):1B .DE :BC=1:2C .AD :DB=2:1D .AD :DB=(2-l ):114.已知二次函数k x y +-=2)1(3的图象上有A (2,1y ),B (2,2y ),C (-5,3y )三个点,则1y 、2y 、3y 的大小关系是( ).A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y 15.如图,已知AB 是⊙O 的直径,CD 是弦且CD ⊥AB ,BC=6,AC=8,则sin ∠ABD 的值是( ).A .34B .43C .53D .54 16.如图,在Rt △ABC 中,∠C=90°,∠A=30°,E 为AB 上一点,且AE :EB=4:1,EF ⊥AC 于F ,连结FB ,则tan ∠CFB 的值等于( ).A .33B .332 C .335D .3517.在正方形网格中,△ABC 的位置如图所示,则tan ∠BAC 等于( ).A .21B .31C .41 D .33 18.如图,⊙O 的半径OA=6,以A 为圆心,OA 为半径的弧交⊙O 于B 、C 点,则BC=( )A .63B .62C .33D .32三、解答题(本题共6小题,共64分。

第一学期初三期末考试数学试卷及答案

第一学期初三期末考试数学试卷及答案

A第一学期初三期末考试数学试卷一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“答题卡”上 对应题目答案的相应字母处涂黑. 1. 已知:2:3,a b = 那么下列等式中成立的是A .32a b =B .23a b =C .52a b b += D .13a b b -= 2.如图,点A 、B 、C 都在O ⊙上,若∠AOB =72°,则∠ACB 的度数为 A .18°B .30°C .36°D .72°3. 已知⊙O 的半径为5,点P 到圆心O 的距离为8,那么点P 与⊙O 的位置关系是A .点P 在⊙O 上B .点P 在⊙O 内C .点P 在⊙O 外D .无法确定4. 如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =6,BD =2,AE =9,则EC 的长是A .8B .6C .4D .35. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若∠BAC =20°, AD DC=,则∠DAC 的度数是 A .30° B .35° C .45° D .70°6. 桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是 A .12 B .13 C .14 D . 167. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则AB DE新抛物线的解析式是A .23(2)1y x =++ B .23(2)1y x =+- C .23(2)1y x =-+ D .23(2)1y x =-- 8. 如图,在矩形ABCD 中,AB =4,BC =3,点P 在CD 边上运动,联结AP ,过点B 作BE ⊥AP ,垂足为E ,设AP =x , BE =y ,则能反映y 与x 之间函数关系的图象大致是A .B .C .D .二、填空题(共4道小题,每题4分,共16分)9. 如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 . 10. 如图,在Rt △ABC 中,∠C =90°,AB = 5,AC = 4,则cos A = .11. 已知抛物线22y x x m =-+与x 轴有两个交点,则m 的取值范围是 . 12. 如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A B C ˝˝˝的 位置.若BC =1,AC =3,则顶点A 运动到点A ˝的 位置时,点A 经过的路线的长是 .三、解答题(共4 道小题,共20分)13. (本小题满分5分)计算: tan 60sin30tan 45cos60.︒-︒⨯︒+︒14. (本小题满分5分)已知:如图,在ABC △中,D 是AC 上一点,联结BD ,且∠ABD =∠ACB .A BCA BCDP E(1)求证:△ABD ∽△ACB ;(2)若AD =5,AB = 7,求AC 的长.15. (本小题满分5分)已知二次函数245y x x =-+.(1)将245y x x =-+化成y =a (x -h ) 2 + k 的形式; (2)指出该二次函数图象的对称轴和顶点坐标; (3)当x 取何值时,y 随x 的增大而增大?16.(本小题满分5分)已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦, 且AB ⊥CD ,垂足为E ,联结OC ,OC =5.(1)若CD =8,求BE 的长;(2)若∠AOC =150°, 求扇形OAC 的面积.四、解答题(共2道小题,共12分)17. (本小题满分6分)已知反比例函数ky x=的图象经过点A (1,3). (1)试确定此反比例函数的解析式; (2)当x =2时, 求y 的值;(3)当自变量x 从5增大到8时,函数值y 是怎样变化的?18.(本小题满分6分)已知二次函数2y x bx c =++的图象如图所示,它与x 轴的一个交点的坐标为(-1,0),与y 轴的交点坐标为(0,-3). (1)求此二次函数的解析式;(2)求此二次函数的图象与x 轴的另一个交点的坐标;(3)根据图象回答:当x 取何值时,y <0?五、解答题(共2道小题,共10分) 19. (本小题满分5分)已知:如图,在△ABC 中,∠A =30°, tan B =34,AC =18,求BC 、AB 的长.20. (本小题满分5分)如图,某同学在测量建筑物AB 的高度时,在地面的C 处测得点A 的仰角为30°,向前走60米到达D 处,在D 处测得点A 的仰角为45°,求建筑物AB 的高度.六、解答题(共2道小题,共8分)21.(本小题满分4分)甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、5.现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法(画树状图或列表的方法)求取出的两个小球上的数字之和为5的概率.22.(本小题满分4分)如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形. 图中的△ABC 是一个格点三角形.(1)请你在第一象限内画出格点△AB 1C 1, 使得△AB 1C 1∽△ABC ,且△AB 1C 1与△ABC的相似比为3:1; (2)写出B 1、C 1两点的坐标.CBA A BCD45°30°PA BDCx七、解答题(本题满分7分)23. 如图,在△ABC 中,∠C =60°,BC =4,AC =P 在BC 边上运动,PD ∥AB ,交AC 于D . 设BP 的长为x ,△APD 的面积为y . (1)求AD 的长(用含x 的代数式表示);(2)求y 与x 之间的函数关系式,并回答当x 取何值时,y 的值最大?最大值是多少? (3)点P 是否存在这样的位置,使得△ADP 的面积是△ABP 面积的23?若存在,请求出BP 的长;若不存在,请说明理由.八、解答题(本题满分7分)24. 在平面直角坐标系xOy 中,反比例函数4y x=的图象与抛物线2(94)1y x m x m =+++-交于点A (3, n ).(1)求n 的值及抛物线的解析式;(2) 过点A 作直线BC ,交x 轴于点B ,交反比例函数4y x=(0x >)的图象于点C ,且AC =2AB ,求B 、C 两点的坐标;(3)在(2)的条件下,若点P 是抛物线对称轴上的一点,且点P 到x 轴和直线BC的距离相等,求点P 的坐标.x九、解答题(本题满分8分)25. 在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++的对称轴是1x =,并且经过(-2,-5)和(5,-12)两点. (1)求此抛物线的解析式;(2)设此抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D是线段BC 上一点(不与点B 、C 重合),若以B 、O 、D 为顶点的三角形与△BAC 相似,求点D 的坐标;(3)点P 在y 轴上,点M 在此抛物线上,若要使以点P 、M 、A 、B 为顶点的四边形是平行四边形,请你直接写出点M 的坐标.一、选择题(共8道小题,共32分)1. A2. C3. C4. D5. B6. A7. B8. D二、填空题(共4道小题,共16分)9. 1:2 10. 4511. m<112. 43π⎛+⎝⎭三、解答题(共4道小题,共20分)13. (本小题满分5分)解:tan60°-sin30°×tan45°+cos 60°11122=⨯+…………………………………………………………………4分=……………………………………………………………………5分14. (本小题满分5分)(1)证明:∵∠A=∠A,∠ABD =∠ACB, ………1分∴△ABD∽△ACB.…………………2分(2)解: ∵△ABD∽△ACB,∴AB ADAC AB=. ……………………………3分∴757AC=. ………………………………4分∴495AC=. ……………………………5分15. (本小题满分5分)解:(1)24445y x x=-+-+………………………………………………1分2(2)1x=-+. ………………………………………………………2分(2)对称轴为2=x,………………………………………………………3分顶点坐标为(2,1). ……………………………………………4分(3)当x>2时,y随x的增大而增大. ………………………………5分16. (本小题满分5分)证明:(1)∵AB为直径,AB⊥CD,∴∠AEC=90°,CE=DE. ……………………1分∵CD=8,∴118422CE CD==⨯=. ………………… 2分∵OC=5,∴OE3=. …………3分∴BE=OB-OE=5-3=2. …………………………………………………4分(2)21501255.36012OACSππ=⨯⨯=扇形………………………………………5分四、解答题(共2道小题,共12分)17. (本小题满分6分)解:(1)∵反比例函数kyx=的图象过点A(1,3),ADB31k ∴=. …………………………………………………………………1分 ∴k =3. ……………………………………………………………… 2分 ∴反比例函数的解析式为3y x=. ……………………………… 3分 (2) 当2x =时,32y =. .……………………………………………4分 (3) 在第一象限内,由于k =3 >0,所以y 随x 的增大而减小.当5x =时,35y =;当8x =时,38y =. 所以当自变量x 从5增大到8时,函数值y 从35减小到38.………6分 18.(本小题满分6分)解: (1)由二次函数2y x bx c =++的图象经过(-1,0)和(0,-3)两点,得 10,3.b c c -+=⎧⎨=-⎩ …………………………………………………… 1分解这个方程组,得2,3.b c =-⎧⎨=-⎩……………………………………… 2分∴抛物线的解析式为22 3.y x x =--…………………………………3分 (2)令0y =,得2230x x --=.解这个方程,得13x =,21x =-.∴此二次函数的图象与x 轴的另一个交点的坐标为(3,0). ………5分(3)当13x -<<时,y <0. ………………………………………… 6分五、解答题(共2道小题,共10分) 19. (本小题满分5分)解:过点C 作CD ⊥AB 于D .∴∠ADC =∠BDC =90°. ∵∠A =30°,AC =18,∴CD = 12 AC = 12 ×18=9. ……………………………………………………1分∴AD ===………………………………2分∵3tan ,4CD B BD ==∴39,4BD= ∴BD =12. ………………………………………………………………………3分D A C∴15.BC === …………………………………4分∴AB =AD +BD =9 3 +12. ………………………………………………5分 ∴BC =15, AB =9 3 +12.20. (本小题满分5分)解:设建筑物AB 的高度为x 米.在Rt △ABD 中,∠ADB =45°, ∴AB =DB =x .∴BC =DB +CD = x +60.在Rt △ABC 中,∠ACB =30°,∴tan ∠ACB =ABCB……………………………1分 ∴tan 3060x x ︒=+.………………………… 2分60x x =+. ……………………………3分 ∴x =30+30 3 . ……………………………4分 ∴建筑物AB 的高度为(30+30 3 )米. …5分六、解答题(共2道小题,共8分) 21. (本小题满分4分)解:正确画出树状图或列表 ………………………………………………………3分P (数字之和为5)= 1.3………………………………………………………4分22. (本小题满分4分)解:(1)正确画出△AB 1C 1………………………………………………………… 2分(2)点B 1(4,1), ………………………………………………………… 3分点C 1(7,7). ……………………………………………………… 4分七、解答题(本题满分7分) 23.解:(1)∵PD ∥AB ,∴.AD BPAC BC=…………………………1分 ∵BC =4,AC=BP 的长为x ,.4x = ∴.2AD x =……………………… 2分 (2)过点P 作PE ⊥AC 于E.∵sin ,PEACB PC∠=∠C =60°, ABCD45°30°ED B AP∴)sin 604.2PE PC x =⨯=-……………………………………3分∴21133).2282y AD PE x x x x =⋅⋅=-=-+ (4)分∴当2x =时,y 的值最大,最大值是3.2……………………………5分(3)点P 存在这样的位置. ∵△ADP 与△ABP 等高不等底,∴ΔΔ.ADP ABP S DPS AB= ∵△ADP 的面积是△ABP 面积的23,∴ΔΔ2.3ADP ABP SS =∴2.3DP AB = ∵PD ∥AB ,∴△CDP ∽△CAB . ∴.DP CPAB CB= ∴2.3CP CB = ∴42.43x -= ∴4.3x =∴4.3BP = …………………………………………………………… 7分八、解答题(本题满分7分)24. 解:(1)∵点A (3, n )在反比例函数4y x=的图象上,43n ∴=.……………………………………………………………………1分 ∴A (3,43).∵点A (3,43)在抛物线2(94)1y x m x m =+++-上,49(94)3 1.3m m ∴=++⨯+- ∴23m =- .∴抛物线的解析式为2523y x x =--. …………………………2分(2)分别过点A 、C 作x 轴的垂线,垂足分别为点D 、E ,∴AD ∥CE .∴△ABD ∽△CBE .∴AD ABCE CB=.∵AC=2AB,∴13 ABCB=.由题意,得AD=4 3 ,∴41 33 CE=.∴CE=4.……………………3分即点C的纵坐标为4.当y=4时,x=1,∴C(1,4) …………………4分∵1,3BD ABBE CB==DE=2,∴1.23 BDBD=+∴BD=1.∴B(4,0). ……………………………………………………………5分(3)∵抛物线25 23y x x=--的对称轴是1x=,∴P在直线CE 上.过点P作PF⊥BC于F.由题意,得PF=PE.∵∠PCF =∠BCE, ∠CFP =∠CEB =90°,∴△PCF∽△BCE.∴PF PCBE BC=.由题意,得BE=3,BC=5.①当点P在第一象限内时,设P(1,a) (a>0).则有4.35a a-=解得3.2a=∴点P的坐标为31,2⎛⎫⎪⎝⎭. ……………………………………………6分②当点P在第四象限内时,设P(1,a) (a<0)则有4.35a a--=解得 6.a=-∴点P的坐标为()1,6-.……………………………………………7分∴点P的坐标为31,2⎛⎫⎪⎝⎭或()1,6-.九、解答题(本题满分8分)25.解:(1)由题意,得1,2425,25512.ba abc a b c ⎧-=⎪⎪-+=-⎨⎪++=-⎪⎩解这个方程组,得1,2,3.a b c =-⎧⎪=⎨⎪=⎩…………………………………… 1分∴ 抛物线的解析式为y =-x 2+2x +3. ……………………………2分 (2)令0y =,得2230x x -++=.解这个方程,得1213x x =-=,. (10)(30)A B ∴-,,,. 令0x =,得3y =.(03)C ∴,.4345.AB OB OC OBC ∴===∠=,,BC ∴===过点D 作DE x ⊥轴于点E . ∵45OBC BE DE ∠=∴=,.要使BOD BAC △∽△或BDO BAC △∽△, 已有ABC OBD ∠=∠,则只需BD BO BC BA =或BO BD BC BA=成立. 若BD BOBC BA=成立,则有34BO BC BD BA ⨯⨯==在Rt BDE △22222BE DE BE BD +===∴94BE DE ==.93344OE OB BE ∴=-=-=∴点D 的坐标为3944⎛⎫⎪⎝⎭,. ……………………………………………4分若BO BDBC BA =成立,则有BO BA BD BC ⨯=== 在Rt BDE △中,由勾股定理,得222222BE DE BE BD +===.∴2BE DE ==.321OE OB BE ∴=-=-=.∴点D 的坐标为(12),. ……………………………………………5分 ∴点D 的坐标为3944⎛⎫⎪⎝⎭,或(12),. (3)点M 的坐标为()2,3或(45),-或(421)-,-. ……………………8分。

第一学期九年级期末考试数学试卷及答案(四)

第一学期九年级期末考试数学试卷及答案(四)

第一学期九年级期末考试数学试卷(四)一、选择题:在下列各题所给出的四个选项中,只有一个是正确的,请将正确选项的代号填在下列答题框内。

1.下列计算正确的是A .235=-B .623=C .228=-D .9=±32.已知x =2是一元二次方程22++mx x =0的一个解,则m 的值是A .-3B .3C .0D .0或33.视力表对我们来说并不陌生。

如图是视力表的一部分,其中开口向上的两个“E”之间的变换是A .平移B .旋转C .对称D .位似4.如图所示,给出下列条件:①∠B=∠ACD ②∠ADC=∠ACB ③BCAB CDAC =④ABAC ACAD =,其中单独能判定△ABC ∽△ACD 的个数为A .1个B .2个C .3个D .4个5.已知⊙O 1和⊙O 2相切,⊙O 1直径为9cm ,⊙O 2直径为4cm ,则O 1O 2长为A .5cm 或13cmB .2.5cmC .6.5cmD .2.5cm 或6.5cm6.下列事件中,必然事件是A .抛掷1个均匀搬子,出现6点向上B .两直线被第三条直线所截,同位角相等C .366人中至少有2人的生日相同D .实数的绝对值是非负数。

7.如图,电灯P 在横杆AB 正上方,AB 在灯光下影子长为CD ,AB//CDAB=2m ,CD=5m ,点P 到CD 距离为3m ,则P 到AB 距离是A .65m B .76m C .56m D .310m8.已知a 为实数,那么2a -等于A .aB .-aC .-1D .09.二次函数c bx ax y ++=2图象如图所示,则下列判断不正确的是A .a <0B .abc >0C .c b a ++ >0D .ac b 42->010.如图,R t △ABC 中,∠ABC=90°,AB=8cm ,BC=6cm ,分别以A 、C 为圆心,以2AC 的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分面积为A .(24-π425) cm 2B .π425cm 2C .(24-π45) cm 2D .(24-π625) cm 2二、填空题:请将正确的结果直接填在题中横线上 11.若()252++-b a =0,那么b a +值为________.12.方程()33+=+x x x 的解是________.13.如图,O 是正方形ABCDEF 的中心,图形中可由△OBC 绕点O 逆时针旋转120°得到的三角形是________.14.半径为5的⊙O 内,弦AB 长6,则圆心到弦AB 距离为________. 15.若圆锥母线长3cm ,底面周长47πcm ,则其侧面展开图面积为________. 16.袋中装有10个大小、质地相同的红球、白球,任意摸出一球为红球概率为52,则袋中白球________个.17.抛物线382+-=x x y 顶点坐标________,对称轴直线x =________ 18.抛物线22-=x y 向上平移1个单位,所得抛物线解析式为________19.如图△ABC 与△A ’B’C’是位似图形,点O 为位似中心,若OA=2A A ’,S △ABC =8,则S△A’B’C’=________.20.如图所示,桥拱是抛物线形,其函数关系式为241x y -=,当水位线在AB 位置时,水面宽12m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学第一学期期末考试试卷一.填空题:(每小题3分,共30分)1. 写出一个图象在二、四象限的反比例函数的解析式 .2.两圆半径分别为3和5,d 表示这两圆的圆心距,当82<<d 时,则这两圆的位置关系是 。

3.一次函数y=21x+2的图像与x 轴、y 轴围成三角形的面积S= 。

4.已知样本1x ,2x ……n x 的平均数为3,方差为2,则样本31x +2,32x +2……3n x +2的平均数和方差分别为 。

5. 如图,⊙O 的直径CD 与弦AB 交于点M ,添加一个条件 得到M 是AB 的中点.6. 若一个梯形内接于圆,有如下四个结论:①它是等腰梯形;②它是直角梯形;③它的对角线互相垂直;④它的对角互补.请写出所有你认为正确结论的序号 .7.如图AD∥BC,AD⊥BE,BD⊥CD,BD=CD,AD=AB=1,弧BD 是以A为圆心,AB为半径的圆弧,弧ED 是以B为圆心,BD为半径的圆弧.则阴影部分的面积S= 。

8.∆ABC AB cm BC cm AC cm A B C 中,,,,以、、===675为圆心的三个圆两两外切, 则⊙A 、⊙B 、⊙C 的半径分别为。

9. 小王以每千克0.8元的价格从批发市场购进若干千克桔子到市场销售,在销售了部分桔子之后,余下的每千克降第5BD第7题价0.4元,全部销完,销售金额与卖桔子额千克数之间关系如图所示,则小王这次赚了 元。

10、学校要建一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上花盆的总数为S ,请观察下图的规律:按上规律推断,S 与n 的关系是 .二.选择题:(每小题3分,共30分)题号 11 12 13 14 15 16 17 18 19 20 答案11.函数x y 32-=的自变量x 的取值范围是A .3>x B .3≥x C .3<x D .3≤x 12.圆的两弦相交,一弦长为4㎝,且被交点平分,另一弦被交点分成1:4,则另一弦长是 A .1㎝ B .4㎝ C .5㎝ D .8㎝13.如图,AB 是⊙O 的直径,∠ACD=15°,则∠BAD 的度数为 A 、75° B 、72° C 、70° D 、65° 14.给出下列函数:(1)2y x =; (2)21y x =-+; (3)y=x2(x>0) ;(4)2y x = 其中,y 随x 的增大而减小的函数是A 、(1)(2)B 、(2)(3) C 、(3)(4) D 、(2)(3)(4) 15.下列命题中的假命题有()个第9n=2,n=3,n=4,第10题A BCDO第13题ox yoxyoxyoyxAB C D 设两圆半径分别为R 和r ,圆心距为d ,那么两圆相交⇔<+d R r ; 如果两圆相切,那么切点一定在连心线上; 相交两圆的连心线垂直平分公共弦; 两圆外切时,它们共有3条公切线。

A .1个B .2个C .3个D .4个16.反比例函数xky =和一次函数y=kx -k 的图像在下图中正确的是17. 已知⊕是一个对于1和0的新运算符号且运算规则如下:1⊕1=0,1⊕0=1,0⊕1=1,0⊕0=0,则下列运算结果正确是A 、(1⊕1)⊕0=1B 、(1⊕0)⊕1=0C 、(0⊕1)⊕1=1D 、(1⊕1)⊕1=0 18.若⊙O 1和⊙O 2相交于A 、B 两点,⊙O 1和⊙O 2的半径分别为2和2,公共弦长为2, 则∠O AO 12的度数为A . 15︒ B .10515︒︒或C .7515︒︒或D . 105︒19.关于二次函数y =ax 2+bx+c 的图象有下列命题:①当C=0时,函数的图象经过原点;②当C >0且函数的图象开口向下时,ax 2+bx+c=0必有两个不等实根;③函数图象最高点的纵坐标是ab ac 442-;④当b=0时,函数的图象关于y轴对称。

其中正确的个数是A.1个 B 、2个 C 、3个 D. 4个20.如图,正方形ABCD 内接于⊙O,E 为 DC 的中点,直线BE 交⊙O 于点F ,A BCDE F O若⊙O 的半径为2,则BF 的长为A 、23 B 、22 C 、556 D 、554 三.解答题:21. 解方程133142+-=+-x x x22.已知一次函数y x k =-2的图象与反比例函数y k x=+5的图象相交,其中有一个交点的纵坐标为-4,求这两个函数的解析式。

23.已知抛物线y=ax 2+bx+c 经过A (-1,0)、B (3,0)、C (0,3)三点,(1) 求抛物线的解析式和顶点M 的坐标,并在给定的直角坐标系中画出这条抛物线。

(2) 若点(x 0,y 0)在抛物线上,且0≤x 0≤4,试写出y 0的取值范围。

(3) 设平行于y 轴的直线x=t 交线段BM 于点P (点P 能与点M 重合,不能与点B 重合)交x 轴于点Q ,四边形AQPC 的面积为S 。

① 求S 关于t 的函数关系式以及自变量t 的取值范围; ② 求S 取得最大值时点P 的坐标;123456789111(123456789111(③ 设四边形OBMC 的面积S /,判断是否存在点P ,使得S =S / ,若存在,求出点P 的坐标;若不存在,请说明理由。

24.某公司为了评价甲、乙两位营销员去年的营销业绩,统计了这两人去年12个月的营销业绩(所推销商品的件数)甲 乙(1) 利用图中信息,完成下表:(2) 假若你是公司主管,请你根据(1)中图表信息,应用所学的统计知识,对两人的营销业绩作出评价。

25.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.26.阅读下面材料,并解答下列各题;在形如a b=N的式中,我们已经研究过两种情形:① 已知a 和b ,求N ,这是乘方运算; ② 已知b 和N ,求a ,这是开方运算;现在我们研究第三种情况:已知a 和N ,求b ,我们把这种运算叫做对数运算。

定义:如果a b =N (a>0,a ≠1,N>0),则b 叫做a 为底N 的对数,记作b=log N 。

例如:因为23=8,所以log 28=3;因为2-3=81,所以log 281=-3。

(1) 根据定义计算:①log 381= ; ②log 33= ; ③log 31= ;④如果log x 16=4, ,那么x= .(2) 设a x =M , a y =N ,则log a M=x,log a N=y (a>0, a ≠1, M 、N 均为正数),∵a x ·a y =a x+y ∴a x+y =M·N ∴log a MN=x+y即log a MN=log a M+log a N 这是对数运算的重要性质之一,进一步地,我们可以得出: log a M 1 M 2 M 3… M n = (其中M 1、M 2、M 3… M n 均为正数,a>0, a ≠1), log aNM=_________________(M 、N 均为正数,a>0, a ≠1)。

27.如图25-1是某段河床横断面的示意图.查阅该河段的水文资料,得到下表中的数据:y图25—1(1)请你以上表中的各对数据(x ,y )作为点的坐标,尝试在图25—2所示的坐标系中画出y 关于x 的函数图象;(2)①填写下表:②根据所填表中数据呈现的规律,猜想出用x 表示y 的二次函 数的表达式:.(3)当水面宽度为36米时,一艘吃水深度(船底部到水面的距 离)为1.8米的货船能否在这个河段安全通过?为什么?28.如图(1)⊙O 1和⊙O 2外切于点A ,BC 是两圆的公切线,B 、C 为切点。

①求证:AB ⊥ACx (图25—2②当⊙O 1向左运动,⊙O 2向右运动到如图(2)的位置时,BC 仍为两圆的公切线,O 1O 2交⊙O 1于点A ,交⊙O 2于点D ,BA 、CD 的延长线相交于点E ,请判断EB 与EC 是否垂直,证明你的结论。

③当⊙O 1向右运动,⊙O 2向左运动到如图(3)的位置时,两圆相交于A 、D 两点,BC 仍为两圆的公切线,若∠BDC=46°,试求∠BAC 的度数。

29. 已知一个二次函数的图象经过A(-1,0),B(0,3),C(4,-5)三点.(1)求这个函数的解析式及其顶点D 的坐标; (2)这个函数的图象与x 轴有两个交点,除点A 外的另一个交点设为E,点O 为坐标原点,在△AOB 、△BOE 、△ABE 和△DBE 这四个三角形中,是否有相似三角形?如果有,指出哪几对三角形相似,并加以证明;如果没有,请说明理由。

【参考答案】 一、填空题: 1.y=x1-等 2.相交 3.4 4.11,18 5. CD ⊥AB 等 6.①④ 7.1 8. 2cm ,4cm , 3cm 9.36 10.)1(6-=n s 二、选择题1.D2.C3.A4.B5.A6.C7.B8.B9.C 10.C 三、解答题21. x 1=-1(增),x 2=422. 解:由题意⎪⎪⎩⎪⎪⎨⎧-=+=-=452y x k y k x y ∴k=1∴一次函数的解析式为y=2x -1 反比例函数解析式为y=x 623.解(1)由题意设此抛物线解析式为y=a 1(x+1)(x -3) ∴a 1(0+1)(0-3)=3,∴a 1=-1,∴此抛物线解析式为y=-x 2+2x+3 ∴y=-(x 2-2x -3)=-(x -1)2+4 ∴顶点M 的坐标为(1,4) (2)∵当x 0=4时,y 0=-16+8+3=-5,而由图象可知,y 0≤4 ∴-5≤y 0≤4 (3)不存在这样的点P24.(1)甲 7 7 3 乙 8 9 9(2)乙的平均数、中位数,众数都较甲高,且乙的波动小,所以乙好些。

25.解:(1)若派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30-x)台;派往B地区的乙型收割机为(30-x)台,派往B地区的甲型收割机为(x-10)台.∴y=1600x+1800(30-x)+1200(30-x)+1600(x-10)=200x+74000. x的取值范围是:10≤x≤30(x是正整数).(2)由题意得200x+74000≥79600,解不等式得x≥28.由于10≤x≤30,∴x取28,29,30这三个值,∴有3种不同分配方案.①当x=28时,即派往A地区甲型收割机2台,乙型收割机28台;派往B地区甲型收割机18台,乙型收割机2台.②当x=29时,即派往A地区甲型收割机1台,乙型收割机29台;派往B地区甲型收割机19台,乙型收割机1台.③当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区.3)由于一次函数y=200x+74000的值y是随着x的增大而增大的,所以,当x=30时,y取得最大值.如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时,y=6000+74000=80000.建议农机租赁公司将30台乙型收割机全部派往A地区;20高.26.(1)4; 1; 0; 2(2)log a M1+log a M2+log a M3+…+log a M n,log a M-log a N27. (1)图象如图2所示.(2)①123456x图② 21.200y x =(3)当水面宽度为36米时,相应的x 为18,此时水面中心的2118 1.62.200y =⨯= 因为货船吃水深度为1.8m ,显然,1.62<1.8,所以当水面宽度为36米时,该货船不能通过这个河段. 28.①证明:作两圆的内公切线交BC 于点P PA 切⊙O 1于点 ⇒PB=PAPB 切⊙O 1于点B PC PB PA ==⇒ AC AB ABC Rt ⊥⇒∆⇒ 同理⇒PA=PC △ABC 中 ②EB ⊥EC ③∠BAC=134°29.解:(1)1-=a ,2=b ,3=c ∴322++-=x x y D (1,4) (2)有一对三角形相似,△AOB ∽△DBE 证明: 由(1)得图像另一交点 E (3,0)过D 分别作x 轴、y 轴的垂线,可计算出BD=2,DE=52, BE=32,而△DBE 满足 DE 2=BE 2+BD 2 ∴ △DBE 是直角三角形 又Rt △AOB 中,AO=1,BO=3, 且21=DB AO ,21233==EB BO ,即EB BODB AO =,∠AOB=∠DBE=Rt ∠ ∴△AOB ∽△DBE。

相关文档
最新文档