2013---2014学年上学期初三数学期末考试试题

合集下载

常熟市2013-2014学年第一学期初三数学期末试题及答案

常熟市2013-2014学年第一学期初三数学期末试题及答案

2013-2014学年第一学期期末考试试卷 初 三 数 学本试卷由填空题、选择题和解答题三大题组成,共29小题.满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题 本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上.1.抛物线y =2(x -3)2+1的顶点坐标是A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1)2.若关于x 的一元二次方程x 2-2x +m =0有两个不相等的实数根,则m 的取值范围是A .m<-1B .m<1C .m>-1D .m>13.已知⊙O 1的半径为1cm ,⊙O 2的半径为3cm ,圆心距O 1O 2为1cm ,则两圆的位置关系是A .外离B .外切C .内含D .内切4.下列说法正确的是A .平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若两个圆有公共点,则这两个圆相交5.若二次函数y =ax 2的图象经过点P(-2,4),则该图象必经过点A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)6.△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是A .atanA =bB .bcosB =cC .ctanB =bD .csinA =a7.一小球被抛出后,距离地面的高度h(m)和飞行时间t(s)满足下列函数关系式: h =-5(t -1)2+6,则小球距离地面的最大高度是A .1mB .5mC .6mD .7m8.将宽为1cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是A .1cmB .2cmC .3cm D .3cm9.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>-1时,y>0.其中正确结论的个数是A.2个B.3个C.4个D.5个10.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为A.4 B.5 C.6 D.7二、填空题本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应位置上.11.x2+6x+12=(x+3)2+▲.12.若关于x的方程x2-mx+2=0有两个相等的实数根,则m的值是▲.13.已知在Rt△ABC中,∠C=90°,sinA=513,则tanB的值为▲.14.如图,在⊙O中,若∠OAB 22.5°,则∠C的度数为▲°.15.抛物线y=3x2沿x轴向左平移1个单位长度,则平移后抛物线对应的关系式是▲.16.如图,四边形OABC为菱形,点B、C在以点O为圆心的弧EF上,若OA=3,∠1=∠2,则扇形OEF的周长为▲.17.无论x m的取值范围为▲.18.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7m,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3m,木板顶端向下滑动了0.9m,则小猫在木板上爬动了▲m.三、解答题本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.19.(本题满分5分)解方程:x2+3x-4=0.20.(本题满分5分)计算:2cos30°-tan45.21.(本题满分6分)甲、乙两个样本的相关信息如下:样本甲数据:1,6,2,3;样本乙方差:S2乙=3.4.(1)计算样本甲的方差;(2)试判断哪个样本波动大.22.(本题满分6分)二次函数y =ax 2+bx +c 的图象与x 轴交于A(1,0)、B 两点,与y 轴交于点C ,其顶点P 的坐标为(-3,2).(1)求这二次函数的关系式;(2)求△PBC 的面积;(3)当函数值y<0时,则对应的自变量x 取值范围是 ▲ .23.(本题满分6分)把一根长为2m 的铁丝弯成顶角为120°的等腰三角形,求此三角形的各边长.24.(本题满分6分)如图,△ABC 是⊙O 的内接三角形,直径AD =8,∠ABC =∠DAC .(1)求AC 的长;(2)求图中阴影部分的面积(结果保留π).25.(本题满分7分)如图,一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,测得AE =3,木箱端点E 距地面AB 的高度EG 为1.5m.已知木箱高DE.(1)求斜坡AC 坡度i 的值;(2)求木箱端点D 距地面AB 的高度DF.26.(本题满分8分)△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E .设此内切圆,的半径为r ,BC 边上的高为h a .(1)求ar h 的值; (2)求DE 的长.27.(本题满分8分)如图,AB 为⊙O 的直径,C 为圆上一点,AD 平分∠BAC 交⊙O 于点D ,DE ⊥AC 交AC 的延长线于点E ,过B 作FB ⊥AB 交AD 的延长线于点F.(1)求证:DE 是⊙O 的切线;(2)若DE =4,⊙O 的半径为5,求AC 和BF 的长.28.(本题满分9分)已知二次函数y =12x 2+kx +k -12. (1)判断该二次函数的图象与x 轴的交点情况;(2)设k<0,当该二次函数的图象与x 轴的两个交点A 、B 间的距离为6时,求k 的值;(3)在(2)的条件下,若抛物线的顶点为C ,过y 轴上一点M(0,m ,)作y 轴的垂线l ,当m 为何值时,直线l 与△ABC 的外接圆有公共点?29.(本题满分10分)如图,在平面直角坐标系xOy 中,抛物线y =-x 2+bx +c 经过A 、B 、C 三点,已知点A (-3,0),B(0,m ,),C(1,0).(1)求m 值;(2)设点P 是直线AB 上方的抛物线上一动点(不与点A 、B 重合).①过点P 作x 轴的垂线,垂足为F ,交直线AB 于点E ,作PD ⊥AB 于点D .动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标;②连接AP ,并以AP 为边作等腰直角△APQ ,当顶点Q 恰好落在抛物线的对称轴上时,求出对应的点P 坐标.。

2013-2014学年上学期期末考试(含答案)九年级数学

2013-2014学年上学期期末考试(含答案)九年级数学

九年级(上)数学期末测试题一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)2.一元二次方程x(x -2)=o根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根3.如图所示,下列几何体中主视图、左视图、俯视图都相同的是( )4.菱形具有而矩形不一定具有的性质是(。

)A.对角线互相垂直… B: 对角线相等C.对角线互相平分 D。

对角互补5.从1,2,-3三个数中,随机抽敢两个数相乘,积是正数的概率是A.o B1/3 C2/3 D.1j j6.如图所示河堤横断面迎水坡AB韵坡比是1:√3(根号3),堤高BC=5m,~烈藏面AB的长度是A: lOm B. lO√3(根号3) C. 15m D. 5√3(根号3)mA.<2,一3) B.(一2,3) C.(2,3) D.(一2,一3)8:如图,AB是00的直径,点C在圆O上,若∠C =160,∠BOC的度数是( ) :A.其图象的开口向下 B.其图象的对称轴为直线x=一3C.其最小值为1 D.当x<3时,y随x的增大而增大A. -2B.2C.5D.611.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率则黄球的个A.2B.4C.12D.1614.如图,’边长为4的等边△4戤中‘,A酽为中位线,则四边形BCED的面积为( ) .A.2√3 B.3√3 c.4√3 D.6√315.如图,直径为10的OA经过点C(O,5)和点O(O,0),B是J,轴右侧OA优弧上一点,则么OBC的余弦值为( )二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的。

线上.)18.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为____19.如图所示,若OO的半径为13cm,点P是弦AB上的一个动点,且到圆心的最短距离为5 cm,则弦AB的长为____ cm.20.抛物线y=ax2+ bx+c上部分点的横坐标x,纵坐标y的对应对应值如下表从上表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,O);②函数向最大值为6;③抛物线的对称轴是④在对称轴左侧,y随x增大而增大21.如图,直线与x轴、j,分别相交与4、B两点,圆心尸的坐标为(1,O),圆尸与y轴相切与点D.若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点Ps 个数是个.三、解答题(本大题共7小题,满分57分,解答应写出文字说明、证明过程或演算步骤.)(2)如图,已知点E在ABC的边AB上,以AE为直径的圆O与BC相切于点D,且AD平分∠BAC求证:AC BC.24.(本小题满分8分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;的图象上的概率.25.(本小题满分8分)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?26.(本小题满分9分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自么处测得建筑物顶部的仰角是300,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是450.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取√3(根号3)=1.732,结果精确到1m)27.(本小题满分9分)已知:如图,在△ABC中,BC=AC,以BC为直径的圆O与边AB相交于点D,DEIAC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与圆O的位置关系,并证明你的结论;(3)若OO的直径为18,求DE的长.28.(本小题满分9分)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=900,AC=BC,OA=1,00=4,抛物线J,=X2+ bx+c经过A,B两点,抛物线的顶点为D.(1)求B标点坐标及抛物线的解析式;(2)点E是Rt△ABC斜边AB上一动点(A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件EF长度最大时,在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,直接写出所有点P的坐标;若不存在,说明理由.答案:一、D A C A B A D C C B B D D B C 二、16、217、3± 18、 28 19、24 20、①③④ 21、3 22.(1)120,1x x == -------------(4分) (2)12-------------(3分) 23. (1)证明:有尺规作图的图示可以看出 在△OCM 与△OCN 中, OM=ON ,CM=CN ,OC=OC ······················································································ (1分) ∴△OCM ≌△OCN ····································································································· (2分) ∴∠AOC=∠BOC ············································································································ (3分) (2)证明:连接OD∵OA = OD ,∴∠1 =∠3;∵AD 平分∠BAC ,∴∠1 =∠2; ∴∠2 =∠3; ∴OD ∥AC , ······························· (2分) ∵BC 是⊙O 的切线 ∴OD ⊥BC ······························· (3分) ∴AC ⊥BC ··························· (4分)24. 解:(1)································· 4分 (2)可能出现的结果共有16个,它们出现的可能性相等.满足点(x ,y )落在反比例函数4y x=的图象上(记为事件A )的结果有3个,即(1,4),(2,2),(4,1),所以P (A )=316. ··························· 7分 25. 解:(1)设每千克应涨价x 元,列方程得:(5+x)(200-10x)=1500 ------------(2分) 解得:x1=10 x2=5 因为顾客要得到实惠,5<10 所以 x=5答:每千克应涨价5元. -------------(4分) (2)设商场每天获得的利润为y 元,则根据题意,得y=( x +5)(200-10x)= -102x +150x -500 -------------(6分)当x=5.7)10(21502=-⨯-=-a b 时,y 有最大值.因此,这种水果每千克涨价7.5元时,能使商场获利最多 -------------(8分) 26. 解:设CE =x m ,则由题意可知BE =x m ,AE =(x +100)m .-------------(2分) 在Rt △AEC 中,tan ∠CAE =AE CE,即tan30°=100+x x ∴33100=+x x ,3x =3(x +100) - ------------(5分) 解得x =50+503=136.6 -------------(8分) ∴CD =CE +ED =(136.6+1.5)=138.1≈138(m)答:该建筑物的高度约为138m . -------------(9分)27. 解:(1)证明:连接CD ,则CD AB ⊥, 又∵AC = BC , CD = CD , ∴ACD Rt ∆≌BCD Rt ∆∴AD = BD , 即点D 是AB 的中点.------------(3分)(2)DE 是⊙O 的切线 .理由是:连接OD , 则DO 是△ABC 的中位线,∴DO ∥AC , 又∵DE AC ⊥; ∴DE DO ⊥ 即DE 是⊙O 的切线;------------(6分)(3)∵AC = BC , ∴∠B =∠A , ∴cos ∠B = cos ∠A =31, ∵ cos ∠B =31=BC BD , BC = 18,∴BD = 6 , ∴AD = 6 , ∵ cos ∠A =31=AD AE , ∴AE = 2, 在AED Rt ∆中,DE =2422=-AE AD .------------(9分) 28. 解:(1)由已知得:A (-1,0) B (4,5)------------(1分)∵二次函数2y x bx c =++的图像经过点A (-1,0)B(4,5)∴101645b c b c -+=⎧⎨++=⎩ ------------(2分)解得:b=-2 c=-3∴二次函数223y x x =-- ------------(3分) (2)∵直线AB 经过点A (-1,0) B(4,5)∴直线AB 的解析式为:y=x+1∵二次函数223y x x =--∴设点E(t , t+1),则F (t ,223t t --) ------------(4分) ∴EF= 2(1)(23)t t t +--- ------------(5分) =2325()24t --+∴当32t =时,EF 的最大值=254∴点E 的坐标为(32,52) ------------------------(6分)(3)所有点P 的坐标:15)2p ,25)2p 3P (11524(,-). 能使△EFP 组成以EF 为直角边的直角三角形.---------------------------------(9分)。

2013-2014学年上学期期末考试考试卷九年级数学试题

2013-2014学年上学期期末考试考试卷九年级数学试题

2013-2014学年上学期期末考试考试卷数 学考生须知:1.全卷满分为150分,考试时间120分钟.试卷共4页,有三大题,24小题. 2.本卷答案必须做在答题卷Ⅰ、Ⅱ的相应位置上,做在试卷上无效.答卷Ⅰ共1页、答卷Ⅱ共4页.3.请用钢笔将姓名、准考证号分别填写在答题卷Ⅰ、Ⅱ的相应位置上. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现! 参考公式:二次函数y =ax 2+bx +c 的顶点坐标是)44,2(2ab ac a b --. 试 卷 Ⅰ请用铅笔将答卷Ⅰ上的准考证号和学科名称所对应的括号或方框内涂黑,然后开始答题.一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1、某物体的三视图是如图1所示的三个图形,那么该物体形状是 A 、长方体 B 、圆锥体 C 、立方体 D 、圆柱体2、下列事件中,是必然事件的是 A 、在地球上,上抛出去的篮球会下落 B 、打开电视机,任选一个频道,正在播新闻 C 、购买一张彩票中奖一百万D 、掷两枚质地均匀的正方形骰子,点数之和一定大于63、随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为A 、7×10-6 B 、 0.7×10-6 C 、7×10-7 D 、70×10-84、下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是5、如图,五边形ABCDE 与五边形A′B′C′D′E′是位似图形,O 为位似中心,OD=12OD′,则A′B′:AB 为A 、2:3B 、3:2C 、1:2D 、2:1A ′ ′ E ′正视图左视图俯视图图1(4)(3)沿虚线剪开对角顶点重合折叠(2)6、在数轴上表示不等式组10240xx+>⎧⎨-⎩≤的解集,正确的是ABCD7、估算324+的值A、在5和6之间B、在6和7之间C、在7和8之间D、在8和9之间8、如图,抛物线)0(2>++=acbxaxy的对称轴是直线1=x,且经过点P(3,0),则cba+-的值为A、0B、-1C、1D、29、如图,小明拿一张矩形纸图(1),沿虚线对折一次得图(2),再将对角两顶点重合折叠得图(3)。

2013-2014学年冀教版九年级上数学期末检测题及答案解析

2013-2014学年冀教版九年级上数学期末检测题及答案解析

期末检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1.一个扇形的半径为,圆心角为,用它做一个圆锥的侧面,则圆锥的底面半径为( ) A.B.C.D.2.(2013•上海中考)下列关于的一元二次方程有实数根的是( ) A. B.C. D.3.(2013•烟台中考)已知实数分别满足,且则的值是( )A. B. C. D.4. 下列四个三角形,与左图中的三角形相似的是( )5.如图,梯形中,∥,90B C ∠+∠= ,分别是的中点,若,,那么( ) A.4 B. C. D.6.一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为( )A.︒30B.︒45C.︒60D.︒75 7.如图,河堤横断面迎水坡的坡比是1∶3,堤高,则坡面的长度是( )A.B .C .D .8.周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在处测得她看塔顶的仰角为,小丽站在处测得她看塔顶的仰角为30°.她们又测出两点的距离为30米.假设她们的眼睛离头顶都为,则可计第4题图A B CDE A DBCF第5题图算出塔高约为(结果精确到,参考数据:2,3) ( ) A.36.21米 B.37.71米 C.40.98米 D.42.48米9.如果函数的图像经过点,那么该函数的图像必在( )A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限10.对于函数,下列结论错误的是( )A.当时,随的增大而增大B.当时,随的增大而增大C.时的函数值大于时的函数值D.在函数图像所在的每个象限内,随的增大而增大11.从分别写有数字4-、3-、2-、1-、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是( ) A .19 B .13 C .12 D .2312. (2013•资阳中考)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( ) A .12个 B .16个 C .20个 D .30个二、填空题(每小题3分,共24分)13.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率分别是和,则这个水塘里大约有鲢鱼_________尾. 14.已知关于的方程的一个根是,则_______.15.若k xy zx z y z y x =+=+=+,则16.如图所示,一个圆形转盘被等分成五个扇形区域,上面分别标有数字,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概 率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数)_______P (奇数)(填“>”“<”或“=”).17.反比例函数ky x=的图像与经过原点的直线相交于两点,已知点的坐标为,那么点的坐标为 .18. 菱形OABC 在平面直角坐标系中的位置如图所示,4522AOC OC ∠==°,B 的坐标为_____________.19.如图所示,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC 、BC 为直径xyOC B A第18题图画半圆,则图中阴影部分的面积为_________.(结果保留π)20.设函数2y x=与1y x =-的图像的交点坐标为,则11a b-的值为_________. 三、解答题(共60分)21.(5分)如图,中的弦,圆周角,求图中阴影部分的面积. 22.(6分)计算下列各题: (1)55sin 35sin 12145sin 222+++-;(2)12︒-30tan 3+121-⎪⎭⎫⎝⎛-. 23.(5分)随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量年为万只,预计年将达到 万只.求该地区年到年高效节能灯年销售量的平均增长率. 24.(6分)已知线段,为的中点,为上一点,连结交于点. (1)如图①,当且为中点时,求PCAP的值; (2)如图②,当,AO AD =41时,求tan ∠.25.(6分)(2013•广安中考)已知反比例函数0ky k x =≠()和一次函数6y x =-. (1)若一次函数与反比例函数的图象交于点2P m (,),求m 和k 的值.(2)当k 满足什么条件时,两函数的图象没有交点?26.(5分)如图,防洪大堤的横断面是梯形,背水坡的坡比(指坡面的铅直高度与水平宽度的比),且.身高为的小明站在大堤点,测得高压电线杆端点的仰角为30°.已知地面宽,求高压电线杆的高度(结果保留三个1.732).C DN 第26题图第24题图②ODA PBC ①ODAPBC27.(7分)如图,在等腰梯形中,∥,点是线段上的一个动点(与、不重合),分别是的中点.(1)试探索四边形的形状,并说明理由;(2)当点运动到什么位置时,四边形是菱形?并加以证明;(3)若(2)中的菱形是正方形,请探索线段与线段的关系,并证明你的结论.28.(6分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球并记录颜色.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树形图或列表法说明理由.29.(6分)(2013•眉山中考)在矩形ABCD中,DC CF BD=⊥分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.30.(7分)(2013•株洲中考)已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长1.B 解析:扇形弧长×,∴.2.D 解析:A.因为,,,,所以方程没有实数根,本选项不合题意;B 因为,,,,所以方程没有实数根,本选项不合题意;C 因为,,,,所以方程没有实数根,本选项不合题意;D.因为,,,,所以方程有两个不相等实数根,本选项符合题意.故选D.3.A 解析:根据题意,得与为方程的两根,∴则原式=.故选A.4.B解析:设小方格的边长为1,则图中的三角形的三边长分别为A项中的三角形的三边长分别为B项中的三角形的三边长分别为C 项中的三角形的三边长分别为D项中的三角形的三边长分别为只有B项中的三角形的三边长与题图中的三角形的三边长对应成比例,所以选B.5. A 解析:如图,作∥∥, 因为,所以∠因为四边形和四边形都是平行四边形,所以又因为 5 cm ,13 cm ,所以8 cm,所以6.B 解析:如图,梯形中,高则所以∠,故选B.7. A 解析:由迎水坡AB的坡比是1∶3,知3BCAC=,又 5,所以,所以,故选A.8.D 解析:如图,米,米,∠90°,∠45°,∠30°.设米,在Rt△中,tan∠=DGDF,即tan 30°3=xDF,∴3x.在Rt△中,∵∠90°,∠45°,∴.根据题意,得,解得31-.∴(米).ACG第5题答图第6题答图CA9.D 解析:∵ 函数的图像经过点,∴,∴ 该函数的图像必在第二、四象限.故选D .10.C 解析:A.当时,的图像位于第四象限,随的增大而增大,正确;B.当时,的图像位于第二象限,随的增大而增大,正确;C.时的函数值为,时的函数值为,时的函数值小于时的函数值,错误;D.根据A 、B 可知,正确. 11. B 解析:绝对值小于的卡片有三种,故所求概率为3193=. 12.A 解析:∵共摸了40次,其中10次摸到黑球,∴有30次摸到白球,∴摸到黑球与摸到白球的次数之比为1∶3,∴口袋中黑球和白球个数之比为1∶3,14123÷=(个).故选A . 13. 解析:水塘里鲢鱼的尾数为.14.解析:把根代入方程,得,则,所以.15.121-或 解析: 当时,()212=++++=+=+=+z y x z y x x y z x z y z y x ;当时,所以()1-=++-=+=zy z y z y x k .16. 解析:因为,,所以.17.(-2,-1) 解析:设直线的解析式为,因为直线和反比例函数的图像都经过,将点坐标代入可得,,故直线的解析式为,反比例函数的解析式为xy 2=,联立可解得点的坐标为(-2,-1). 18.解析:过点作则,所以点B 的坐标为.19.5π42- 解析: 由图可知阴影部分的面积半圆的面积半圆的面积Rt ABC △的面积,所以πππ故填5π42-.20.12-解析:将分别代入解析式2y x =与1y x =-,得a b 2=,1-=a b ,故12-=a a ,022=--a a ,解得12-==a a 或.当2=a 时,1=b ,2111-=-b a ;当1-=a 时,2-=b ,2111-=-b a .21.解:连接,作于,则.∵,∴ .∵ ,∴ 为中点.又,∴.∴,.∴ 阴影部分的面积为22.解:(1)55sin 35sin 12145sin 222+++-2222(21)sin 35cos 352⨯-++22.(2)12︒-30tan 3+121-⎪⎭⎫⎝⎛-2133332-+⨯-= 13-=. 23.解:设该地区年到年高效节能灯年销售量的平均增长率为.依据题意,列出方程化简整理,得解这个方程,得∴ .∵ 该地区年到年高效节能灯年销售量的平均增长率不能为负数,∴ 舍去,∴ .答:该地区年到年高效节能灯年销售量的平均增长率为 24.解:(1)过作∥交于,则△∽△.又为的中点,所以所以2121.再由∥可证得△∽△,所以2==CEADPC AP . (2)过作∥交于,设,则,,由△∽△,得2123.再由△∽△得32==CE AD PE PD . 由勾股定理可知,25,则32=-PD DE PD ,可得,则∠∠∠,所以tan ∠tan ∠21=AO CO . 25.解:(1)∵ 一次函数和反比例函数的图象交于点2P m (,),∴ 26m =-,解得4m =-,即点24P -(,),则248k =⨯-=-().∴ 48m k =-=-,.(2)联立0ky k x =≠()和6y x =-,有6k =x x-,即260x x k --=.∵要使两函数的图象没有交点,须使方程260x x k--=无解.∴2643640Δk k=--⨯-=+()()<,解得9k-<.∴当9k-<时,两函数的图象没有交点.26.解:设大堤的高度为以及点到点的水平距离为.∵3i=,∴坡与水平面的夹角为30°,∴hAB=,即2AB,aAB,即得32,∴.∵测得高压电线杆顶端的仰角为30°,∴DNMNtan 30°,解得,∴27.32(m ).答:高压电线杆的高度约为.27.解:(1)四边形是平行四边形.理由是:因为分别是的中点,所以∥,所以四边形是平行四边形.(2)当点是的中点时,四边形是菱形.证明:因为四边形是等腰梯形,所以,因为,所以△≌△.所以因为分别是的中点,所以又由(1)知四边形是平行四边形,所以四边形是菱形.(3)证明:因为四边形是正方形,所以因为分别是的中点,所以.因为是中点,所以28.解:树形图为:或列表为:开始红红黄蓝红红黄蓝红红黄蓝红红黄蓝红红黄蓝第28题答图∴63168=,105168=.∴此游戏对双方不公平,小亮赢的可能性大.29.解:(1)∵∠DEC=∠FDC=90°,∠DCE=∠FCD,∴△DEC∽△FDC.(2)∵F为AD的中点,AD∥BC,∴FE:EC=FD:BC=1:2,FB=FC,∴FE:FC=1:3,∴sin∠FBD=EF:BF=EF:FC=13.设EF x=,则3FC x=,∵△DEC∽△FDC,∴CE CDCD FC=,即可得2612x=,解得x,则CF=,在R t△CFD中,DF=∴2BC DF==30.(1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC,∴∠OAE=∠OCF.在△AOE和△COF中,∠OAE=∠OCF,AO=CO,∠AOE=∠COF,∴△AOE≌△COF(ASA).(2)解:∵∠BAD=60°,∴∠DAO=12∠BAD=12×60°=30°,∵∠EOD=30°,∴∠AOE=90°-30°=60°,∴∠AEF=180°-∠BOD-∠AOE=180°-30°-60°=90°.∵菱形的边长为2,∠DAO=30°,∴OD=12AD=12×2=1,∴3AO==,∴3.2AE CF===∵菱形的边长为2,∠BAD=60°,∴高3.2EF==在R t△CEF中,CE==。

2013-2014学年度第一学期期末考试初三数学试题卷

2013-2014学年度第一学期期末考试初三数学试题卷

2013-2014学年度第一学期期末考试初三数学试题卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线的2(0)y ax bx c a =++≠顶点坐标为24(,)24b ac b a a--,对称轴公式为2b x a=-。

一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填入答题卷中对应的表格内). 1.在3,-1,0这四个数中,最小的数是( ) A. 3 B. -1 C. 02.下列图形是轴对称图形的是( )3.计算23(2)x 的结果是( )A .66x B. 58x C. 56x D. 68x4.如图,ABC ∆为O 的内接三角形,50ACB ∠=︒,则ABO ∠的度数等于( ) A.40° B.50° C.60° D.25° 5110,60E ︒∠=︒,则∠A. 30°B. 40°C. 50°D. 60° 6.下列调查适合全面调查(即:普查)的是( ) A.了解全国每天丢弃的塑料袋的数量 B.了解某种品牌的彩电的使用寿命 C.调查“神州9号”飞船各零部件的质量 D.了解浙江卫视“中国好声音”栏目的收视率7.若x = 2是关于x 的一元二次方程280x ax -+=的一个解,则a 的值是( ) A .2 B. 5 C. -6 D. 68.地铁1号线是贯穿渝中区和沙坪坝区的重要交通通道,1号线的开通极大的方便了市民的出行,小王下班后从渝中区较场口乘坐地铁回沙坪坝,他从公司出发,先匀速步行至较场口地铁站,等了一会儿,小王搭乘地铁1号线到达沙坪坝站,下面能反映在此过程中小王到沙坪坝的距离y 与时间x 的函数关系的大致图象是( )9.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A.83B.84C.85D.8610.二次函数2(0)y ax bx c a =++≠的图象如图所示, 则下列结论中,正确的是( ) A.0abc >B.24ac b > C.20a b -=D.420a b c ++>二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.11.据统计,重庆市2011年全市地方财政收入超过29000000万元,将数29000000用科学记数法表示为 . 12.已知ABC ∆∽DEF ∆,ABC ∆的周长为2,DEF ∆的周长为4,则ABC ∆与DEF ∆的面积之比为 . 13.在体育中招考试的跳绳项目考试中,我校两个小组共8位同学的成绩分别如下:(单位:个/分钟)154、187、173、205、197、177、185、188,则这组数据的中位数是 . 14.已知扇形的圆心角为120°,半径为9cm ,则扇形的面积为 cm 2.(结果保留π) 15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为a 的值,将该数字加3作为b 的值,则(a ,b )使得关于x 的不等式组3(2)0,0x a x x b --≥⎧⎨-+>⎩恰好有3个整数解的概率是 .16.甲、乙两车在一个环形跑道内进行耐力测试,两车从同一地点同时起步后,乙车速超过甲车速,在第8分钟时甲车提速,在第12分钟时甲车追上乙车并且开始超过乙,在第17分钟时,甲车再次追上乙车. 已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车是在第 分钟.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 17.计算:120131(5)()(1)|4|2π--++---18.如图,AD = BC ,,12A B ∠=∠∠=∠,求证:PA = PB.19.解方程:42233x x x-+=--.20.如图,在ABC ∆中,60,C AD BC ∠=︒⊥,垂足为D,若2AD BD CD ==,求ABC ∆的周长(结果保留根号).四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.先化简22144(1)11x x x x -+-÷--,再从不等式组203(1)21x x x +>⎧⎨-≤-⎩的解集中选取一个合适的整数解作为x 的值代入求值.22.如图,一次函数y ax b =+的图象与反比例函数ky=交于A ,B 两点,与y 交于C ,与x 轴交于点D ,已知OA =(1)求反比例函数和一次函数的解析式;(2)求AOB ∆的面积. 23.重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A 、B 、C 、D 、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为 ;(3)2月份王老师到药房买了抗生素类药D 、E 各一盒,若D 中有两盒是降价药,E 中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率。

芜湖市2013-2014学年度第一学期九年级期末考试数学试卷

芜湖市2013-2014学年度第一学期九年级期末考试数学试卷

芜湖市2013~2014学年度第一学期九年级期末测评·数学试卷·班级____________姓名____________编号____________得分____________一、单项选择题:(本题共12小题,每小题3分,满分36分)1.下列图形中,是轴对称图形但不是中心对称图形的是【】2.若x+y−1+(y+3)2=0,则x-y的值为【】A.1B.-1C.7D.-73.一元二次方程x(x-4)=4-x的根是【】A.-1B.4C.1和4D.-1和44.若两圆的半径分别是1㎝和5㎝,圆心距为8㎝,则这两个圆的位置关系是【】A.内切B.外切C.相交D.外离5.将抛物线y=2x2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为【】A.y=2(x-3)2+4B.y=2(x+4)2+3C. y=2(x-4) 2+3D.y=2(x-4) 2-36.某厂一月份生产产品l50台,计划二、三月份共生产该产品450台,设二、三月平均每月增长率为x,根据题意列出方程是【】A.150(1+x)2=45OB.150(1+x)+150(1+x)2=450C.150(1+2x)=450 D.150(1+x)2 =6007.如图所示,在平面直角坐标系中,过格点A、B、C作一圆弧,点B与下列各点的连线中,能够与该圆弧相切的是【】A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)8.为丰富社区活动,某街道办事处打算组织一次篮球友谊赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有【】A.7队B.6队C.5队D.4队9.如图所示,在△ABC中,∠A=70°,⊙0截△AB的三条边所得的弦长相等,则∠B0C的度数为【】A.125°B.130°C.135°D.160°10.已知m,n是方程x2-2x-1=0的两根,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于【】A.-5B.5C.-9D.911.现有A,B两枚均匀的小立方体,立方体的每个面上分别标有数字1,2,3,4,5,6,用小丁掷A立方体朝上的数字为x,小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在抛物线y= -x 2+4x上的概率为【】A.118B.112C.19D.1612.如图,直线y=k x+c与抛物线y=a x2+b x+c的图象都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且第1题图第7题图第9题图OA=OD。

2013-2014学年度第一学期期末测试(含答案)初三数学

2013-2014学年度第一学期期末测试(含答案)初三数学

2013-2014学年度第一学期阶段性测试九年级数学(北师大版)本试题分第1卷(选择题)和第II卷(非选择题)两部分,第1卷共2页,满分为36分;第II卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置,考试结束后,将本试卷和答题卡一并交回,本考试不允许使用计算器.第1卷(选择题共36分)注意事项:第1卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效,一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)I.点A(-3,4)所在象限为A.第一象限 B.第二象限 C.第三象限 D.第四象限2.-个正比例函数的图象经过点(2,-1),那么这个正比例函数的表达式为3.若直线则直线不经过A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某反比例函数的图象经过点(一l,6),下列各点也在该函数图象上的是A.(一3,2)B.(3,2)C.(2,3)D.f6,1)5.如图,已知AB为圆O的直径,点C在圆O上,∠C=15o,则∠BOC的度数为A. 150B. 300C. 450D. 6006.下列二次函数的图象中,开口向上的有:A. 1个 B.2个 C.3个 D.4个7.已知二次函数的图象如图所示,则下列结论正确的是A. a>0 B.b<0C. c<0D. b2-4ac>08.如图,4为反比例函数图象上一点,ABIx轴于点召,若则后的值为A.6 B. 3 D.无法确定9.如图,在4x4的正方形网格中,cosa的值为10.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间“分钟)的函数关系是A.Q=0.2tB.Q=20-0.2tC.卢0.2QD. t=20-0.2Q11.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④平分弦的直径垂直于弦.其中正确的有A.4个 B.3个 C. 2个 D. 1个12.如图,的半径为2,点A的坐标为直线AB为的切线,曰为切点.则曰点的坐标为第1I卷(非选择题共84分)注意事项:1.第1I卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题,每小题3分,共1 8分j巴答案填在题中横线上.)13. cos600=14.如图,AB为的直径,点C在上,∠A=300,则∠B的度数为15.一次函数y=(k-2)x+b的图象如图所示,则K的取值范围是____.16.已知:线段AB=3cm,半径分别是lcm和4cm,则的位置关系是17.抛物线y= kx2 -3x -3的图象和x轴有交点,则K的取值范围是18.如图,把矩形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴、y轴上,连接AC,将矩形纸片OABC沿AC折叠,使点B落在点D的位置,若B(1,2),则点D的横坐标是三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)20.(本小题满分6分)若反比例函数与一次函数,y=2x-4的图象都经过点A(a,2).(1)求a的值.(2)求反比例函数的解析式;21.(本小题满分6分)如图,已知AB是求AB的长.22.(本小题满分7分)如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为300,看这栋大楼底部C的俯角为600.热气球A的高度为240米,求这栋大楼的高度.23.(本小题满分7分)某商店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明;单价每上涨1元,该商品每月的销量就减少10件.(l)请写出每月销售该商品的利润y(元)与单价上涨x(元)的函数关系式:(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?24.(本小题满分8分)已知的直径AB的长为4cm,C是上一点,过点C作的切线交AB的延长线于点P,求BP的长.25.(本小题满分8分)如图,已知在(l)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径^第25题圈26.(本小题满分9分)如图,直线y= - 2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点D逆时针方向旋转900后得到△OCD.(1)填空:点C的坐标是(__ __,_ _),点D的坐标是(_ __,_ );(2)设直线CD与AB交于点M,求线段BM的长;27.(本小题满分9分)如图所示,抛物线与x轴交于A、B两点,直线BD的函数表达式为抛物线的对称轴l与冉线BD交于点C、与x轴交于点E.(1)求A、B、C三个点的坐标.(2)点P为线段AB上的一个动点(与点A 、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN.①求证:AN=BM.②在点P九年级数学试题参考答案与评分标准运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.。

2013-2014学年上学期期末考试初三数学试卷

2013-2014学年上学期期末考试初三数学试卷

2013-2014学年上学期期末考试初三数学试卷(答题时间:120分钟 总分:120分)一:填空题(每题3分,共30分):1. 在一个袋子中装有除颜色外其它均相同的3个红球和1个白球,从中任意摸出一个球,则摸到红球的概率是_________.2、二次函数y=x 2-2x+1的对称轴是x=_____________3.在比例尺为1﹕10 000 0的地图上,量得甲、乙两地的距离是30 cm ,两地的实际距离是__________.4、将抛物线22x y =先向左平移2个单位,再向下平移1个单位得到的抛物线的解析式为_________________;5、如图,AB ∥EF ∥CD ,图中共有 对相似三角形。

6、已知相似的两个矩形中,一个矩形的长和面积分别是4和12,另一个矩形的长为6,这两个矩形的面积比______7、计算:=-+-000060tan 30cos 230sin 45tan 3______8.掷一枚正方体的骰子,六面分别标有1,2,3,4,5,6,掷一次骰子点数小于5朝上的槪率是____________.9、在RtΔABC 中,∠C=900,,3,4==b a ,则cosA 的值为______10.如果某物体的三视图如图所示,那么该物体的形状是______.二:选择题(每题3分,共30分):11. 书架上有数学书2本,英语书3本,语文书5本,从中任意抽取一本是数学书的概率是( )A .110B .35C . 310D .1512.二次函数y =-2(x -3)2-2,则其顶点为( )A.(0,0)B.(-2,-2)C.(-3,-2)D.( 3,-2)13、在RtΔABC 中,∠C=900,则ba 是∠A 的( ) A 、 正弦 B 、余弦 C 、正切 D 、以上都不对14.下列说法正确的是( )A .小明上幼儿园时的照片和初中毕业时的照片相似.B .商店新买来的一副三角板是相似的.C .所有的课本都是相似的.D .国旗的五角星都是相似的.15.两个相似三角形的面积比为4:9,那么它们的对应高的比为( )A .3:2 B. 2:3 C. 4:9 D. 9:416、澜沧江防洪大坝的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为5m ,路基高为3m ,则路基的下底宽应为( )A .16mB .15mC .14.5mD .14m17、用一个平面去截圆锥,截面图形不可能是 ( )18.二次函数y=x 2﹣6x+4,则此抛物线的对称轴是( ) A .x =4 B.x=3 C. x =﹣5 D. x=﹣119、已知α为锐角,且21)20sin(=︒+α,则α等于( ) A.︒50 B.︒40 C.︒30 D.10°20.下列事件你认为是必然事件的是( )A .从一副扑克牌中任取一张牌,花色是红桃;B .明天本市一定会下雨;C .打开电视机,正在播广告;D .月亮绕着地球转三:解答题:(21、22、24每题10分,23、25每题9分,26题12分,共60分)21. 张红和王伟一起玩扑克牌游戏,在两个不透明的口袋中,分别装有形状、大小、质地等完全相同的三张卡片,甲口袋的卡片标号分别为1,2,3;乙口袋的卡片标号分别为4,5,6;分别从每个口袋中随机抽出一张卡片。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013---2014学年上学期初三数学期末考试试题
一、选择
1.如图,已知P 是射线OB 上的任意上点,P M ⊥OA 于M ,且 OM :OP=4:5,则cos ∠a 的值等于( ) A.
4
3 B.3
4 C. 54
D.53
2.已知⊙O 的半径为5,A 为线段OP 的中点,若OP=10,
A. ⊙O 内
B. ⊙O 上
C. ⊙O 外
D.不确定.
3.若两圆的半径分别是1厘米和5厘米,圆心距为6置关系是( )
A.内切
B.相交
C.外切
D.外离. 4.如图:A 、B 、C 是⊙O 上的点,若∠AOB=70°,则∠ACB
A .70° B.50° C.40° D.35°
5.若一个正多边形的一个内角是144A.12 B.11 C.10 D.9
6.如图:在△OAB 中,CD ∥AB ,若OC :OA=1:2,则下列结论(OA (2)AB=2CD (3)S △OAB=2S △COD.其中正确的结论是(A .(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3
7.在平面直角坐标系中,以点(2,3)为圆心,2A.与X 轴相离、与Y 轴相切.B.与X 轴、Y 轴都相离.C.与X 与Y 轴相离.D. 与X 轴、Y 轴都相切.
8.如图:直径为10的⊙A 经过点C (0,5),与X 交于点D ,B 是Y 轴右侧圆弧上一点,则cos ∠OBC 的值为(A.2
1 B.
2
3 C.5
3 D.5
4
9.如图:等边△ABC 的边长为3,P 为BC 上一点,且BP=1,D 为AC
上一点.若∠APD=60°,则CD 的长为( )
A.23
B.32
C.21
D.43
10.如图:⊙O 的半径为3厘米,B 为⊙O 外一点,OB 交⊙O 于A ,AB=OA.动点P 从点A 出发,以∏厘米/秒 的速度在⊙O 上按逆时针方向运动一周回到点A 立即 停止.当点P 运动的时间为( )秒,BP 与⊙O 相切. A.1 B.5 C.0.5或5.5 D.1或5 一、 填空
11.计算:tan45°+2cos45°=
A B
O
12.如图:⊙O 的弦AB=8,OD ⊥AB 于点D ,OD=3,则⊙O 的半径等于
13.如图:是二次函数y=ax 2+bx+c 的部分图象, 由图象可知方程ax 2+bx+c=0的解是
14.如图:在⊙O 中,半径OA ⊥BC ,∠AOB=50°, 则∠ADC 的度数
15.纸板制作一个底面半径为9厘米,母线长为30形生日礼帽,则这个圆锥形礼帽的侧面积为 16.n 个圆中,m=
三、做一做
17.如图:在△ABD
若∠DAC=∠B ,∠AEC=求证:AE :BD=AC :
18.如图:在△ABC 中,点O 在AB 上,以O 为圆心的圆经过A ,C 两点,交AB 于点D ,已知2∠A+∠B=90°. (1)求证:BC 是⊙O 的切线. (2)若OA=6,BC=8,求BD 的长.
19.在平面直角坐标系xoy 中,二次函数y=m x 2+nx-2
的图象过A (-1,-2),B (1,0)两点, (1)求此二次函数解析式
(2)点P (t,0)是x 轴上的一个动点,过点P 作x 轴的垂线交直线AB 于点M ,交二次函数的图象于点N ,当点M 位于点N 的上方时,直接写出t 取范围.
2
A
20.如图:是黄金海岸的沙丘滑沙场景.已知滑沙斜坡AC 的坡度是tan ∠a=43,在与滑沙坡底C 距离200米D 处,测得坡顶A 的仰角为26.6°,且点D 、C 、B 在同一直线上,求滑坡的高AB (结果取整数,参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)
四、解答题
21.AD 为⊙O 的直径,作⊙O 的内接等边三角形ABC.黄皓、李明两位同学的作法分别是:
黄皓:(1)作OD 的垂直平分线,交⊙O 于B

C 两点
.
(2)连结
AB 、AC ,△AB 即为所求的三角形.
李明:(1)以D 为圆心,OD 长为半径作圆弧,交⊙O 于B 、C 两点. (2)连结AB ,BC ,CA ,△AB 即为所求的三角形. 已知两位同学的作法均正确,请你选择其中一种作法补全图形,
并证明△AB 是等边三角形.
22.已知:如图,在四边形ABCD 中,BC ﹤DC ,
∠BCD=60°,∠ADC=45°,CA 平分∠BCD ,AB=AD=22,求四边形ABCD 的面积.
23.将抛物丝c1:y=-3x 2+3x 沿x 轴翻折,得到
抛物线c2,如图所示:
(1)请直接写出抛物线c2的解析式
(2)现将抛物线c1向左平移m 个单位长度,平移 后的新抛物线的顶点为M ,与x 轴的交点从左到右 依次为A 、B ;将抛物线c2向右也平移m 个单位长 度,平移后得到的新抛物线的顶点为N ,与x 轴的 交点从左到右依次为D 、E.
1)用含m 的代数式表示点A 和E 的坐标.
2)在平移的过程中,是否存在以点A 、M 、E 为顶点的三角形是直角三角形的情形?若存在,请求也此时m 的值:若不存在说明理由.
24.在平面直角坐标系xoy 中,点B (0,3),点C 是x 轴正半轴上一点,连结BC ,过点C 作直线CP ∥y 轴.
(1)若含有45°角的直角三角形,如图所示放置.其中一个顶点与O 重合,直角顶点D 在线段BC 上,另一个顶点E 在CP 上,求点C 的坐标.
(2)若含30°角的直角三角形一个顶点与O重合,直角顶点D在线段BC上,另一个顶点E在CP上,求点C的坐标.。

相关文档
最新文档