初三数学知识点:古典概型

合集下载

古典概型的概率公式

古典概型的概率公式

古典概型的概率公式古典概型是概率学中最基础也是最重要的概念。

它定义了概率学的基本理论,提出了许多有趣的假设和结论,也服务于数学和计算机科学的发展。

简而言之,古典概型就是通过观察事件是否发生来计算概率的方法,即在一定条件下某事件发生的条件概率,用数学形式来表达就是古典概率公式。

古典概型的概率公式是:P(A)=n(A)/n(S),其中P为概率,A为某事件,S为试验空间,n(A)/n(S)为该事件发生的概率。

其中,n(A)表示满足A条件的结果的数目,n(S)表示满足S条件的结果的总数。

古典概型的概率公式提出的基本概念是:若实验开展了n次,其中A事件发生m次,则A事件发生的概率等于m除以n:P (A)=m/n。

古代概率公式比较简单,却蕴含着丰富的数学内涵。

在概率论的基本原理分布定理的框架下,古典概型的概率公式可以用来计算试验空间中某事件发生的期望值、方差、及独立事件之间的关系。

古典概型概率公式也为基于古典概型的相关概率学的理论发展提供了基础,形成了一套完整的概率学理论体系,为后来新兴的概率学分支研究提供了基础。

古典概型概率公式也为其他科学领域提供了参考和指导,特别是在计算机技术和信息处理方面更是如此。

古典概型概率公式可以用来建立合理的评估模型,用来估计某事件发生的可能性,也可以用来估计系统中各个组件的可靠度,以及各个系统模型的可信度。

这些估计的结果可以用来衡量分析系统的性能,基于此可以设计出更高效,稳定,可靠的系统。

此外,古典概型的概率公式还可以应用于更多的领域,比如统计、金融学、决策理论、运筹学、社会科学等。

在这些领域,古典概型概率公式通常被用于研究不确定风险及结果,以做出明智的抉择,帮助采取最佳决策。

总之,古典概型的概率公式和它所涵盖的概率学理论,是目前所有概率学的基础。

它有助于更好地理解不确定事件的发展趋势,也为更加明智的决策提供了指导。

古典概型的概率公式也可以用于许多领域,从数学建模到计算机技术等,都有其重要作用,它已成为概率学及其相关领域的重要理论和工具支持。

2015初中概率知识点-古典概型

2015初中概率知识点-古典概型

2015初中概率知识点-古典概型
学好数学就需要平时的积累。

知识积累越多,掌握越熟练,小编编辑了概率知识点-古典概型,欢迎参考!
1、古典概型的定义
某个试验若具有①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。

我们把具有这两个特点的试验称为古典概型。

2、古典概型的概率的求法
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为上面就是为大家准备的概率知识点-古典概型,希望同学们认真浏览,希望同学们在考试中取得优异成绩。

古典概型的知识点

古典概型的知识点

第五节古典概型[备考方向要明了]考什么怎么考1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件及事件发生的概率.高考对本节内容的考查多为选择题或填空题,难度中低档,如2012年广东T7,上海T11等.[归纳·知识整合]1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.[探究] 1.在一次试验中,其基本事件的发生一定是等可能的吗?提示:不一定.如试验一粒种子是否发芽,其发芽和不发芽的可能性是不相等的.2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.[探究] 2.如何判断一个试验是否为古典概型?提示:关键看这个实验是否具有古典概型的两个特征:有限性和等可能性.3.古典概型的概率公式P(A)=A包含的基本事件的个数基本事件的总数[自测·牛刀小试]1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为()A.12 B.13C.23D.1解析:选C 基本事件总数为(甲,乙),(甲,丙),(乙,丙)共3种.甲被选中共2种,所以甲被选中的概率为23.2.某国际科研合作项目由两个美国人,一个法国人和一个中国人共同开发完成,现从中随机选出两个人作为成果发布人,在选出的两人中有中国人的概率为( )A.14B.13C.12D .1解析:选C 用列举法可知,共6个基本事件,有中国人的基本事件有3个. 3.5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出2张卡片上数字之和为奇数的概率为( )A.35B.25C.34D.23解析:选A 由题意得基本事件共有10种,2张卡片之和为奇数须一奇一偶,共有6种,故所求概率为610=35.4.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 在直线x +y =5的下方的概率为________.解析:点P 在直线x +y =5下方的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)六种可能,故P =66×6=16.答案:165.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.解析:点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)6种情况,只有(2,1),(2,2),这两种情况满足在圆x 2+y 2=9内部,所以所求概率为26=13.答案:13简单古典概型的求法[例1] 编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:运动员编号A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 得分 15 35 21 28 25 36 18 34 运动员编号A 9 A 10 A 11 A 12 A 13 A 14 A 15 A 16 得分1726253322123138(1)区间 [10,20) [20,30) [30,40] 人数(2)①用运动员编号列出所有可能的抽取结果; ②求这2人得分之和大于50的概率. [自主解答] (1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13,从中随机抽取2人,所有可能的抽取结果有:{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13},{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 4,A 13},{A 5,A 10},{A 5,A 11},{A 5,A 13},{A 10,A 11},{A 10,A 13},{A 11,A 13}共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B )的所有可能结果有:{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 5,A 10},{A 10,A 11}共5种.所以P (B )=515=13.本例条件不变,从得分在区间[20,30)内的运动员中随机抽取2人,求这2人得分之和小于50的概率.解:得分之和小于50的所有可能结果有:{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13},{A 5,A 13},{A 10,A 13},{A 11,A 13}.故这2人得分之和小于50的概率为P =815.———————————————————应用古典概型求概率的步骤(1)仔细阅读题目,分析试验包含的基本事件的特点; (2)设出所求事件A ;(3)分别列举事件A 包含的基本事件,求出总事件数n 和所求事件A 包含的基本事件数m ;(4)利用公式求出事件A 的概率.1.从某小组的2名女生和3名男生中任选2人去参加一项公益活动. (1)求所选2人中恰有一名男生的概率; (2)求所选2人中至少有一名女生的概率.解:设2名女生为a 1,a 2,3名男生为b 1,b 2,b 3,从中选出2人的基本事件有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 3)共10种.(1)设“所选2人中恰有一名男生”的事件为A ,则A 包含的事件有:(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3)共6种,则P (A )=610=35,故所选2人中恰有一名男生的概率为35.(2)设“所选2人中至少有一名女生”的事件为B ,则B 包含的事件有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3)共7种,则P (B )=710,故所选2人中至少有一名女生的概率为710.较复杂的古典概型的概率[例2] 为振兴旅游业,四川省2012年面向国内发行总量为2 000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客.在省外游客中有13持金卡,在省内游客中有23持银卡.(1)在该团中随机采访2名游客,求恰有1人持银卡的概率;(2)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.[自主解答](1)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡.设事件A为“采访该团2人,恰有1人持银卡”,则P(A)=C16C130C236=2 7,所以采访该团2人,恰有1人持银卡的概率是27.(2)设事件B为“采访该团2人,持金卡人数与持银卡人数相等”,可以分为事件B1为“采访该团2人,持金卡0人,持银卡0人”,或事件B2为“采访该团2人,持金卡1人,持银卡1人”两种情况.则P(B)=P(B1)+P(B2)=C221C236+C19C16C236=44105,所以采访该团2人,持金卡与持银卡人数相等的概率是44105.———————————————————计算较复杂的古典概型的概率时应注意的两点(1)解题的关键点是理解题目的实际含义,把实际问题转化为概率模型;(2)必要时将所求事件转化为彼此互斥的事件的和,或先求其对立事件的概率,进而利用互斥事件的概率加法公式或对立事件的概率公式求解.2.(2012·新课标全国卷)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14151617181920频数10201616151310①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.解:(1)当日需求量n ≥17时,利润y =85. 当日需求量n <17时,利润y =10n -85. 所以y 关于n 的函数解析式为y =⎩⎪⎨⎪⎧10n -85,n <17,85,n ≥17 (n ∈N ). (2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为1100×(55×10+65×20+75×16+85×54)=76.4. ②利润不低于75元当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为p =0.16+0.16+0.15+0.13+0.1=0.7.4种方法——基本事件个数的确定方法(1)列举法:此法适用于基本事件较少的古典概型;(2)列表法:此法适合于从多个元素中选定一两个元素的试验,也可看成是坐标法; (3)树状图法:树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件个数的探求;(4)计数原理法:如果基本事件的个数较多,列举有一定困难时,可借助于两个计数原理及排列组合知识直接计算出m ,n ,再运用公式求概率.1个技巧——求解古典概型问题概率的技巧 (1)较为简单问题可直接使用古典概型公式计算;(2)较为复杂的概率问题的处理方法:一是转化为几个互斥事件的和,利用互斥事件的加法公式进行求解;二是采用间接法,先求事件A 的对立事件A 的概率,再由P (A )=1-P (A )求事件A 的概率.1个构建——构建不同的概率模型解决问题(1)原则:建立概率模型的一般原则是“结果越少越好”,这就要求选择恰当的观察角度,把问题转化为易解决的古典概型问题;(2)作用:一方面,对于同一个实际问题,我们有时可以通过建立不同“模型”来解决,即“一题多解”,在这“多解”的方法中,再寻求较为“简捷”的解法;另一面,我们又可以用同一种“模型”去解决很多“不同”的问题,即“多题一解”.答题模板——求古典概型概率[典例] (2012山东高考·满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.[快速规范审题]第(1)问1.审条件,挖解题信息观察条件:五张卡片,红色三张,标号1,2,3.蓝色2张,标号为1,2,从中取两张――――→用列举法所有可能的结果n2.审结论,明解题方向观察所求结论:求两张卡片颜色不同且标号之和小于4的概率――――――→利用列举的结果分析得出满足这两个条件的结果m3.建联系,找解题突破口 利用古典概型概率公式求解:P =m n第(2)问1.审条件,挖解题信息观察条件:红色卡片三张、蓝色卡片二张、绿色卡片一张,从中取两张――――→用列举法得所有的可能的结果数n2.审结论,明解题方向观察所求结论:观察所求结论求两种卡片颜色不同且标号之和小于4的概率――――――――→利用列举的结果分析得出满足这两个条件的结果m 3.建联系,找解题突破口利用古典概型概率公式求解:P =mn[准确规范答题](1)标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E ,从五张卡片中任取两张的所有可能的结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.⇨(3分)由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A ,D ),(A ,E ),(B ,D )共3种.⇨(5分)所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.⇨(6分)(2)记F 是标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F )共15种.⇨(9分)由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F )共8种.⇨(11分)所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.⇨(12分)[答题模板速成]求古典概型概率的一般步骤:⇒⇒⇒计算基本事件总数的个数程是否有误一、选择题(本大题共6小题,每小题5分,共30分)1.高三(4)班有4个学习小组,从中抽出2个小组进行作业检查.在这个试验中,基本事件的个数为()A.2B.4C.6 D.8解析:选C设这4个学习小组为A、B、C、D,“从中任抽取两个小组”的基本事件有AB、AC、AD、BC、BD、CD,共6个.2.从1,2,3,4,5,6六个数中任取3个数,则取出的3个数是连续自然数的概率是() A.35 B.25C.13 D.15解析:选D取出的三个数是连续自然数有4种情况,则取出的三个数是连续自然数的概率P=420=15.3.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是() A.112 B.110C.325 D.1125解析:选D小正方体三面涂有油漆的有8种情况,故所求其概率为81 000=1125.4.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是() A.136 B.19C.536 D.16解析:选D对本题我们只看甲乙二人游览的最后一个景点,最后一个景点的选法有C16×C16=36种,若两个人最后选同一个景点共有C16=6种选法,所以最后一小时他们在同一个景点游览的概率为P =C 16C 16×C 16=16.5.(2012·广东高考)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49 B.13 C.29D.19解析:选D 由个位数与十位数之和为奇数,则个位数与十位数分别为一奇一偶.若个位数为奇数时,这样的两位数共有C 15C 14=20个;若个位数为偶数时,这样的两位数共有C 15C 15=25个;于是,个位数与十位数之和为奇数的两位数共有20+25=45个.其中,个位数是0的有C 15×1=5个.于是,所求概率为545=19. 6.如图,三行三列的方阵中有九个数a ij (i =1,2,3;j =1,2,3),从中任取⎝ ⎛⎭⎪⎪⎫a 11 a 12 a 13a 21 a 22 a 23a 31 a 32 a 33三个数,则至少有两个数位于同行或同列的概率是( )A.37B.47C.114D.1314解析:选D 从九个数中任取三个数的不同取法共有C 39=9×8×71×2×3=84种,因为取出的三个数分别位于不同的行与列的取法共有C 13·C 12·C 11=6,所以至少有两个数位于同行或同列的概率为1-684=1314.二、填空题(本大题共3小题,每小题5分,共15分)7.(2012·上海高考)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).解析:所有的可能情况有C 23C 23C 23,满足条件有且仅有两人选择的项目完全相同的情况有C 23C 23C 12,由古典概率公式得P =C 23C 23C 12C 23C 23C 23=23.答案:238.从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是________.解析:从边长为1的正方形的中心和顶点这五点中,随机选取两点,共有10种取法,该两点间的距离为22的有4种,所求事件的概率为P =410=25. 答案:259.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为________(用数字作答).解析:6节课共有A 66=720种排法,相邻两节文化课之间至少间隔1节艺术课的排法有A 33A 34=144种排法,所以相邻两节文化课之间至少间隔1节艺术课的概率为144720=15. 答案:15三、解答题(本大题共3小题,每小题12分,共36分)10.将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)两数中至少有一个奇数的概率.解:将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件.(1)记“两数之和为5”为事件A ,则事件A 中含有4个基本事件,所以P (A )=436=19.所以两数之和为5的概率为19. (2)记“两数中至少有一个奇数”为事件B ,则事件B 与“两数均为偶数”为对立事件.所以P (B )=1-936=34.所以两数中至少有一个奇数的概率为34. 11.将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a ,正四面体的三个侧面上的数字之和为b ”.设复数为z =a +b i.(1)若集合A ={z |z 为纯虚数},用列举法表示集合A ;(2)求事件“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的概率.解:(1)A ={6i,7i,8i,9i}.(2)满足条件的基本事件的个数为24.设满足“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的事件为B .当a =0时,b =6,7,8,9满足a 2+(b -6)2≤9;当a =1时,b =6,7,8满足a 2+(b -6)2≤9;当a =2时,b =6,7,8满足a 2+(b -6)2≤9;当a =3时,b =6满足a 2+(b -6)2≤9.即B 为(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6)共计11个.所以所求概率P =1124. 12.(2012·江西高考)如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O 恰好是正三棱锥的四个顶点的概率;(2)求这3点与原点O 共面的概率.解:从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2共4种;y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2共4种;z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2共4种.所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2共8种.因此,从这6个点中随机选取3个点的所有可能结果共20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为P 1=220=110. (2)选取的这3个点与原点O 共面的所有可能结果有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为P 2=1220=35.1.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.解析:采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}共6个,符合“一个数是另一个数的两倍”的基本事件有{1,2},{2,4},共2个,所以所求的概率为13. 答案:132.(2012·江苏高考)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.解析:由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P =610=35. 答案:353.(2012·福建高考)在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8, 解得d =1,q =2,所以a n =n ,b n =2n -1.(2)分别从{a n }和{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2).故所求的概率P =29.。

1.3古典概型与几何概型

1.3古典概型与几何概型

所含的总取法为 aPbi1[(a b i)!] 故
P(B)
a
Pbi
1[(a b (a b)!
i)!]
a Pbi 1 Pai b
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
及两个球全是黑球的概率
解 (2) 已知 在 10 个球中任取两球的取法有C120 种 在 10 个球中取到一个白球和一个黑球的取法有C13C17 种 在 10 个球中取两个球均是黑球的取法有C32种 记B为事件“刚好取到一个白球一个黑球” C为事件
“两个球均为黑球” 则
P(B)
C13 C17 C120
P(D)
Ckn
(N 1)nk Nn
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
解 (ab)次取球的总取法为(ab)! 记(1) (2) (3)中的事件 分别为A B C
总数为24 记(1) (2) (3) (4)的事件分别为A B C D
(1) A有两种排法 故有
P(A)
2 24
1 12
(2) B有2(3!)12种排法 故有
P(B)
12 24
1 12
例113 将标号为1 2 3 4的四个球随意地排成一行 求下 列各事件的概率
(1)各球自左至右或自右至左恰好排成1 2 3 4的顺序 (2)第1号球排在最右边或最左边 (3)第1号球与第2号球相邻
等价于将n个球全部放到其余N1个箱子中 共有(N1)n种放

古典概型知识点总结

古典概型知识点总结

古典概型知识点总结古典概型是概率论中的一个重要内容,它是指在相同的条件下,可能的结果均等可能的情况下,通过计算各种结果出现的可能性的概率。

在古典概型中主要涉及排列、组合、二项式定理、排列组合概率等基础知识。

下面就各个知识点做详细介绍。

一、排列排列是指从n个不同元素中取出m个进行排列,如果这m个元素的顺序不同则视为不同的排列。

排列数用P(n,m)表示,表示n中取m的排列数。

公式为P(n,m) = n!/(n-m)!例如,从5个不同的元素中取出3个元素进行排列,那么排列数就是P(5,3) = 5!/(5-3)! = 5*4*3 = 60。

二、组合组合是指从n个不同元素中取出m个进行组合,不考虑元素的排列顺序。

组合数用C(n,m)表示,表示n中取m的组合数。

公式为C(n,m) = n!/(m!*(n-m)!)例如,从5个不同的元素中取出3个元素进行组合,那么组合数就是C(5,3) = 5!/(3!*(5-3)!) = 10。

三、二项式定理二项式定理是代数中一个重要的定理,它包括二项式系数的公式以及二项式的展开式。

二项式系数的公式为C(n,m) = n!/(m!*(n-m)!)二项式展开式为(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... + C(n,n)*a^0*b^n例如,(a+b)^3 = C(3,0)*a^3*b^0 + C(3,1)*a^2*b^1 + C(3,2)*a^1*b^2 + C(3,3)*a^0*b^3 = a^3 + 3*a^2*b + 3*a*b^2 + b^3。

四、排列组合概率排列组合概率是指在进行某种排列或组合的情况下,发生一定事件的概率。

在排列组合概率中,一般会出现某个事件的发生总数以及排列或组合的总数,然后通过计算得出该事件的概率。

例如,从一副扑克牌中随机取5张牌,计算得到顺子的概率。

我们可以计算出顺子的排列数,即5个元素的排列数P(5,5)=5!=120,然后计算出总的排列数,即从52张牌中取5张的排列数P(52,5)=52!/(52-5)!=2,598,960,最后通过计算得出顺子的概率为120/2,598,960≈0.000046。

古典概型(2)

古典概型(2)

3 (1) 4 11 (2) 12
小知识
概率统计的第一篇论文是1657年惠更斯的《论赌博的计算》 概率统计的第一篇论文是1657年惠更斯的《论赌博的计算》,从 1657年惠更斯的 那时起直到十九世纪初, 那时起直到十九世纪初,人们运用当时发展起来的排列组合理论和变量数学为 工具,发展了古典概率和几何概率范围的概念、计算及其分析性质的成果, 工具,发展了古典概率和几何概率范围的概念、计算及其分析性质的成果,如 大数定律,贝叶斯定理,高斯分布,最小二乘法等。拉普拉斯以《分析概率论》 大数定律,贝叶斯定理,高斯分布,最小二乘法等。拉普拉斯以《分析概率论》 作了总结,形成了古典的描述性统计学。 作了总结,形成了古典的描述性统计学。十九世纪是统计学相对停滞和酝酿时 二十世纪初至第二次世界大战前, 期,二十世纪初至第二次世界大战前,由于法俄概率论和英美统计科学的发展 以及它们的结合,使概率统计学得以正式列入数学之林, 以及它们的结合,使概率统计学得以正式列入数学之林,诸分支在实践中迅速 产生,如在生物学研究中提出的回归分析;出自农业实验的方差分析、 产生,如在生物学研究中提出的回归分析;出自农业实验的方差分析、实验设 计理论;大规模工业生产所要求的抽样检查;从道奇── ──洛密克抽样表到序贯 计理论;大规模工业生产所要求的抽样检查;从道奇──洛密克抽样表到序贯 分析以至质量控制。等等。形成现代统计学的大部分内容。二次世界大战后, 分析以至质量控制。等等。形成现代统计学的大部分内容。二次世界大战后, 概率统计学主要在纯理论研究上取得进展。 概率统计学主要在纯理论研究上取得进展。 概率统计学的形成,标志着人类的认识和实践领域, 概率统计学的形成,标志着人类的认识和实践领域,从必然现象扩展到偶 然现象(随机事件),这是与从精确数学到模糊数学类似的变革, ),这是与从精确数学到模糊数学类似的变革 然现象(随机事件),这是与从精确数学到模糊数学类似的变革,它使科学与 数学结合的历史进程前进了一大步,因此,它的应用十分广泛,除自然科学外, 数学结合的历史进程前进了一大步,因此,它的应用十分广泛,除自然科学外, 社会经济统计已成独立分支;它与其它学科结合形成了生物统计、统计预报、 社会经济统计已成独立分支;它与其它学科结合形成了生物统计、统计预报、 统计物理、计量史学等边缘学科; 统计物理、计量史学等边缘学科;它向其它的数学分支渗透而产生了随机微分 方程、随机几何等理论。 方程、随机几何等理论。

古典概型和几何概型

古典概型和几何概型

一、 古典概型1)基本事件:一次试验中所有可能的结果都是随机事件,这类随机事件称为基本事件. 2)基本事件的特点:① 任何两个基本事件是互斥的;② 任何事件(除不可能事件)都可以表示成基本事件的和. 3)我们将具有这两个特点的概率模型称为古典概率模型,其特征是: ① 有限性:即在一次试验中所有可能出现的基本事件只有有限个.② 等可能性:每个基本事件发生的可能性是均等的;称这样的试验为古典概型. 4)基本事件的探索方法:① 列举法:此法适用于较简单的实验.② 树状图法:这是一种常用的方法,适用于较为复杂问题中的基本事件探索.5)在古典概型中涉及两种不通的抽取放方法,下列举例来说明:设袋中有n 个不同的球,现从中一次模球,每次摸一只,则有两种摸球的方法: ① 有放回的抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球的方法称为有放回的抽样,显然对于有放回的抽样,依次抽得球可以重复,且摸球可以无限地进行下去. ② 无放回的抽样每次摸球后,不放回原袋中,在剩下的球中再摸一只,这种模球方法称为五放回抽样,每次摸的球不会重复出现,且摸球只能进行有限次. 二、 古典概型计算公式1)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n; 2)如果某个事件A 包括的结果有m 个,那么事件A 的概率()m P A n=. 3)事件A 与事件B 是互斥事件()()()P AB P A P B =+4)事件A 与事件B 可以是互斥事件,也可以不是互斥事件()()()()P A B P A P B P A B =+-.古典概型注意:① 列举法:适合于较简单的试验.② 树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(),x y 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如()1,2与()2,1相同.三、几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 四、几何概型的计算1)几何概型中,事件A 的概率定义为()AP A μμΩ=,其中μΩ表示区域Ω的几何度量,A μ表示区域A 的几何度量. 2)两种类型线型几何概型:当基本事件只受一个连续的变量控制时.面型几何概型:当基本事件受两个连续的变量控制时,一般是把两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决. 五、几何概型具备以下两个特征:1)无限性:即每次试验的结果(基本事件)有无限多个,且全体结果可用一个有度量的几何区域来表示;2)等可能性:即每次试验的各种结果(基本事件)发生的概率都相等.一、古典概型古典概型是基本事件个数有限,每个基本事件发生的概率相等的一种概率模型,其概率等于随机事件所包含的基本事件的个数与基本事件的总个数的比值.【题干】甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( ) A .16B .14C .13D .12【答案】D.【解析】甲、乙在同一组:113P =.甲、乙不在同一组,但相遇的概率:2111362P =+=.【点评】【题干】有十张卡片,分别写有A 、B 、C 、D 、E 和a 、b 、c 、d 、,(1)从中任意抽取一张,①求抽出的一张是大写字母的概率;②求抽出的一张是或的概率;e A a(2)若从中抽出两张,③求抽出的两张都是大写字母的概率;④求抽出的两张不是同一个字母的概率; 【答案】 【解析】 【点评】【题干】袋子中装有编号为,a b 的2个黑球和编号为,,c d e 的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率; (3)求至少摸出1个黑球的概率.【答案】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de ;(2)0.6;(3)0.7. 【解析】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de .(2)由题意知本题是一个古典概型,试验发生包含了上一问列举的所有结果,记“恰好摸出1个黑球和1红球”为事件A ,则事件A 包含的基本事件为,,,,,ac ad ae bc bd be ,共6个基本事件,所以()60.610P A ==. (3)试验发生包含的事件共有10个,记“至少摸出1个黑球”为事件B ,则B 包含的基本事件为,,,,,,ab ac ad ae bc bd be ,共7个基本事件,所以()70.710P B ==. 【点评】步骤:用列举法求出基本事件的总数n ,求出具体时间包含的基本事件数m ,根据古典概型求出概率.二、一维情形的几何概型(长度)将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 【题干】在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( ) A .13 B . 2πC . 12D . 23 【答案】A【解析】∵0cos x <<12,∴52,233x k k ππππ⎛⎫∈++ ⎪⎝⎭.当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,,,2332x ππππ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ .在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率133P ππ==.【点评】【题干】平面上有一组平行线,且相邻平行线间的距离为3cm ,把一枚半径为1cm 的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( ) A.14B .13 C . 12D .23【答案】B【解析】为了确定硬币的位置,由硬币中心O 向靠的最近的平行线引垂线OM ,垂足为M ;线段OM 长度的取值范围就是30,2⎡⎤⎢⎥⎣⎦,只有当132OM <≤时,硬币不与平行线相碰,所以所求事件的概率33110223P ⎛⎫⎛⎫=-÷-= ⎪ ⎪⎝⎭⎝⎭. 【点评】【题干】在区间[010],中任意取一个数,则它与4之和大于10的概率是______. 【答案】25【解析】在区间[010],中,任意取一个数x ,则它与4之和大于10的x 满足4x +>10, 解得610x <≤,所以,概率为1062105-=. 【点评】【题干】在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与812cm 之间的概率为( ) A .56B .12C .13D .16【答案】D.【解析】由题意可得此概率是几何概率模型.因为正方形的面积介于362m 与812m 之间,座椅正方形的边长介于6cm 到9cm 之间,即线段AM 介于6cm 到9cm 之间,所以AM 的活动范围长度为:3.由几何概型的概率公式可得31186=.【点评】【题干】某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( ) A .113 B. 19 C . 14 D . 12【答案】B【解析】整个靶子是如图所示的大圆,而距离靶心距离小于2用图中的小圆所示:故此人射击中靶点与靶心的距离小于2的概率226129P ππ==.【点评】【题干】两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( ) A.12B .13C .14D .23【答案】13. 【解析】设事件A 为“灯与两端距离都大于2m ”,根据题意,事件A 对应的长度为2m 的部分,因此,事件A 发生的概率()2163P A ==. 【点评】三、二维情形的几何概型(面积)数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,利用公式可求.【题干】如图,60AOB ∠=°,2OA =,5OB =,在线段OB 上任取一点C ,试求: (1)AOC ∆为钝角三角形的概率;(2)AOC ∆为锐角三角形的概率.【答案】(1)0.4(2)0.6【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC ∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===,即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===,即AOC ∆为锐角三角形的概率为0.6. 【点评】AOC ∆为直角三角形的概率等于0,但直角三角形AOC ∆是存在的,因此概率为0的事件不一定是不可能事件.【题干】已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.【答案】36【解析】设图中阴影部分的面积为S ,由题意可得6001251000S =⨯,解得36S =. 【点评】【题干】小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率. 【答案】 【解析】 【点评】CE DBOA【题干】在平面直角坐标系xOy 中,平面区域W 中的点的坐标(),x y 满足225x y +≤,从区域W 中随机取点(),M x y .(1)若x ∈Z ,y ∈Z ,求点M 位于第四象限的概率;(2)已知直线():0l y x b b =-+>与圆22:5O x y +=求y x b ≥-+的概率. 【答案】(1)17;(2.【解析】(1)若x Z ∈,y Z ∈,则点M 的个数共有21个,列举如下:()2,1--,()2,0-,()2,1-,()1,2--,()1,1--,()1,0-,()1,1-,()1,2-,()0,2-,()0,1-,()0,0,()0,1,()0,2,()1,2-,()1,1-,()1,0,()1,1,()1,2,()2,1-,()2,0,()2,1时,点M 位于第四象限.当点M 的坐标为()1,2-,()1,1-,()2,1-时,点M 位于第四象限.故点M 位于第四象限的概率为17. (2)由已知可知区域W 的面积是5π.因为直线:l y x b =-+与圆22:5O x y +=的弦长为,如图,可求得扇形的圆心角为23π,所以扇形的面积为125233S ππ=⨯=,则满足y x b≥-+的点构成的区域的面积为122sin 233S ππ=⨯=,所以y x b≥-+的概率为20125ππ- .【点评】【题干】如图,60AOB ︒∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求:(1)AOC ∆为钝角三角形的概率; (2)AOC ∆为锐角三角形的概率. 【答案】(1)0.4 ;(2)0.6 .【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===. 【点评】【题干】在区间[]1,1-上任取两实数,a b ,求二次方程2220x ax b ++=的两根都为实数的概率. 【答案】()12P A =【解析】方程有实根的条件为22440a b ∆=-≥,即||||a b ≥.在平面直角坐标系中,点(),a b 的取值范围为如图所示,的正方形的区域,随机事件A “方程有实根”的所围成的区域如图所示的阴影部分.易求得()12P A =.【点评】四、三维情形的几何概型(体积)【题干】在Rt ABC ∆中,30A ∠=,过直角顶点C 作射线CM 交线段AB 于M,求使CE DBOAAM AC >的概率.【答案】16. 【解析】设事件D 为“作射线CM ,使AM AC >”.在AB 上取点1C 使1AC AC =,因为1A C C ∆是等腰三角形,所以118030752ACC -∠==,907515A μ=-=,90μΩ=,所以()151906P D ==. 【点评】几何概型的关键是选择“测度”,如本例以角度为“测度”.因为射线CM 落在ACB ∠内的任意位置是等可能的.若以长度为“测度”,就是错误的,因M 在AB 上的落点不是等可能的.【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. (1)设“14P ABC V V -≥”的事件为X ,求概率()P X ; (2)设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】 【解析】 【点评】【题干】一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是( ) A .18 B .116 C .127 D .38【答案】C ;【解析】容易知道,当蜜蜂在边长为10,各棱平行于玻璃容器的棱的正方体内飞行时是安全的.于是安全飞行的概率为331013027=.【点评】【题干】在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】112π-【解析】点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球外.记点P 到点O 的距离大于1为事件A ,则()3331421231212P A ππ-⨯⨯==-. 【点评】【题干】在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于等于a 的概率为( )A.2 B .2 C. 16D . 16π【答案】C【解析】本题是几何概型问题,与点A 距离等于a 的点的轨迹是一个八分之一个球面, 其体积为:33114836a a V ππ=⨯⨯=,“点P 与点O 距离大于1的概率”事件对应的区域体积为:3314836a a ππ⨯⨯=,则点P 到点A 的距离小于等于a 的概率为:33166a a ππ=.【点评】【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. ①设“14P ABC V V -≥”的事件为X ,求概率()P X ; ②设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】①()2764P X =②18【解析】①分别取,,DA DB DC上的点,,E F G,并3,3,3DE EA DF FB DG GC ===,连结,,EF FG GE ,则平面EFG 平面ABC .当P 在正四面体DEFG 内部运动时(如图),满足14P ABC V V -≥,故()33327464D EFG D ABC V DE P X V DA --⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭.②在AB 上取点H ,使3AH HB =,在AC 上取点I ,使3AI IC =,在AD 上取点J ,使3AJ JD =,P 在正四面体AHIJ 内部运动时,满足14P BCD V V -≥.结合①,当P 在正四面体DEFG 的内部及正四面体AHIJ 的内部运动时,亦即P 在正四面体EMNJ 内部运动时(M 是EG 与IJ 的交点,N 是EF 与HJ 的交点),同时满足14P ABC V V -≥且14P BCD V V -≥,于是()331281J EMN D ABC JE D Y V A V P --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭=⎭⎝.【点评】五、高考汇编【题干】(2010年江苏理科 3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率________.【答案】【解析】【点评】【题干】(2010年江苏理科4)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]5,40 中,其频率分布直方图如图所示,则其抽样的100根中,有________根在棉花纤维的长度小于20mm .【答案】【解析】【点评】【题干】(2011江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是BAB A另一个的两倍的概率是________. 【答案】13【解析】【点评】【题干】(2011江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差2s =________. 【答案】165【解析】可以先把这组数都减去6再求方差,【点评】【题干】(2012年江苏省5分)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【答案】15.【解析】分层抽样又称分类抽样或类型抽样.将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性.因此,由35015334⨯=++知应从高二年级抽取15名学生. 【点评】【题干】(2012年江苏省5分)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 【答案】35. 【解析】∵以1为首项,3-为公比的等比数列的10个数为1,3-,9,27-,···其中有5个负数,1个正数1计6个数小于8, ∴从这10个数中随机抽取一个数,它小于8的概率是63105=. 【点评】。

数学古典模型知识点总结

数学古典模型知识点总结

数学古典模型知识点总结一、古典模型的概念古典模型是指在古典物理学框架下建立的物理模型,是在牛顿力学和经典电磁学的基础上建立的。

它是从经验规律中总结出来的,可以解释和描述一定范围内的现象和规律。

古典模型具有普适性和稳定性,能够描述各种物质的基本性质和运动规律,是对物质世界的经典理论总结。

二、古典力学古典力学是古典物理学的基础,描述了宏观物体的运动规律。

古典力学的基本概念包括力、质点、质量、运动方程等。

牛顿三大定律是古典力学的基石,分别描述了质点的匀速直线运动、力的作用和运动的变化、相互作用的作用和反作用。

三、古典力学的应用古典力学在工程、地球物理、天文学、机械等领域都有重要应用。

它可以用来解释和预测物体的运动、能量转换和相互作用等现象。

例如,在工程领域中,可以通过古典力学分析机械系统的运动和稳定性;在天文学领域中,可以通过古典力学解释行星的运动和天体的相互吸引等。

四、古典电磁学古典电磁学是描述电荷和电场、磁场之间相互作用的理论。

在古典电磁学中,麦克斯韦方程组是最重要的基本方程,描述了电场和磁场的产生和相互作用。

古典电磁学还包括电磁感应现象和电磁波传播等内容。

五、古典电磁学的应用古典电磁学在电子工程、通讯技术、光学等领域有着广泛的应用。

它可以用来解释和预测电磁场的传播特性、电磁波的辐射和感应效应等现象。

例如,在通讯技术中,可以通过古典电磁学研究电磁波的传播和调制技术;在光学领域中,可以通过古典电磁学研究光的产生和传播规律。

六、古典流体力学古典流体力学是描述流体运动和变形的理论。

古典流体力学的基本方程包括质量守恒方程、动量守恒方程和能量守恒方程等,它们描述了流体的运动和相互作用。

古典流体力学还包括流体的流动规律、边界条件和非定常流动等内容。

七、古典流体力学的应用古典流体力学在航空航天、船舶工程、环境保护等领域有着广泛的应用。

它可以用来解释和预测流体的流动规律、能量转化和阻力等现象。

例如,在船舶工程中,可以通过古典流体力学研究艇体的水动力性能;在环境保护领域中,可以通过古典流体力学研究水体的循环和混合规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档