二氧化碳热泵热水器系统运行特性(节能)
CO2跨临界制冷循环原理及新技术

二氧化碳跨临界循环制冷CO 2作为制冷剂的应用历史•CO 2作为最早的制冷剂之一,在19世纪末到20世纪30年代得到了普遍的应用,到1930年,80%的船舶采用CO 2制冷。
•但由于当时采用的CO 2亚临界循环制冷效率低,特别是当环境温度稍高时,CO 2的制冷能力急剧下降,且功耗增大。
•同时,以R12为代表的CFC 或氟氯烃制冷剂的出现,以其无毒、不可燃、不爆炸、无刺激性、适中的压力和较高的制冷效率等特点,很快取代了CO 2在安全制冷剂方面的位置。
•近年来,制冷剂对臭氧层的破坏和全球温室效应等环保问题日益突出,而CO 2跨临界制冷循环的提出,CO 2作为制冷剂开始重新得到重视•该循环系统的最大特点就是工质的吸、放热过程分别在亚临界区和超临界区进行。
压缩机的吸气压力低于临界压力,蒸发温度也低于临界温度,循环的吸热过程仍在亚临界条件下进行,换热过程主要是依靠潜热来完成。
但是压缩机的排气压力高于临界压力,工质的冷凝过程与在亚临界状态下完全不同,换热过程依靠显热来完成。
CO作为制冷工质的优缺点2优点•良好的安全性和化学稳定性•具有与制冷循环和设备相适应的热物理性质•CO2优良的流动和传热特性•CO2制冷循环的压缩比较常规工质制冷循环低缺点•运行压力高•循环效率低带回热器和不带回热器的CO 2跨临界单级循环进行理论分析和实验性能测试2•典型的CO 2跨临界单级循环主要由压缩机、气体冷却器、节流阀和蒸发器组成.图1和图2分别给出了CO 2跨临界单级循环原理图和细图.图l 中:低压气态制冷剂经压缩机被压缩成高压气态制冷剂(过程l 一2),经气体冷却器进行定压放热(过程2—3),然后经节流阀进行节流降压(过程3—4),低压液态制冷剂在蒸发器内进行定压吸热(过程4一1),最后回到压缩机,从而完成一个循环.2•制冷循环增设回热器,可以减小节流损失、增大制冷量,从而提高系统性能.图3和图4分别给出了带回热器的CO 2跨临界单级循环原理图和细图.两个循环性能对比分析•图5给出了两个循环COP随蒸发温度的变化.随着蒸发温度的增加,两个循环COP均呈增加趋势,蒸发温度越高,系统性能越优;•在整个蒸发温度变化范围内,带回热器循环平均性能要比不带回热器循环提高4.55%左右;•对于理想压缩机循环,系统性能要比实际循环性能高33.3%以上,但这种理想循环是不存在的.•图6给出了两个循环COP 随气体冷却器出口温度的变化.•随着气体冷却器出门温度的增加,两个循环COP均呈下降趋势,温度越高,系统性能越差;•在气体冷却器出口温度变化范围内,带回热器循环平均性能要比不带回热器循环提高5.23%左右.•两个循环COP 随压缩机排气温度的变化,见图7.•在排气温度变化范围内,相同对比条件下,带回热器CO 2跨临界单级循环系统COP 要高于不带回热器循环,且带回热器单级循环排气温度要稍高些.•无论带回热器还是不带回热器循环,随着压缩机效率提高,系统COP 均变大,压缩机排气温度均有所降低,不带回热器循环降低幅度较大.•由图7还可以看出,两个单级循环都存在一个最优排气温度,使得在此温度下系统COP 最大,带回热器循环对应最优排气温度要高于不带回热器循环最优排气温度.结论•(1)在蒸发温度变化范围内,带回热器循环平均性能要比不带回热器循环提高约4.55%;在气体冷却器出口温度变化范围内,带回热器循环平均性能要比不带回热器循环提高约5.23%;相同对比条件下,带回热器CO跨临界单级循环系统COP高于不2带回热器循环的,且带回热器单级循环最优排气温度稍高些.•(2)两种单级循环的制热量、制冷量、制热COP和制冷COP,均随压缩机排气压力增加存在极值;随冷却水流量、冷冻水流量以及冷冻水进口温度增加而增加,随冷却水进口温度增加而下降.•(3)相同测试工况下,带回热器循环系统具有较高的性能.其中,制热量和制冷量分别比不带回热器的单级循环平均高约3.33%和5.35%,制热COP和制冷COP分别提高约11.36%和14.29%.CO2跨临界循环的应用前景与研究进展•1、汽车空调•2、热泵•3、食品冷藏•4、循环系统关键设备的研究进展•1、汽车空调•过去汽车空调中一般使用CFC12作为制冷工质,这使得汽车空调制冷剂的排放量在所有氟利昂的排放中占有相当大的比例。
14种冷热源及空调系统特点介绍

【总结篇】14种冷热源及空调系统特点介绍2015-03-17 10:25 专业分类:暖通空调浏览数:56714种冷热源及空调系统特点介绍目录:一、常规电制冷空调系统二、冰蓄冷空调系统三、水源热泵空调系统四、电蓄热空调系统五、风冷热泵空调系统六、溴化锂空调系统七、VRV空调系统八、热泵空调系统九、空气源热泵空调系统十、大温差低温送风空调系统的特点十一、变风量空调系统的特点十二、冰蓄冷与水源热泵的结合十三、水蓄冷系统十四、温湿独控空调系统系统正文:一、常规电制冷空调系统目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点:优点:1)系统简单,占地比其他形式的稍小。
2)效率高,COP(制冷效率)一般大于5.3。
3)设备投资相对于其它系统少。
不足之处:1)冷水机组的数量与容量较大,相应的其他用电设备数量、容量也增加,运动设备的增加加大了维护、维修工作量。
2)总用电负荷大,增加了变压器配电容量与配电设施费。
3)所使用电量均为高峰电,不享受峰谷电价政策,运行费用高。
4)在拉闸限电时出现空调不能使用的状况。
2003、2004年夏季空调主机减半运行,造成大部分中央空调达不到效果。
5)运行方式不灵活,在过渡季节、节假日或休息时间个别区域供冷,需要开主机运行,形成大马拉小车,浪费了机组的配置能力,增加了运行费用。
6)对于大型区域供冷系统较难实现较好的供冷(供水温度不能降低),管网的投资大、输送能耗高、空调品质差。
二、冰蓄冷空调系统冰蓄冷空调是在常规水冷冷水机组系统的基础上减小制冷主机容量增加蓄冰装置,利用夜间低谷低价电力时段将冷量通过冰的形式储存起来,白天需要供冷时释放出来。
该技术在二十世纪30年代开始应用于美国,在70年代能源危机中得到发达国家的大力发展。
从美国、日本、韩国、台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。
比如,韩国明令超过2000㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。
格力空气能热水器原理及特点

格力空气能热水器会不会产生水垢?因为空气(热泵)热水器采用中温(55℃)及特有的专利技术“过流式间接加热”方式制造热水,所以不会产生任何水垢。
而一般电热水器为高温280~300℃加热,所以很容易产生水垢,继而造成热效率降低,耗电量增加,出水压力减少,甚至引发安全事故。
\家用空气能热水器的基本知识和特点格力空气能热水器为您带来以下消息:空气能热水器是继燃气热水器、电热水器和太阳能热水器之后的新一代热水装置,是综合电热水器和太阳能热水器优点于一身的安全节能环保型热水器,可全天候运转,制造相同的热水量,使用成本只有电热水器的1/4,燃气热水器的1/3,太阳能热水器的1/2。
作为“第四代”新型热水器,其卓越的性能不断得到释放与认可,空气能热水器利用空气中的热能,通过压缩空气转化来加热水,不仅具有太阳能热水器节能、环保、安全的优点,而且又不受天气条件的限制,同时,安装也相当方便。
除此之外,由于空气能热水器通过介质交换热量进行加热,不需要电加热元件与水接触,所以没有漏电的危险,同样,它也消除了中毒和爆炸的隐患,更不会因为排放废气造成空气污染,是目前市面上安全、可靠的热水器。
“空气能节能环保又省钱,受到人们的欢迎,下面我们一起来认识一下家用空气能的基本知识与其特点:自主开发的家用空气能热水器,该产品热源主要来自空气,通过将空气中的低品位的热量转化成高品位的热量,使低温冷水加热成高温热水。
1、家用空气能热水器的水温可由用户在20℃-60℃自行设定,以满足用户在不同季节不同气候条件下随时使用的要求。
2、家用空气能热水器采用具有专利技术的间接加热方式,使产品在使用过程中减少对产品的损耗,增加了产品的使用寿命。
3、家用空气能热水器在使用过程中无需断电,可持续加热,更加安全。
4、家用空气能热水器更适用于家庭,其具有比常规家用热水器空气能热水器十大品牌更完善更安全的功能,只需少量的电能便可产生3-4倍的热量。
5、家用热泵热水器在炎热的夏天还具有降低室内温度的功能,设备工作的同时排出冷气,可以降低室内温度。
跨临界压缩二氧化碳储能系统热力学特性及技术经济性研究

跨临界压缩二氧化碳储能系统热力学特性及技术经济性研究一、本文概述随着全球能源需求的不断增长和环境保护的日益紧迫,高效、清洁的储能技术已成为能源领域的研究热点。
跨临界压缩二氧化碳储能系统作为一种新型的储能技术,具有储能密度高、系统效率高、环境友好等优点,因此受到了广泛关注。
本文旨在深入研究跨临界压缩二氧化碳储能系统的热力学特性及技术经济性,为其在实际应用中的推广和优化提供理论依据和技术支持。
本文将首先介绍跨临界压缩二氧化碳储能系统的基本原理和工作流程,包括压缩、储存、释放和膨胀等关键步骤。
在此基础上,本文将重点分析该系统的热力学特性,包括能量转换效率、热损失、系统稳定性等方面,并通过理论计算和实验验证相结合的方法,探究不同操作条件对系统性能的影响。
本文还将对跨临界压缩二氧化碳储能系统的技术经济性进行评估。
通过构建系统的成本模型和经济分析框架,综合考虑设备投资、运行维护、能源价格等因素,评估该技术在不同应用场景下的经济竞争力。
本文还将探讨如何通过技术创新和系统优化,降低储能成本,提高系统效率,从而推动跨临界压缩二氧化碳储能技术的商业化应用。
本文将对跨临界压缩二氧化碳储能技术的发展前景进行展望,分析其在可再生能源并网、智能电网建设、分布式能源系统等领域的应用潜力,并提出相应的政策建议和研究方向,以促进该技术的持续发展和广泛应用。
二、跨临界压缩二氧化碳储能系统热力学特性研究跨临界压缩二氧化碳储能系统是一种新型的储能技术,其热力学特性研究对于系统的优化设计和运行至关重要。
本研究主要围绕跨临界压缩二氧化碳储能系统的热力学特性展开,深入探讨了其在不同工况下的性能表现。
我们建立了跨临界压缩二氧化碳储能系统的热力学模型,详细描述了系统中各组件的工作原理和热力学过程。
通过对系统内部能量的转换与传递过程进行分析,揭示了其在能量存储和释放过程中的热力学本质。
我们利用热力学模型对系统在不同工况下的性能进行了模拟分析。
通过改变系统的运行参数,如压力、温度等,观察了系统性能的变化趋势。
《分布式变频供热系统节能特性研究》

《分布式变频供热系统节能特性研究》篇一一、引言随着社会经济的快速发展和城市化进程的加速,供热系统的能耗问题日益突出。
为了应对能源消耗和环境保护的双重挑战,分布式变频供热系统作为一种新型的供热技术,因其高效、节能的特性而备受关注。
本文旨在深入研究分布式变频供热系统的节能特性,分析其工作原理及在实际应用中的节能效果,为供热系统的优化与升级提供理论支持。
二、分布式变频供热系统概述分布式变频供热系统是一种基于变频技术的供热系统,通过变频器控制供热设备的运行,实现能源的合理利用和高效供应。
该系统由多个分布式供热单元组成,每个单元均配备有变频器、水泵、换热器等设备,可以根据实际需求进行独立调节,达到节能的目的。
三、分布式变频供热系统的工作原理及节能机制1. 工作原理:分布式变频供热系统通过变频器控制水泵的运行速度,根据供暖需求自动调节水流量。
同时,通过换热器等设备实现热能的转换和传递,将热能输送到各个供暖区域。
2. 节能机制:分布式变频供热系统通过实时监测供暖需求,自动调节设备运行状态,避免能源的浪费。
此外,该系统还可以根据室外温度、用户需求等因素进行智能调节,实现能源的最优利用。
四、分布式变频供热系统的节能特性分析1. 精确控制:分布式变频供热系统可以根据实际需求进行精确控制,实现按需供热,避免了传统供热系统中能源的浪费。
2. 高效运行:该系统通过变频技术控制设备的运行速度,实现高效的水流控制和热量传递。
3. 智能调节:系统具备智能调节功能,可以根据室外温度、用户需求等因素自动调节设备运行状态,实现能源的最优利用。
4. 降低峰值负荷:通过分布式供热单元的独立调节,可以降低供热系统的峰值负荷,减少能源的浪费。
5. 延长设备寿命:由于系统可以实时监测设备运行状态并进行智能调节,可以降低设备负荷,延长设备的使用寿命。
6. 环保效益:分布式变频供热系统可以减少能源消耗和排放,对环境保护具有积极意义。
五、实际应用中的节能效果经过实际运行数据的分析,分布式变频供热系统在节能方面取得了显著的效果。
二氧化碳跨临界制冷循环

二氧化碳跨临界制冷循环摘要:CO2是一种环保型的自然工质,它对臭氧层不产生任何破坏作用且具有较小的温室效应。
本文概述跨临界C02制冷循环的原理,提出几个影响该循环的技术关键。
介绍跨临界CO2循环的相关应用领域,指出CO2作为性能良好的自然工质有着很好的发展前景。
关键词:二氧化碳;制冷;跨临界循环引言由于制冷剂中氯原子对大气臭氧层有破坏作用,《蒙特利尔协议》规定R12 等CFCS(氯氟碳)在制冷工质中被禁用,危害程度较小的R22 等HCFCS(氢氯氟碳)的禁用日期也一再提前。
目前已获应用的R134a,R410A,R407C 等HFCS (氢氟碳)仍是一类新的化学合成物,它们不仅制造成本昂贵,而且已被证明能产生较为严重的温室效应。
另外,随着研究的深入,有可能证明HFCS 在其它方面也有危害。
因此,在制冷系统中对地球生物圈中原来就有的“自然工质”进行研究,已成为近年来的前沿课题之一。
二氧化碳(R744)目前被称作是一种被遗忘的制冷剂,它在19世纪被广泛地使用,从20世纪30年代后被冷落。
现在,大家认为:已经到了使用现代的高新技术重新利用二氧化碳的时候了。
1.CO2制冷二氧化碳基本上不会引起环境问题,它无毒不燃,具有氨和烃类制冷剂所不可及的一些优点。
另外它价廉,与一般的制冷设备和润滑系统都相容。
它可以高度压缩,因此可以利用先进设备及设计大大减小压缩机的体积和管道直径。
它在高压下良好的传热效果是该制冷剂的另一个优点。
总而言之,在满足制冷要求的情况下,使用二氧化碳制冷剂可以大大降低设备的投资。
2.工作原理跨临界蒸汽压缩式制冷循环是利用气体液化后可吸收蒸发(汽化)潜热的特性以达到制冷的目的。
跨临界系统由压缩机C ,气体冷却器G ,内部热交换器I,节流阀V ,蒸发器E 与储存器A组成封闭回路,以CO2为工作介质,气体工质在压缩机C 中升压至超临界压力P2,在T 一S 图上为过程1一2 ,然后进入气体冷却器G 中,被冷却介质(空气或冷却水)所冷却。
高效节能环保跨临界CO2 热泵技术
科技与创新┃Science and Technology&Innovation2020年第03期文章编号:2095-6835(2020)03-0080-02高效节能环保跨临界CO2热泵技术李林凤,王明,马瑞军,李宁,刘玉峰(北京大学包头创新研究院热能工程研究所,内蒙古包头014010)摘要:跨临界CO2热泵以CO2作为制冷剂,由回热器、气体冷却器、压缩机、蒸发器、气液分离器等各个部件组成,是一种新型的热资源回收利用的设施,具有效率高、运行成本低、应用范围广、稳定性和可靠性高、环保性良好等诸多优点,有着广阔的市场空间和应用前景。
关键词:跨临界;CO2热泵;节能;环保中图分类号:TU831文献标识码:A DOI:10.15913/ki.kjycx.2020.03.0311引言节能和环保是21世纪科技领域永不褪色两大议题。
余热回收是节约能源的一大重要途径,热泵技术在余热回收领域应用广泛,但受制冷剂的制约不能大范围推广应用,传统制冷剂如CFCs、HCFCs等对地球臭氧层造成破坏,导致温室效应比较严重,其在环保要求越来越严格的今天受到越来越多的限制。
因此,研发一种以高效、绿色环保为制冷剂工质的新型热泵技术是解决节能和环保问题的关键,其研究开发应用推广迫在眉睫。
自然制冷剂CO2作为传统制冷剂工质的替代物重新兴起[1]。
采用CO2工质作为制冷剂的跨临界热泵机组,因其对环境无污染、无破坏,系统运行稳定、设备紧凑并具有较高的系统能效比,作为一种高效、节能、环保的新型技术被广泛地开发和应用。
因此,跨临界CO2热泵机组具有较强的市场竞争力,有着广阔的市场空间和前景[2-3]。
2跨临界CO2热泵技术跨临界CO2热泵机组是一种热量转移装置,可以将从周围环境中吸取的热量传递给被加热的对象。
跨临界CO2热泵工作时,通过自身消耗一部分能量,把环境介质中储存的能量加以利用,对通过传热工质循环系统提高的温度进行利用,而整个热泵机组自身消耗的一部分能量占输出功的比例很小,因此,采用跨临界CO2热泵技术可以充分利用低品位能源,节约大量高品位能源。
空气源热泵热水机组工作原理及特点
空气源热泵热水机组工作原理及特点摘要近年来随着资源和环境的问题日益严重,在满足人们健康、舒适要求的前提下,合理利用自然资源,保护环境,减少常规能源消耗,已成为我们需要面对的一个重要问题。
本文主要针对空气源热泵热水机组的工作原理、性质特点、工程应用,节能环保及经济性等方面进行了详细的介绍说明。
关键词空气源;热泵;节能环保空气源热泵热水机组自20世纪40年代发明至今,其技术已日趋完善,空气源热泵热水机组是当今世界上最节能的供热水设备之一,它是利用吸取空气中的热量,制取55℃~60℃(最高可达65℃)的高品质生活热水。
1 工作原理空气源热泵热水器(机组)是运用逆卡诺循环原理,通过热泵做功使热媒(冷媒)产生物理相变(液态-气态-液态)利用往复循环相变过程中不间断吸热与放热的特性,由吸热装置(蒸发器)吸取低温热源空气中的热量,通过专用热水交换器(冷凝器)向冷水中不断放热,使水逐渐升温,达到制热水的目的。
制热过程中的电热能量转换效率最高可达450%以上。
热泵只需要消耗一小部分的电能满足空气压缩机和风机等设备做功,就可将处于低温环境空气中的热量转移到高温环境下的热水。
空气源热泵热水器一般由压缩机、冷凝器、蒸发器、节流装置、过滤器、储液罐、单向阀、电磁阀、冷凝压力调节水阀、储水箱等几部分组成。
2 高效节能空气源热泵热水机组能把空气中的低温热能吸收进来,经过压缩机压缩后转化为高温热能,加热水温。
这种热水器具有高效节能的特点,其耗电量是同等容量电热水器的1/4,是燃气热水器的1/3,常规太阳能的1/1.5。
空气能是一种广泛存在,可自由利用的低价位能源,利用热泵循环提高其能源品质,因此是一项极具开发和应用潜力的节能、环保新技术,具有很高的实用价值。
其高效节能由工作原理可知,热泵机组能从周围空气获取大量的免费热量,一般情况下,每消耗1度电大约能产生3度~4度电以上的热量。
机组的能效比(COP)平均可达3~4以上,相当于热效率超过300%~400%。
空气源热泵
提高除霜效率很重要
有实验表明,采用逆向运行除霜(热气除霜)的热 泵,除霜期间的能耗占热泵总能耗的1.5%,再考 虑到这时还必须向房间补充热量,实际由于除霜所 引起的能耗增加要占热泵总能耗的10%以上。因此 ,提高除霜的效率非常重要。 发明无霜型蒸发器可以从根本上解决结霜问题。原 苏联莫斯科能源所的研究表明,在电场中可以使蒸 发器表面形成松散的霜层,因而可以用风机将霜吹 除。
在低温工况下,加大压缩机的容量; 采用喷液旁通技术(螺杆机、涡旋机); 加大室外换热器的面积和风量; 采用适用于寒冷气候的热泵循环(图4-31~4-40)
二、改善热泵低温运行特性的技术措施
图4-2 热泵型分体式空调器原理图
电磁换向阀(电磁四通阀)
(1)作用:控制、改变制冷剂流向,使系统由制冷工况 向热泵工况转变。
(2)应用:主要用于热泵型空调器。
(3)结构
电磁换向阀实现制冷、制热转换的原理:
通过电磁线圈通电,使阀芯左移或右移,以形 成管路方向改变,导致室内、外换热器对换的结果。
图4-25 空气源热泵蓄能热气除霜系统
1-压缩机;2-蓄能换热器;3-室内侧换热器;4-室外侧换热器;5-气液分离器;
6-四通换向阀;7-毛细管;F1~F4-电磁阀
可实现系统制热、制热兼蓄热、释能除霜、快速恢 复制热等多工况之间的转化。
蓄能热气除霜相比于传统热气除霜系统,优越性在 于: 1)除霜时间可缩短,减少除霜过程中的能耗损失; 2)除霜时,吸气压力提高,排气压力也提高,加大 融霜过程的传热温差,除霜效果好; 3)传统除霜系统除霜时,室内侧吹冷风(送风温度 在-2~2℃ ),蓄能热气除霜系统在17~22 ℃。
低温空气源热泵供热原理及特点
h i n a中国C p i a n t设备Engineering 工程低温空气源热泵供热原理及特点张强(大连市热电集团有限公司供热公司,辽宁大连116000)摘要:空气源热泵是一种节能环保,使用效果良好的热泵类型,也由于它的诸多优势得到了非常广泛的应用。
空气源热泵的类型非常多,低温空气源热泵就是其中的一种。
尤其在寒冷地区,严冬的供暖离不开低温空气源热泵的技术支持。
本文主要对低温空气源热泵供热的原理及其特点进行介绍,并探讨几个热泵系统的问题及解决方法。
关键词:空气源;热泵供热;寒冬供暖中图分类号:T U831 文献标识码:A文章编号:1671-0711 (2017 ) 08 (下)-0161-031什么是空气源热泵技术依靠电能的拖动,迫使热量从低位热源向高位热源流动的装置就是热泵。
就像水泵把水从低水头压送到高水头,还有气泵(气体压缩机),把气体从低压区送到高压区,它们和热泵的原理是一样的,都是输送能源的机械。
热泵技术作为一项节能环保高效的技术,是因为它能够把不能为人们直接利用的低品位热能通过热泵技术转换为可以让人们直接利用的高位能,比如可以把空气、太阳能、土壤、井水河水以及工业废水等低品位热能,通过热泵技术将它们转化为高位能,直接为人们所利用,并通过利用这些转化来的高位能进行工作作业,来有效的减少煤炭、燃气、电能以及石油这类有限的高位能,以此实现节约环保的目的,并有利于我国高位能资源的可持续利用。
矿物资源越来越匮乏,环境污染越来越严重的情况下,合理有效的将低位能转化为高位能的热泵技术也将更广泛的得到应用。
空气源热泵的历史是非常悠久的,压缩式是最早研究发现的。
但是早期由于技术能力有限,并且能源价格也不甚理想,热泵的发展受到的很大的限制,以至于从18世纪初叶,也就是1824年卡诺循环的发表就奠定了热泵研究的基础,但却因为技术及能源价格的限制因素,导致热泵的发展史非常的缓慢,但是热泵技术本身的环保及高效优势,使它有很好的发展前景。