苏教版七年级数学上学期期末试卷和答案

合集下载

苏教版七年级上册数学期末试卷测试卷附答案

苏教版七年级上册数学期末试卷测试卷附答案

苏教版七年级上册数学期末试卷测试卷附答案一、选择题1 .下列各组单项式中,是同类项的一组是()2 .如图,点A 、。

、O 在一条直线上,此图中大于0。

且小于180。

的角的个数是()3 .如图,AB 〃CD, NBAP=6(T — a, ( )D. 30c22一,3.3O3OO3OOO3…,一区-053.14,其中是无理数有() 76 .在5x5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平 移方法是()7 .如图,若将三个含45。

的直角三角板的直角顶点重合放置,则N1的度数为()A. 3x 3y 与 3xy 3B. 2ab2与-3a2bC. a?与 b?D. 2xy 与3 yx A. 3个B. 4个c. 5个 D. 6个 A.1个 2x-l5.方程j —B. 2个3 -x c. 3个 D. 4个丁去分母后正确的结果是() OA. 2(2〜1) = 1 —(3 T) C. 2x - 1 = 8 - (3 -B. 2(2工-1) = 8 — (3— 幻ZAPC=500 +2a, NPCD 二30。

-a.则 a 为 C. 20°A.先向下移动1格,再向左移动1格: C.先向下移动2格,再向左移动1格:B.先向下移动1格,再向左移动2格D.先向下移动2格,再向左移动2格 4.下列四个数: 1525A. 15°B. 20°C. 25° D, 30°8 .若x>y,则下列式子错误的是()x yA. x - 3>y - 3B. - 3x> - 3yC. x+3>y+3D. —>y9 . 一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小 明同学在解此题的时候,设标价为X 元,列出如下方程:0.8x —20 = 0.6/+10.小明同 学列此方程的依据是()A.商品的利润不变 C.商品的成本不变10 .如图所示的几何体的左视图是()13. 一船在静水中的速度为20km/h,水流速度为4km/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm,则下列方程正确的是()X X _X X _C. ---- 1— =5D. -------- 1 ---- = 520 420 + 4 20-414.如图1是AO 〃 8c 的一张纸条,按图1 -图2—图3,把这一纸条先沿所折叠并压 平,再沿8月折登并压平,若图3中NC 庄= 24。

苏教版七年级上册数学期末试卷及答案.docx

苏教版七年级上册数学期末试卷及答案.docx

苏教版七年级上册数学期末试卷及答案这张学期的期末考试很快就要到来,下面就是给大家带来的苏教版七年级上册数学期末试卷及答案,希望能帮助到大家!【苏教版七年级上册数学期末试卷及答案】一、选择题 ( 每小题 3 分,共 30 分) :1.下列变形正确的是 ( )A.若x2=y2,则x=yB.若,则x=yC.若x(x-2)=5(2-x),则x= -5D.若(m+n)x=(m+n)y,则x=y2.截止到 2010 年 5 月 19 日,已有 21600 名中外记者成为上海世博会的注册记者,将 21600 用科学计数法表示为 ( )A.0.216105B.21.6103C.2.16103D.2.161043.下列计算正确的是 ( )A.3a-2a=1B.x2y-2xy2= -xy2C.3a2+5a2=8a4D.3ax-2xa=ax4. 有理数 a、b 在数轴上表示如图3所示,下列结论错误的是( )A.bC. D.5.已知关于 x 的方程 4x-3m=2 的解是 x=m,则 m的值是 ( )A.2B.-2C.2或7D.-2或 76.下列说法正确的是 ( )A. 的系数是 -2B.32ab3的次数是6次C.是多项式D.x2+x-1 的常数项为 17.用四舍五入把 0.06097 精确到千分位的近似值的有效数字是( )A.0,6,0B.0,6,1,0C.6,0,9D.6,18.某车间计划生产一批零件,后来每小时多生产 10 件,用了12 小时不但完成了任务,而且还多生产了60 件,设原计划每小时生产x 个零件,这所列方程为( )A.13x=12(x+10)+60B.12(x+10)=13x+60C. D.9.如图,点 C、O、B 在同一条直线上, AOB=90,AOE=DOB,则下列结论:①EOD=90;②COE=AOD;③COE=DOB;④COE+BOD=90其.中正确的个数是 ( )A.1B.2C.3D.410.如图,把一张长方形的纸片沿着 EF 折叠,点 C、D 分别落在M、N的位置,且 MFB= MFE. 则 MFB=( )A.30B.36C.45D.72二、填空题 ( 每小题 3 分,共 18 分) :11.x的2倍与3的差可表示为.12.如果代数式 x+2y 的值是 3,则代数式 2x+4y+5 的值是 .13.买一支钢笔需要 a 元,买一本笔记本需要 b 元,那么买 m 支钢笔和 n 本笔记本需要元.14.如果 5a2bm与 2anb 是同类项,则 m+n= .15.900-46027/=,1800-42035/29= .16.如果一个角与它的余角之比为 1∶2,则这个角是度,这个角与它的补角之比是 .三、解答题 ( 共 8 小题, 72 分) :17.(共10分)计算:(1)-0.52+ ;(2) .18.(共10分)解方程:(1)3(20-y)=6y-4(y-11);(2) .19.(6分)如图,求下图阴影部分的面积.20.(7分)已知,A=3x2+3y2-5xy,B=2xy-3y2+4x2,求:(1)2A-B;(2)当x=3,y=时,2A-B的值.21.(7分)如图,已知BOC=2AOB,OD平分AOC,BOD=14,求AOB的度数22.(10分) 如下图是用棋子摆成的T 字图案 .从图案中可以看出,第 1 个T 字型图案需要 5 枚棋子,第2个T 字型图案需要 8 枚棋子,第 3 个 T 字型图案需要 11 枚棋子 .(1)照此规律,摆成第 8 个图案需要几枚棋子 ?(2)摆成第 n 个图案需要几枚棋子 ?(3)摆成第 2010 个图案需要几枚棋子 ?23.(10分)我市某中学每天中午总是在规定时间打开学校大门,七年级同学小明每天中午同一时间从家骑自行车到学校,星期一中午他以每小时15 千米的速度到校,结果在校门口等了6分钟才开门,星期二中午他以每小时9 千米的速度到校,结果校门已开了 6 分钟,星期三中午小明想准时到达学校门口,那么小明骑自行车的速度应该为每小时多少千米?根据下面思路,请完成此题的解答过程:解:设星期三中午小明从家骑自行车准时到达学校门口所用时间 t 小时,则星期一中午小明从家骑自行车到学校门口所用时间为小时,星期二中午小明从家骑自行车到学校门口所用时间为小时,由题意列方程得:24.(12分)如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示) ,点1cm/秒的速度匀速运动,点Q从点速运动 ( 点 Q运动到点 O时停止运动P 从点 O 出发,沿 OM方向以C 出发在线段CO上向点O 匀 ) ,两点同时出发 .(1)当 PA=2PB时,点 Q运动到的位置恰好是线段AB的三等分点,求点 Q的运动速度 ;(2)若点 Q运动速度为 3cm/秒,经过多长时间 P、Q两点相距70cm?(3)当点 P 运动到线段 AB上时,分别取 OP和 AB的中点 E、F,求的值 .参考答案:一、选择题: BDDCA,CDBCB.二、填空题:11.2x-3; 12.11 13.am+bn14.3 15.43033/,137024/31 16.300.三、解答题:17.(1)-6.5; (2) .18.(1)y=3.2; (2)x=-1.19. .20.(1)2x2+9y2-12xy; (2)31.21.280.22.(1)26枚;(2)因为第 [1] 个图案有 5 枚棋子,第[2] 个图案有 (5+31) 枚棋子,第[3] 个图案有 (5+32) 枚棋子,一次规律可得第 [n] 个图案有[5+3(n-1)=3n+2]枚棋子;(3)32010+2=6032(枚).23.; ;由题意列方程得:,解得:t=0.4,所以小明从家骑自行车到学校的路程为:15(0.4-0.1)=4.5(km),即:星期三中午小明从家骑自行车准时到达学校门口的速度为:4.50.4=11.25(km/h).24.(1) ①当 P 在线段 AB上时,由 PA=2PB及 AB=60,可求得:PA=40 ,OP=60,故点 P 运动时间为60 秒.若AQ= 时, BQ=40,CQ=50,点 Q的运动速度为:5060= (cm/s);若BQ= 时, BQ=20,CQ=30,点 Q的运动速度为:3060= (cm/s).②当 P 在线段延长线上时,由PA=2PB及 AB=60,可求得:PA=120 ,OP=140,故点 P 运动时间为 140 秒.若AQ= 时, BQ=40,CQ=50,点 Q的运动速度为:50140= (cm/s);若BQ= 时, BQ=20,CQ=30,点 Q的运动速度为:30140= (cm/s).(2)设运动时间为 t 秒,则:①在 P、 Q相遇前有: 90-(t+3t)=70,解得t=5秒;②在P、Q相遇后:当点Q运动到O点是停止运动时,点Q最多运动了 30 秒,而点 P 继续 40 秒时,P、Q相距 70cm,所以 t=70 秒,经过 5 秒或 70 秒时, P、 Q相距 70cm .(3)设 OP=xcm,点 P 在线段 AB 上, 20≦x≦80 ,OB-AP=80-(x-20)=100-x ,EF=OF-OE=(OA+ )-OE=(20+30)- ,(OB-AP).。

苏教版七年级上册数学期末测试卷及答案

苏教版七年级上册数学期末测试卷及答案

苏教版七年级上册数学期末测试卷及答案成功的花由汗水浇灌,艰苦的掘流出甘甜的泉,祝:七年级数学期末考试时能超水平发挥。

下面是小编为大家精心整理的苏教版七年级上册数学期末测试卷,仅供参考。

苏教版七年级上册数学期末测试题一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1093.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是35.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣﹣0.4.12.计算: = .13.若∠α=34°36′,则∠α的余角为.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= .15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= .16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= cm.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为元.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到的距离,线段是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是(用“<”号连接)26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ,理由是②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= cm OB= cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?苏教版七年级上册数学期末测试卷参考答案一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.【解答】解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°【考点】垂线.【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.【解答】解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选:B.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°【考点】平行线的判定.【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.【解答】解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.【考点】一元一次方程的解.【专题】计算题;应用题.【分析】使方程两边左右相等的未知数叫做方程的解方程的解.【解答】解:把x=m代入方程得4m﹣3m=2,m=2,故选B.【点评】本题考查了一元一次方程的解,解题的关键是理解方程的解的含义.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个【考点】线段的性质:两点之间线段最短;两点间的距离;对顶角、邻补角;平行公理及推论.【分析】根据两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短可得①说法正确;根据对顶角相等可得②错误;根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行,可得说法正确;根据连接两点间的线段的长度叫两点间的距离可得④错误.【解答】解:①两点之间的所有连线中,线段最短,说法正确;②相等的角是对顶角,说法错误;③过直线外一点有且仅有一条直线与己知直线平行,说法正确;④两点之间的距离是两点间的线段,说法错误.正确的说法有2个,故选:B.【点评】此题主要考查了线段的性质,平行公理.两点之间的距离,对顶角,关键是熟练掌握课本基础知识.10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上【考点】规律型:数字的变化类.【分析】分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.【解答】解:由图可知OA上的点为6n,OB上的点为6n+1,OC上的点为6n+2,OD上的点为6n+3,OE上的点为6n+4,OF上的点为6n+5,(n∈N)∵2016÷6=336,∴2016在射线OA上.故选A.【点评】本题的数字的变换,解题的关键是根据图形得出每条射线上数的特点.二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣> ﹣0.4.【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣ |= ,|﹣0.4|=0.4,∵ <0.4,∴﹣ >﹣0.4.故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.计算: = ﹣.【考点】有理数的乘方.【分析】直接利用乘方的意义和计算方法计算得出答案即可.【解答】解:﹣(﹣ )2=﹣ .故答案为:﹣ .【点评】此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.13.若∠α=34°36′,则∠α的余角为55°24′.【考点】余角和补角;度分秒的换算.【分析】根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算.【解答】解:∠α的余角为:90°﹣34°36′=89°60′﹣34°36′=55°24′,故答案为:55°24′.【点评】此题主要考查了余角,关键是掌握余角定义.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= 1 .【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.【解答】解:∵﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,∴2m+1=3m﹣1,10+4n=6,∴n=﹣1,m=2,∴m+n=2﹣1=1.故答案为1.【点评】本题考查同类项的定义、方程思想及负整数指数的意义,是一道基础题,比较容易解答.15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= 0 .【考点】实数与数轴.【专题】计算题.【分析】先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、a﹣b、c+b的符号,再化简绝对值即可求解.【解答】解:由上图可知,c∴a+c<0、a﹣b>0、c+b<0,所以原式=﹣(a+c)+a﹣b+(c+b)=0.故答案为:0.【点评】此题主要看错了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是1 .【考点】代数式求值.【专题】计算题.【分析】先变形(x+y)2﹣x﹣y+1得到(x+y)2﹣(x+y)+1,然后利用整体思想进行计算.【解答】解:∵x+y=1,∴(x+y)2﹣x﹣y+1=(x+y)2﹣(x+y)+1=1﹣1+1=1.故答案为1.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为 2 .【考点】同解方程.【分析】根据解一元一次方程,可得x的值,根据同解方程的解相等,可得关于m的方程,根据解方程,可得答案.【解答】解:由2(2x﹣1)=3x+1,解得x=3,把x=3代入m=x﹣1,得m=3﹣1=2,故答案为:2.【点评】本题考查了同解方程,把同解方程的即代入第二个方程得出关于m的方程是解题关键.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= 13或7 cm.【考点】两点间的距离.【专题】计算题.【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=26cm,∵M是线段AC的中点,则AM= AC=13cm;②当点C在线段AB上时,AC=AB﹣BC=14cm,∵M是线段AC 的中点,则AM= AC=7cm.故答案为:13或7.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为240 元.【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品每件的进价为x元,根据题意得:330×80%﹣x=10%x,解得:x=240,则这种商品每件的进价为240元.故答案为:240【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为 2.5 cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.【考点】展开图折叠成几何体.【分析】利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.【解答】解:设粗黑实线剪下4个边长为xcm的小正方形,根据题意列方程2x=10÷2解得x=2.5cm,故答案为:2.5.【点评】本题考查了展开图折叠成几何体,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.【考点】有理数的混合运算.【分析】利用有理数的运算法则计算.有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号(或绝对值)时先算.【解答】解:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|=﹣1﹣÷3×|3﹣9|=﹣1﹣× ×6=﹣1﹣1=﹣2.【点评】本题考查的是有理数的运算法则.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.【考点】解一元一次方程.【分析】去分母,去括号,移项,合并同类项,系数化一.【解答】解:(1)4﹣x=3(2﹣x),去括号,得4﹣x=6﹣3x,移项合并同类项2x=2,化系数为1,得x=1;(2) ,去分母,得3(x+1)﹣(2﹣3x)=6去括号,得3x+3﹣2+3x=6,移项合并同类项6x=5,化系数为1,得x= .【点评】本题考查解一元一次方程,关键知道去分母,去括号,移项,合并同类项,系数化一.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)原式合并后,根据代数式的值与字母x无关,得到x 一次项与二次项系数为0求出a与b的值即可;(2)原式利用完全平方公式化简后,将a与b的值代入计算即可求出值.【解答】解:(1)原式=(6﹣2a)x2+(b+1)x+4y+4,根据题意得:6﹣2a=0,b+1=0,即a=3,b=﹣1;(2)原式=(a﹣b)2=42=16.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到直线OA 的距离,线段PC的长是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是PH【考点】垂线段最短;点到直线的距离;作图—基本作图.【专题】作图题.【分析】(1)(2)利用方格线画垂线;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA 的距离,线段OP的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PC、PH、OC的大小关系.【解答】解:(1)如图:(2)如图:(3)直线0A、PC的长.(4)PH【点评】本题考查了垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.也考查了点到直线的距离以及基本作图.26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?【考点】一元一次方程的应用.【分析】首先设该旅游团入住的三人普通间数为x,根据题意表示出双人豪华间数为,进而利用该旅游团当日住宿费用共计4020元,得出等式求出即可.【解答】解:设该旅游团入住的三人普通间数为x,则入住双人豪华间数为 .根据题意,得160x+300× =4020.解得:x=12.从而 =7.答:该旅游团入住三人普通间12间、双人豪华间7间.(注:若用二元一次方程组解答,可参照给分)【点评】此题主要考查了一元一次方程的应用,根据题意表示出双人豪华间数进而得出等式是解题关键.27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ∠AOD=∠BOC,理由是同角的余角相等②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45 °,∠COD和∠AOB互余.【考点】余角和补角.【分析】(1)①根据同角的余角相等解答;②表示出∠AOD,再求出∠COD,然后整理即可得解;(2)根据(1)的求解思路解答即可.【解答】解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.【点评】本题考查了余角和补角,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= 8 cm OB= 4 cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?【考点】一元一次方程的应用;数轴.【分析】(1)由于AB=12cm,点O是线段AB上的一点,OA=2OB,则OA+OB=3OB=AB=12cm,依此即可求解;(2)根据图形可知,点C是线段AO上的一点,可设CO的长是xcm,根据AC=CO+CB,列出方程求解即可;(3)①分0≤t<4;4≤t<6;t≥6三种情况讨论求解即可;②求出点P经过点O到点P,Q停止时的时间,再根据路程=速度×时间即可求解.【解答】解:(1)∵AB=12cm,OA=2OB,∴OA+OB=3OB=AB=12cm,解得OB=4cm,OA=2OB=8cm.故答案为:8,4;(2)设CO的长是xcm,依题意有8﹣x=x+4+x,解得x= .故CO的长是 cm;(3)①当0≤t<4时,依题意有2(8﹣2t)﹣(4+t)=4,解得t=1.6;当4≤t<6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8(不合题意舍去);当t≥6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8.故当t为1.6s或8s时,2OP﹣OQ=4;②[4+(8÷2)×1]÷(2﹣1)=[4+4]÷1=8(s),3×8=24(cm).答:点M行驶的总路程是24cm.【点评】本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.注意(3)①需要分类讨论.。

苏教版七年级数学上册期末试卷及答案【完美版】

苏教版七年级数学上册期末试卷及答案【完美版】

苏教版七年级数学上册期末试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 42.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b3.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是()A.、1个B.2个C.3个D.4个4.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-15.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A .x >2B .x <2C .x >﹣1D .x <﹣16.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折9.一次函数满足,且随的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 10.如图,////OP QR ST 下列各式中正确的是( )A .123180∠+∠+∠=B .12390∠+∠-∠=C .12390∠-∠+∠=D .231180∠+∠-∠=二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A,B,C三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE∥CD),若∠A=120°,∠B=150°,则∠C的度数是________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.若x2+kx+25是一个完全平方式,则k的值是__________.5.若一个数的平方等于5,则这个数等于________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3 759 x yx y-=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31 x yx y⎧+=⎪⎨⎪+-=⎩2.化简求值:已知:(x﹣3)2+|y+13|=0,求3x2y﹣[2xy2﹣2(xy232x y-)+3xy]+5xy2的值.3.如图,已知点A(-2,3),B(4,3),C(-1,-3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上,当三角形ABP的面积为6时,请直接写出点P的坐标.4.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC,(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.5.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、D6、B7、B8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、150°3、135°4、±10.5、6、48三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、2.3、(1)3;(2)18;(3)(0,5)或(0,1).4、(1)略;(2) 50°5、(1)150,(2)36°,(3)240.6、略。

苏教版七年级数学上册期末测试卷(及参考答案)

苏教版七年级数学上册期末测试卷(及参考答案)

苏教版七年级数学上册期末测试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙3.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A .x =-4B .x =-3C .x =-2D .x =-14.如图,若AB ,CD 相交于点O ,∠AOE =90°,则下列结论不正确的是( )A .∠EOC 与∠BOC 互为余角B .∠EOC 与∠AOD 互为余角 C .∠AOE 与∠EOC 互为补角 D .∠AOE 与∠EOB 互为补角5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .507.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个8.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( )A .1个B .2个C .3个D .4个9.已知x a =3,x b =4,则x 3a-2b 的值是( )A .278B .2716C .11D .1910.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =________.5.364的平方根为________.6.已知13aa+=,则221+=aa__________;三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4935x yx y-+=⎧⎨+=⎩(2)3224()5()2x yx y x y+=⎧⎨+--=⎩2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D,(1)∠CBD=(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.4.如图,在三角形ABC中, D,E,F三点分别在AB,AC,BC上,过点D的直线与线段EF的交点为点M,已知2∠1-∠2=150°,2∠ 2-∠1=30°. (1)求证:DM∥AC;(2)若DE∥BC,∠C =50°,求∠3的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、B6、C7、B8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、a+c3、135°4、2 35、±26、7三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)71xy=⎧⎨=⎩2、3 53、(1)60°;(2)30°;(3)不变.4、(1)证明略(2)50°5、(1)作图见解析;(2)120.6、(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.。

最新苏教版七年级数学上册期末考试卷及答案【完整版】

最新苏教版七年级数学上册期末考试卷及答案【完整版】

最新苏教版七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.已知x 是整数,当30x 取最小值时,x 的值是( )A .5B .6C .7D .86.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=,B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3a 的平方根是3±,则a =_________。

苏科版数学初一上学期期末试题与参考答案(2024-2025学年)

苏科版数学初一上学期期末试题与参考答案(2024-2025学年)

2024-2025学年苏科版数学初一上学期期末复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题目:若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为多少cm?选项:A、24cmB、26cmC、28cmD、30cm2、题目:已知一个长方形的长为6cm,宽为4cm,那么它的面积是多少平方厘米?选项:A、20cm²B、24cm²C、30cm²D、36cm²3、下列各数中,比-2大的数是()。

A、-3B、-1C、0D、-44、如果一个数的相反数是它本身,那么这个数是()。

A、0B、1C、-1D、不存在5、(选择题)小明家养了若干只兔子,如果5周增长率为20%,则 growth_rate 表示兔子的增长率为:A. 20%B. 25%C. 33.3%D. 50%6、(选择题)一个长方形的周长是24cm,且长是宽的两倍,那么这个长方形的面积是:A. 12平方厘米B. 16平方厘米C. 18平方厘米D. 24平方厘米7、若一个正方形边长增加了原来的50%,则面积增加了多少百分比?A. 50%B. 100%C. 125%D. 225%8、下列哪组数能构成直角三角形的三边长?A. 5, 12, 13B. 7, 10, 12C. 8, 15, 17D. 9, 12, 159、在直角坐标系中,点A的坐标是(-3,4),点B的坐标是(2,-1),则线段AB 的中点坐标是()。

A.(-0.5,1.5)B.(-1,2)C.(-0.5,-2)D.(1,2) 10、已知函数f(x) = 2x - 3,若f(a) = 1,则a的值为()。

A. 1B. 2C. 3D. 4二、填空题(本大题有5小题,每小题3分,共15分)1、一个长方形的长是8cm,宽是3cm,那么它的周长是_______cm。

2、一个正方形的边长增加了20%,那么它的面积增加了 _______%。

苏教版数学七年级上册 期末试卷测试卷(含答案解析)

苏教版数学七年级上册 期末试卷测试卷(含答案解析)

苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题 1.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=- 2.下列运用等式的性质,变形不正确的是:A .若x y =,则55x y +=+B .若x y =,则ax ay =C .若x y =,则x y a a= D .若a b c c=(c ≠0),则a b = 3.用代数式表示“a 的2倍与b 的差的平方”,正确的是( )A .22(a b)-B .22a b -C .2(2a b)-D .2(a 2b)- 4.在55⨯方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( ) (1)(2)A .先向下移动1格,再向左移动1格;B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格:D .先向下移动2格,再向左移动2格5.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°6.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角D .EOD ∠与BOC ∠是对顶角 7.下列图形,不是柱体的是( )A .B .C .D .8.下列各式进行的变形中,不正确的是( )A .若32a b =,则3222a b +=+B .若32a b =,则3525a b -=-C .若32a b =,则23a b = D .若32a b =,则94a b = 9.若x ,y 满足等式x 2﹣2x =2y ﹣y 2,且xy =12,则式子x 2+2xy +y 2﹣2(x +y )+2019的值为( )A .2018B .2019C .2020D .202110.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( )A .-4B .-2C .2D .4 11.下列合并同类项正确的是( )A .2x +3x =5x 2B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=0 12.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .13.下列运用等式的性质,变形不正确的是:A .若x y =,则55x y +=+B .若x y =,则ax ay =C .若x y =,则x y a a =D .若a b c c=(c ≠0),则a b = 14.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒15.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D . 二、填空题16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.17.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、.(1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .18.已知22m n -=-,则524m n -+的值是_______.19.实数a ,b ,c 在数轴上的对应点的位置如图所示,化简b c c a b -+--的结果是________.20.将一副三角板如图放置(两个三角板的直角顶点重合),若28β∠=︒,则α∠=______︒.21.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.22.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______.23.程序图的算法源于我国数学名著《九章算术》,如图所示的程序图,当输入x 的值为12时,输出y 的值是8,则当输入x 的值为﹣12时,输出y 的值为__.24.比较大小:227-__________3-. 25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.将正整数1至2019按照一定规律排成下表:记a ij 表示第i 行第j 个数,如a 14=4表示第1行第4个数是4.(1)直接写出a 35= ,a 54= ;(2)①若a ij =2019,那么i = ,j = ,②用i ,j 表示a ij = ; (3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2026.若能, 求出这5个数中的最小数,若不能请说明理由.27.已知平面上点,,,A B C D .按下列要求画出图形:(1)画直线AC ,射线BD ,交于点O ;(2)比较两角的大小:AOD ∠___________BOC ∠,理由是___________;(3)画出从点A 到CD 的垂线段AH ,垂足为H .28.解方程:(1)-5x +3=-3x -5;(2)4x -3(1-x )=11.29.解下列方程:(1)3(45)7x x --=;(2)5121136x x +-=-. 30.同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:(概念认识)已知点P和图形M,点B是图形M上任意一点,我们把线段PB长度的最小值叫做点P与图形M之间的距离.例如,以点M为圆心,1cm为半径画圆如图1,那么点M到该圆的距离等于1cm;若点N是圆上一点,那么点N到该圆的距离等于0cm;连接M N,若点Q为线段M N中点,那么点Q到该圆的距离等于0.5cm,反过来,若点P到已知点M的距离等于1cm,那么满足条件的所有点P就构成了以点M为圆心,1cm为半径的圆.(初步运用)(1)如图 2,若点P到已知直线m的距离等于1cm,请画出满足条件的所有点P.(深入探究)(2)如图3,若点P到已知线段的距离等于1cm,请画出满足条件的所有点P.(3)如图 4,若点P到已知正方形的距离等于1cm,请画出满足条件的所有点P.31.如图,A、B、C是正方形网格中的三个格点.(1)①画射线AC;②画线段BC;③过点B画AC的平行线BD;④在射线AC上取一点E,画线段BE,使其长度表示点B到AC的距离;(2)在(1)所画图中,①BD与BE的位置关系为;②线段BE与BC的大小关系为BE BC(填“>”、“<”或“=”),理由是.32.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC为含60°角的直角三角板,三角形BDE为含45°角的直角三角板.(1)如图1,若点D在AB上,则∠EBC的度数为;(2)如图2,若∠EBC=170°,则∠α的度数为;(3)如图3,若∠EBC=118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE-∠DBC的度数.33.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010-2011学年度第一学期期末考试
七年级数学试题
(时间:90分钟;满分:120分)
一、选择题(本大题有10小题,每小题3分,共30分。

在每小题所给出的四个选项中,只有一项是符合题目要
求的,请将正确选项前的字母代号填写在答题栏内)
1、12
--的相反数是( )
A 、2
B 、-2
C 、1
2- D 、12
2、我国国民生产总值达到11.69万亿..元,人民生活总体达到小康水平。

其中11.69万亿..
元用科学记数法表示应为( ) A .1.169×1013 B .1.169×1014 C .11.69×1013 D .0.1169×1014 3、实数a 、b 在数轴上的位置如图所示,则化简a b a -+的结果为( )
A 、b a +2
B 、b -
C 、b a --2
D 、 b
4、一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )
A 、120元;
B 、125元;
C 、135元;
D 、140元. 5、如果单项式-22m x y +与n x y 的和仍然是一个单项式,则m 、n 的值是( )
A 、m = 2,n = 2;
B 、m =-2,n = 2;
C 、m = -1,n = 2;
D 、m = 2 ,n =-1。

学校 班级 姓名 考号
……………….密.....................封…………………线…………………内…………………请………………….勿………………….答………………..卷…………….
6、x=1是方程3x —m+1=0的解,则m 的值是( )
A .-4
B .4
C .2
D .-2 7、下列图形中,线段PQ 的长表示点P 到直线MN 的距离是( )
8、如下图所示的立方体,如果把它展开,可以是下列图形中的( )
9、如果a,b 互为相反数,x,y 互为倒数,则()174
2
a b xy ++的值是( )
A .2 B. 3 C. 3.5 D. 4
10、点C 在线段AB 上,下列条件中不能确定....点C 是线段AB 中点的是( ) A .AC =BC
B .A
C + BC= AB C .AB =2AC
D .BC =2
1AB
二、 填空题(本大题有8小题,每小题3分,共24分)
11、一个多项式加上22x x -+-得到12-x ,则这个多项式是 . 12、一个角的补角是它的余角的3倍,则这个角是 。

13、如果关于x 的方程2x +1=3和方程03
2=--
x
k 的解相同,那么k 的值为________ .
14、将一张长方形纸片按如图所示的方式折叠,BC 、
BD 为折线,则∠CBD 为 度。

15、点A 、B 、C 在直线l 上,AB = 4cm ,BC = 6cm ,
点E 是AB 中点,点F 是BC 的中点,EF= 。

16、若x x 22+的值是6,则5632-+x x 的值是 。

17、某校女生占全体学生人数的52%,比男生多80人。

若设这个学校的学生数为x ,那么可出列方程 .
18、用小立方块积木塔出一个主视图和俯视图如图所示的几何体,它最少需要 块小正方体积木,最多需要 块小正方体积木。

主视图 俯视图
三、解答题(本大题有4题,19-20题每题
6分,第21题8分,22题10分,共30分。

解答时应写出文字说明、说理过程或演算步骤)
19 、 计算:22138(3)2()42()4
2
3
-÷⨯-++÷-
解:
20、 解方程
2151
136
x x +--= 解:
21、 先化简,再求值:
)3123()31(22
122n m n m m ----,其中1,31
-==n m
解:
22、(1)(4分)左下图是有几个大小完全一样的小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,请你画出该几何体的主视图和左视图.
(2) (6分)如图,点P 是AOB 的边OB 上的一点
①过点P 画OB 的垂线,交OA 于点C
②过点P 画OA 的垂线,垂足为H
③线段PH 的长度是点P 到 的距离, 是点C 到直线OB 的距离。

因为 所以线段PC 、PH 、OC 这三条线段大小关系是 (用“<”号连接)
(23--25题每题8分,共24分)
23、“五一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?
1
2
123主视图 左视图
24.如图,正方形的边长为x ,用代数式表示图中阴影部
分的面积,并计算当4=x 时,阴影部分的面积.(π取3.14)
25.如图所示,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线, (1)如果∠AOC=28°,∠MON=35°,求出∠AOB 的度数; (2)如果∠MON=n °,求出∠AOB 的度数;
(3)如果∠MON 的大小改变, ∠AOB 的大小是否随之改变?它们之间有怎样的大小关系?请写出来.
M N O
A
C
B
X
26、充满信心,成功在望(共12分)
请根据图中提供的信息,回答下列问题 : (1)一个暖瓶与一个水杯分别是多少元?
(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定: 这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯。

若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.
38元 84元
2010-2011学年度第一学期期末考试
七年级数学参考答案
11、2x 2-x+1 12、45o 13、7 14、90o 15、5cm 或1cm 16、13 17、52%x-48%x=80 18、7;9
三、解答题
19、解: 22138(3)2()42()423-÷⨯-++÷-
433
9()44()928
=⨯⨯-++⨯- …………………………(3
分)
3
642322
=-+-
=--
7
2
=-
……………………………………………(6分)
20、解:
2151
136
x x +--= 去分母,得 2(21)(51)6x x +--=, …………………(2分) 去括号,得 42516x x +-+=, ……………………(4分) 移项及合并,得 3x -=,
系数化为1,得 3x =-. …………………………(6分)
21、解:原式=22123122
3
2
3
m m n m n -+-+ ……3分 =23m n -+ ……5分 当1,13m n ==-时, 原式=21
3(1)3-⨯+-
=0 ……8分
22、(1)图略(2)①图略②图略
③OA ;CP ;直线外一点与直线上各点连接的所有线段中,垂线段最
短,简称“垂线段最短”;PH<PC<OC
23、解:设哥哥追上弟弟需要x 小时,由题意得: x x 226+= ……4分
解这个方程得:
2
1=x ……6分
所以,弟弟行走了2
11+小时小于1小时45分,未到外婆家,哥哥能够追上。

……8分 24、解:阴影部分的面积为:
2222()2
4
x x x x π
π-⨯=- ……4分
当4x =时,阴影部分的面积为:22
3.14444
-
⨯= 3.44 ……8分 25、(1)70° …………2分 (2)2n ° …………5分
(3)∠AOB 随∠MON 大小的改变而改变, ∠AOB=2∠MON. ……8分 26、(1)解:设一个暖瓶x 元,则一个水杯为(38-x)元, 根据题意得:
2x +3(38-x )=84 ……2分 解得 x=30 38-30=8 ……4分 答:一个暖瓶30元,一个水杯8元 ……5分 (2)若到甲商场购买,则所需的钱数为:
(4×30+15×8)×90%=216(元) ……8分
若到乙商场购买,则所需的钱数为:
4×30+(15-4)×8=208(元)……11分因为 208<216 所以,到乙家商场购买更合算……12分。

相关文档
最新文档