《数学分析选讲》 第一次主观题 作业
西南大学网络教育2020年春0088]《数学分析选讲》作业标准答案
![西南大学网络教育2020年春0088]《数学分析选讲》作业标准答案](https://img.taocdn.com/s3/m/79951822b84ae45c3b358cd5.png)
《数学分析选讲》作业西南大学网教2020年春2、下列结论中正确的是()22、定义域为[1,2],值域为(-1,1)的连续函数()24、若数列{an} 有极限a,则在a 的r(r>0) 邻域之外,数列中的点()27、若函数在[a,b]上可积,则该函数在[a,b]上有界.29、若实数A是非空数集S的下确界,则A一定是S的下界.31、任一实系数奇次方程至少有一个实根.32、有上界的非空数集必有上确界;有下界的非空数集必有下确界.33、若函数在某点处连续,则函数在该点处可导.34、若f在区间I上不连续,则f在I上一定不存在原函数。
35、若函数发f在[a,b]上连续,则f在[a,b]上存在原函数.37、初等函数在其定义区间上连续.38、若实数a是非空数集S的上确界,则a一定是S的上界.43、若数列{an} 收敛,则数列{an}有界.45、若函数在[a,b]上有无限多个间断点,则该函数在[a,b]上一定不可积.46、基本初等函数在其定义域内是连续的.48、若f、g在[a,b]上的可积,则fg在[a,b]上也可积49、若f在区间I上连续,则f在I上存在原函数。
50、若函数f在数集D上的导函数处处为零,则f在数集D上恒为常数。
51、实轴上的任一有界无限点集至少有一个聚点52、可导的偶函数,其导函数必是奇函数53、若函数在某点可导,则在该点的左右导数都存在54、区间上的连续函数必有最大值55、若函数在某点可导,则在该点连续56、若f(x)在c处连续,则f(x)在c处一定可导.57、若两个函数在区间I上的导数处处相等,则这两个函数必相等58、函数f(x)=3sinx-cosx 既不是奇函数,也不是偶函数.59、若f(x)在[a,b]上有界,则f(x)在[]a,b上可积.62、若非空数集S没有上确界,则S无界。
2013春福师《数学分析选讲》在线作业一答案

2013春福师《数学分析选讲》在线作业一答案请同学及时保存作业,如您在20分钟内不作操作,系统将自动退出。
/wEPDwUJNDAyNj福师《数学分析选讲》在线作业一试卷总分:100 测试时间:--•单选题一、单选题(共 50 道试题,共 100 分。
)V1.如题A. AB. BC. CD. D满分:2 分2.如题A. AB. BC. CD. D满分:2 分3.A. AB. BC. CD. D满分:2 分4. 如图所示A.B.C.D.满分:2 分5.如题A. AB. BC. CD. D满分:2 分6.A.B.C.D.满分:2 分7.如题A. AB. BC. CD. D满分:2 分8.如题A. AB. BC. CD. D满分:2 分9.如题A. AB. BC. CD. D满分:2 分10. 题目如图A. 0B. 1C. 2D. 3满分:2 分11. 题面见图片A.B.C.D.满分:2 分12.题目如图A.B.C.D.满分:2 分13.如题A. AB. BC. CD. D满分:2 分14.如题A. AB. BC. CD. D满分:2 分15. 如图所示A.B.C.D.满分:2 分16.如题A. AB. BC. CD. D满分:2 分17. 如图所示A.B.C.D.满分:2 分18.如题A. AB. BC. CD. D满分:2 分19.如题A. AB. BC. CD. D满分:2 分20.如题A. AB. BC. CD. D满分:2 分21.如题A. AB. BC. CD. D满分:2 分22.如题A. AB. BC. CD. D满分:2 分23.如题A. AB. BC. CD. D满分:2 分24.如题A. AB. BC. CD. D满分:2 分25. 题面见图片A.B.C.D.满分:2 分26.A. AB. BC. CD. D满分:2 分27.A.B.C.D.满分:2 分28.A. AB. BC. CD. D满分:2 分29.如题A. AB. BC. CD. D满分:2 分30. 题面见图片A.B.C.D.满分:2 分31. 如图所示A.B.C.D.满分:2 分32.如题A. AB. BC. CD. D满分:2 分33.如题A. AB. BC. CD. D满分:2 分34.如题A. AB. BC. CD. D满分:2 分35.A. AB. BC. CD. D满分:2 分36.如题A. AB. BC. CD. D满分:2 分37.如题A. AB. BC. CD. D满分:2 分38.如题A. AB. BC. CD. D满分:2 分39.如题A. AB. BC. CD. D满分:2 分40.如题A. AB. BC. CD. D满分:2 分41.如题A. AB. BC. CD. D满分:2 分42.A. AB. BC. CD. D满分:2 分43.如题A. AB. BC. CD. D满分:2 分44.如题A. AB. BC. CD. d满分:2 分45.如题A. AB. BC. CD. D满分:2 分46.A. AB. BC. CD. D满分:2 分47.如题A. AB. BC. CD. D满分:2 分48.如题A. AB. BC. CD. D满分:2 分49. 如图所示A.B.C.D.满分:2 分50. 题面见图片A.B.C.D.满分:2 分请同学及时保存作业,如您在20分钟内不作操作,系统将自动退出。
福建师范大学《数学分析选讲》考试大纲

《数学分析选讲》考试大纲一、单项选择题1.设243)(-+=x x x f ,则当0→x 时,有( ).A .)(x f 与x 是等价无穷小B .)(x f 与x 同阶但非是等价无穷小C .)(x f 是比x 高阶的无穷小D .)(x f 是比x 低阶的无穷小 答案:B 2. 设函数111()1xx e f x e -=+,则0x =是()f x 的( )A .可去间断点B .第二类间断点C .跳跃间断点D .连续点 答案:C3. 22lim (1)n nn→∞+等于( ).A . 221ln xdx ⎰B .212ln xdx ⎰C .212ln(1)x dx +⎰ D .221ln (1)x dx +⎰答案:B4. (,)z f x y =在点(,)x y 处偏导数连续是(,)f x y 在该点连续的( )条件.A .充分非必要 B.必要非充分 C.充分必要 D.既不充分也不必要 答案:A5. 如果级数1n n u ∞=∑和1n n v ∞=∑均发散,则以下说法正确的是( ).A. 1()n n n u v ∞=±∑一定都收敛 B. 1()n n n u v ∞=±∑一定都发散C. 1()n n n u v ∞=-∑可能收敛,但1()n n n u v ∞=+∑一定发散D. 1()n n n u v ∞=±∑都可能收敛答案:D6. 设232)(-+=x x x f ,则当0→x 时,有( )A .)(x f 与x 是等价无穷小 B. )(x f 与x 是同阶但非等价无穷小 C. )(x f 是比x 高阶的无穷小 D. )(x f 是比x 低阶的无穷小答案;B 7. 设arctan (),xf x x=则0x =是()f x 的( ) A. 连续点 B. 可去间断点 C.跳跃间断点 D. 第二类间断点 答案:B8. 下列极限计算中,正确的是( )A .01lim(1)x x e x +→+= B. 01lim(1)1x x x +→+= C. 1lim(1)x x e x →∞-=- D. 1lim(1)x x e x -→∞+=答案:B9. 设函数)(x f 在0x 处可导,且2)(0'=x f ,则=--→hx f h x f h )()(lim000( )A.21 B. 2 C. 21- D. -2 答案:D10. 下列反常积分中收敛的是 ( ) A. 211x dx x +∞+⎰B. 1+∞⎰12011sin dx x x ⎰ D. 10ln xdx ⎰答案:D11. 函数()y f x =,若0000()(2)3,|limx x h f x f x h dy h=→--==则( )A. 32dx B.32dx - C.3dx D.3dx -答案:A12. 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且224(,)(0,0)(,)lim1()x y f x y xyx y →-=+,则下述四个选项中正确的是 ( ). A .点(0,0)不是(,)f x y 的极值点 B. 点(0,0)是(,)f x y 的极小值点 C. 点(0,0)是(,)f x y 的极大值点D. 根据所给条件无法判断点(0,0)是否是(,)f x y 的极值点 答案:A13. lim →∞n 等于( ) A. 1ln ⎰xdx B. 0ln +∞⎰xdx C. 1⎰xdx D. 0+∞⎰xdx .答案:A14.设)(x f 在],[b a 上连续,则0[()]xd f t dt dx -⎰等于( )A. ()f x -B. ()f x -C. ()f x --D. ()f x 答案:A15.下列结论正确的是( ).A. 若0()f x dx +∞⎰和0()f x dx -∞⎰均发散,则()f x dx +∞-∞⎰一定发散;B. 若0()f x dx +∞⎰发散,0()g x dx +∞⎰发散,则0[()()]f x g x dx +∞+⎰一定发散; C. 若0()f x dx +∞⎰发散,0()g x dx +∞⎰发散,则0()()f x g x dx +∞⎰一定发散; D. 若0()f x dx +∞⎰收敛,0()g x dx +∞⎰发散,则0()()f x g x dx +∞⎰一定发散.答案:A16.lim →∞n 等于( ) A. 1ln ⎰xdx B. 0ln +∞⎰xdx C. 1⎰xdx D. 0+∞⎰xdx .答案:A 17. 函数2ln(1)y x =+单调增加且图形为凹的区间是( ).A. (,1)-∞-B. (1,0)-C. (0,1)D. (1,)+∞答案:C18. 设二元函数(,)f x y 存在偏导数,则00000(2,)(,)lim x f x x y f x x y x∆→+∆--∆=∆( ).A. 0B. 00(,)x f x x y +∆C. 002(,)x f x yD. 003(,)x f x y 答案;D19. 若24()f x dx x C '=+⎰,则)(x f =( )A .2x C + B. 33x C + C.5285x C + D. 4x C +答案:C20. 部分和数列}{n S 有界是正项级数∑∞=1n n u 收敛的( )条件A. 充分非必要B. 必要非充分C.充分必要D.非充分非必要 答案:C21.当0→x 时,x x sin -与x 比较是( ).A.等价无穷小B.高阶无穷小C.低阶无穷小D.同阶无穷小 答案:B22. 设32()431f x x x x =+--,则方程()0f x =( ). A.在(0,1)内没有实根 B.在(1,0)-内没有实根C.在(,0)-∞内有两个不同的实根D.在(0,)+∞内有两个不同的实根 答案:C23. 设32,1()3,1x x f x x x ⎧≤⎪=⎨⎪>⎩,则()f x 在1x =处的( ).(A )左右导数都存在(B )左导数存在,右导数不存在 (C )左右导数都不存在(D ) 左导数不存在,右导数存在 答案:B24. 0()0f x '=是()f x 在0x x =取得极值的( ). A .充分非必要条件 B .必要非充分条件 C .充分且必要条件 D .既非充分又非必要条件 答案:D25. 设()f x 和()g x 均为区间I 内的可导函数,则在I 内,下列结论正确的是( ).A .若()()f x g x =, 则()()f x g x ''= B. 若()()f x g x ''=,则()()f x g x = C. 若()()f x g x >,则 ()()f x g x ''> D. 若()()f x g x ''>,则()()f x g x > 答案:A26.()f x 在[,]a b 有界是()f x 在[,]a b 可积的( ).A. 充分非必要条件B. 必要非充分条件C. 充分且必要条件D. 既非充分又非必要条件 答案:B27. 设()f x 为可导函数,且满足0(1)(1)13lim x f f x x →--=,那么曲线()y f x =在点(1,(1))f 处的切线斜率为 ( )A. 3B. 3-C. 1D. 1-答案:A二、判断题:以下各题若正确请在( )内填“√”, 若错误填“×”. 1. 若{}n x 不是无穷大量,则{}n x 必存在收敛子列. ( ) 答案:√2.)(x f 在],[b a 上连续是⎰ba dx x f )(存在的充要条件 . ( )答案:×3. 若()f x 是初等函数,其定义域为(,)a b ,0(,)x a b ∈,则00lim ()()x x f x f x →= .( ) 答案:√4. 若(1,2)n n u v n ≤=,级数1n n v ∞=∑收敛,则1n n u ∞=∑不一定收敛.( )答案:√5. 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且224(,)(0,0)(,)lim1()x y f x y xyx y →-=+,则点(0,0)是(,)f x y 的极小值点. ( ) 答案:×6.若{}n x 不是无穷大量,则{}n x 任一子列均不是无穷大量. ( ) 答案:×7. 若函数()f x 在[,]a b 上可积,则()f x 在[,]a b 上也可积. ( ) 答案:×8. 当0x x →时,()f x 不以A 为极限,则存在00{},(1,2),()n n n x x x n x x n ≠=→→∞,使{()}n f x 不以A 为极限.( ) 答案:√9. 若lim 0n n u →∞=,则级数1n n u ∞=∑收敛但和不一定是0 . ( )答案:×10. 对),(y x f z =, 偏导数连续,则全微分存在. ( ) 答案:√11.若{}n x 不是无穷大量,则{}n x 必存在有界子列. ( ) 答案:√12. 若函数()f x 在[,]a b 上可积,而()g x 只在有限个点上与()f x 的取值不相同,则()g x 在[,]a b 上也可积,且有()()bbaaf x dxg x dx =⎰⎰.( )答案:√13.若()f x 在点0x 连续,则()f x 在0x 既是右连续,又是左连续. ( ) 答案:×14. 函数21xx-展开成x 的幂级数为210,1n n x x ∞+=<∑. ( )答案:√15.二元函数22220(,)0,0x y f x y x y +≠=+=⎩,在点(0,0)处连续,偏导数存在.( ) 答案:√ 三、填空题1、若20(23)0kx x dx -=⎰,则k 的值为 .答案:0或12、设21(2021)n n x ∞=-∑收敛,则lim n n x →∞= .答案:20213、级数1nn ∞=的收敛区间是 .答案:(2,4)或[2,4)4.设21(10)n n x ∞=-∑收敛,则lim n n x →∞= .答案:105.(,)(0,0)limx y →= .答案:46.级数21nn ∞=的收敛区间是_____________.答案:(1,3)7.广义积分20110k dx x π+∞=+⎰,则1k= . 答案:58.1lim 1+xx x →∞⎛⎫= ⎪⎝⎭. 答案:e9.设21,0()0,0x x f x x x e ⎧--⎪≠=⎨⎪=⎩,则(0)f '= . 答案:1四、计算题1. 2+3200lim (sin )x x x t dtt t t dt→-⎰⎰.解 原式=++320026lim lim 12(sin )1cos xx x x x x x x x→→⋅==--2.求sin cos cos 2x x y x e π+=+ 的导数.解:cos sin ()'=-x x xe e esin sin ln sin sin ()cos n ()l ()'='=+xx x x xex x x xx cos 02'π⎛⎫= ⎪⎝⎭sin sin cos ln '()sin 所以+=-x x x xe xy x x x e . 3.求积分cot 1sin xdx x+⎰.解:cot 1sin xdx x+⎰=()sin sin 1sin d x x x +⎰=11sin sin 1sin d x x x ⎛⎫- ⎪+⎝⎭⎰=ln sin ln 1sin x x c -++ 4.将函数1()12f x x=+展成1-x 的幂级数. 解:1001111()21232(1)31(1)312(1)2()(1)(1),333nn n n n n n f x x x x x x ∞∞+=====++-+--=-=--∑∑收敛域为15 (,)22 -.五、综合题.1.241lim cos1nnnn→∞-+!. (请说明理由)答:原式=0(有界量乘以无穷小量)2. 叙述一元函数可导,可微,连续的关系.答:一元函数可导与可微是等价的,可导推出连续,连续不一定可导.(温馨提示:照抄答案,没有加入自己的答案,一律不给分。
数学分析选讲习题答案。我们学校自己编的《数学分析选讲》讲义习题解答,不要乱评论。OK?

27. 28. 29. 30. 31. 32. 33. 34. 35.
Burkill, J.C., and Burkill,H., A Second Course in Mathematical Analysis, London, Cambridge, 1970. Gelbaum, B., Problems in Analysis, New York, Springer-Verlag, 1982. Klambauer, G., Problems and Propositions in Analysis, New York, Marcel Dekker, 1979. Lang, S., Undergraduate Analysis, New York, Springer-Verlag, 1983. Pö lya, G. and Szegö , G., Problems and Theorems in Analysis, Vol.1, Berlin, Springer-Verlag, 1972. Smith, K. T., Primer of Modern Analysis, New York, Springer-Verlag, 1983. Stromberg, K.R., An Introduction to Classical Analysis, Belmont, Wadsworth, 1981. Van Rooij, A. C. M., and Schikhof, W. H. A Second Course on Real Functions, London, Cambridge, 1982. Lewin, J. W., Amer. Math. Monthly, 93(1986), 395 397.
< 1 (x12 + x1+ 1) | x n 1 | ,极限为 1. 7 n n n 14. 由平均不等式, 1 kak n !( ak )1 / n . n k 1 k 1 15. 由 F (1, y) = ½ f (y 1) = ½ y2 y + 5 得 f (t ) = t + 9, 故 xn+1 =
福师《数学分析选讲》在线作业二100分21年7月

福师《数学分析选讲》在线作业二100分21年7月一、题目描述本次在线作业涵盖了《数学分析选讲》的相关知识点,总分为100分,考察内容包括函数极限、数列极限和函数连续性等。
请在规定的时间内完成作答,并将作业提交至指定的在线平台。
二、作业要求1.作业共计10道题目,每题10分,满分为100分。
2.作答过程和结果需使用数学符号和公式进行展示,推荐使用LaTeX格式。
3.简答题可使用Markdown文本进行回答,推荐使用$\\LaTeX$数学公式表示相关计算。
4.请认真审题,按照要求进行作答。
5.请在规定时间内完成答题,并在截止时间前提交至指定的在线平台。
三、题目列表1.计算极限:$\\lim\\limits_{x\\to 0}\\frac{\\sin x}{x}$。
2.求数列极限:$\\lim\\limits_{n\\to\\infty}\\frac{n+1}{n}$。
3.判断以下函数在给定点处是否连续:$ f(x)=\begin{cases} x^2+1, & \text{if } x<0 \\ \sin x, & \text{if } x=0 \\ x^3-1, & \text{if } x>0 \\ \end{cases}, x=0$。
4.设函数$f(x)=\\sin x$,判断f(f)在$x=\\frac{\\pi}{2}$是否连续,并证明你的结论。
5.设函数$f(x)=\\begin{cases} x^2-1, & \\text{if } x<1 \\\\ x+1, & \\text{if } x\\geq 1 \\\\ \\end{cases}$,求f(f)的间断点。
6.求函数$f(x)=\\ln(\\tan x)$的间断点并证明。
7.已知函数$f(x)=\\frac{x^2}{|x|}$,判断f(f)在f= 0是否连续,并证明你的结论。
西南大学《数学分析选讲》网上作业及参考答案

===================================================================================================1:[论述题]《数学分析选讲》第一次主观题作业答案一、判断题 1.(正确) 2.( 正确 ) 3.(错误 ) 4.( 正确 ) 5.( 正确) 二、 选择题1、A2、A3、B4、B5、C6、C7、D8、D三、计算题解 1、902070902070902070583155863lim )15()58()63(lim⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=--++∞→+∞→x x x x x x x x 2、211lim()2x x x x +→∞+=-21111lim 2211xx x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⋅= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭211lim 21xx x x →∞⎛⎫+ ⎪= ⎪ ⎪-⎝⎭2(4)21[(1)]lim 2[(1)]x x x x x→∞--+- 264e e e-==. 3、解:因2n ≤++≤+1n n==, 故 21n n →∞++=+。
4、 当0x <时,有221()lim lim 11x x x x x x n n n n n f x n n n --→∞→∞--===-++;同理当0x >时,有()1f x =.而(0)0f =,所以1,0()sgn 0,01,0x f x x x x -<⎧⎪===⎨⎪>⎩。
所以0是f 的跳跃间断点.四、证明题===================================================================================================证 由b a <,有b b a a <+<2. 因为2lim ba a a n n +<=∞→,由保号性定理,存在01>N ,使得当1N n >时有2b a a n +<。
《数学分析选讲》 第一次作业解答

《数学分析选讲》 第一次作业解答一、判断下列命题的正误1. 有上界的非空数集必有上确界. (正确)2. 收敛数列必有界. (正确)3. 两个收敛数列的和不一定收敛.(错误)4.若S 为无上界的数集,则S 中存在一递增数列趋于正无穷.(正确)5.若一数列收敛,则该数列的任何子列都收敛. (正确)二、选择题1.设2,1()3,1x x f x x x -≤⎧=⎨->⎩, 则 [(1)]f f =( A ) .A 3- ;B 1- ;C 0 ;D 22.“对任意给定的)1,0(∈ε,总存在正整数N ,当N n ≥时,恒有2||2n x a ε-≤”是数列}{n x 收敛于a 的( C ).A 充分条件但非必要条件;B 必要条件但非充分条件;C 充分必要条件;D 既非充分又非必要条件3.若数列}{n x 有极限a ,则在a 的ε邻域之外,数列中的点( B ) A 必不存在 ; B 至多只有有限多个;C 必定有无穷多个 ;D 可以有有限个,也可以有无限多个 4.设a x n n =∞→||lim ,则 ( D )A 数列}{n x 收敛;B a x n n =∞→lim ;C a x n n -=∞→lim ; D 数列}{n x 可能收敛,也可能发散5.数列}{n x 收敛,数列}{n y 发散,则数列}{n n y x ( D ).A 收敛;B 发散;C 是无穷大;D 可能收敛也可能发散 6.若函数)(x f 在某点0x 极限存在,则( C ) A )(x f 在0x 的函数值必存在且等于极限值;B )(x f 在0x 的函数值必存在,但不一定等于极限值;C )(x f 在0x 的函数值可以不存在;D 如果)(0x f 存在的话必等于函数值7.下列极限正确的是( C )A 01lim sin1x x x→=; B sin lim1x x x→∞=; C 01limsin 1x x x→=; D 1lim sin0x x x→∞=8. =+-→11lim11x x x e e ( A )A 不存在;B 1 ;C 1- ;D 0三、计算题1.求极限 902070)15()58()63(lim --++∞→x x x x .解: 902070902070902070583155863lim)15()58()63(lim⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=--++∞→+∞→x x x x x x x x2.求极限 211lim ()2x x x x +→∞+-.解:211lim ()2x x x x +→∞+=-21111lim 2211xx x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⋅= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭211lim 21xx x x →∞⎛⎫+⎪= ⎪ ⎪-⎝⎭2(4)21[(1)]lim2[(1)]x x x x x→∞--+-264e e e-==.3. 求极限 1111lim (1)23n n n→∞++++解:由于111111(1)23nn n n≤++++≤ ,又lim 1n →∞=, 由迫敛性定理1111lim (1)123n n n→∞++++=4.考察函数),(,lim)(+∞-∞∈+-=--∞→x nn n n x f xxx x n 的连续性.若有间断点指出其类型.解: 当0x <时,有221()limlim11x x x xxxn n n n n f x n nn--→∞→∞--===-++;同理当0x >时,有()1f x =.而(0)0f =,所以1,0()sgn 0,01,0x f x x x x -<⎧⎪===⎨⎪>⎩。
春福师数学分析选讲在线作业一答案

春福师数学分析选讲在线作业一答案精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-请同学及时保存作业,如您在20分钟内不作操作,系统将自动退出。
福师一、单选题(共50道试题,共100分。
)1.如题A. AB. BC. CD. D满分:2?分2.如题A. AB. BC. CD. D满分:2?分3.?A. AB. BC. CD. D满分:2?分4.如图所示A.B.C.D.满分:2?分5.如题A. AB. BC. CD. D满分:2?分6.A.B.C.D.满分:2?分7.如题A. AB. BC. CD. D满分:2?分8.如题A. AB. BC. CD. D满分:2?分9.如题A. AB. BC. CD. D满分:2?分10.题目如图A. 0B. 1C. 2D. 3满分:2?分11.题面见图片A.B.C.D.满分:2?分12.题目如图A.B.C.D.满分:2?分13.如题A. AB. BC. CD. D满分:2?分14.如题A. AB. BC. CD. D满分:2?分15.如图所示A.B.C.D.满分:2?分16.如题A. AB. BC. CD. D满分:2?分17.如图所示A.B.C.D.满分:2?分18.如题A. AB. BC. CD. D满分:2?分19.如题A. AB. BC. CD. D满分:2?分20.如题A. AB. BC. CD. D满分:2?分21.如题A. AC. CD. D满分:2?分22.如题A. AB. BC. C满分:2?分23.如题A. AB. BC. CD. D满分:2?分24.如题A. AB. BC. CD. D满分:2?分25.题面见图片A.B.C.D.满分:2?分26.?A. AB. BC. CD. D满分:2?分27.?A.B.C.D.满分:2?分28.?A. AB. BC. CD. D满分:2?分29.如题A. AB. BD. D满分:2?分30.题面见图片A.B.C.D.满分:2?分31.如图所示A.B.D.满分:2?分32.如题A. AB. BC. CD. D满分:2?分33.如题A. AB. BC. CD. D满分:2?分34.如题A. AB. BC. CD. D满分:2?分35.?A. AB. BC. CD. D满分:2?分36.如题?A. AB. BC. CD. D满分:2?分37.如题A. AB. BC. CD. D满分:2?分38.如题A. AB. BC. CD. D满分:2?分39.如题A. AB. BC. CD. D满分:2?分40.如题A. AB. BC. CD. D满分:2?分41.如题A. AB. BC. CD. D满分:2?分42.?A. AB. BC. CD. D满分:2?分43.如题A. AB. BC. CD. D满分:2?分44.如题A. AB. BC. CD. d满分:2?分45.如题A. AB. BC. CD. D满分:2?分46.?A. AB. BC. CD. D满分:2?分47.如题A. AB. BC. CD. D满分:2?分48.如题A. AB. BC. CD. D满分:2?分49.如图所示A.B.C.D.满分:2?分50.题面见图片A.B.C.D.满分:2?分请同学及时保存作业,如您在20分钟内不作操作,系统将自动退出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学分析选讲》 第一次 主观题 作业
一、判断下列命题的正误
1. 若数集S 存在上、下确界,则inf su p S S ≤. (正确)
2. 收敛数列必有界. (正确)
3. 设数列{}n a 与{}n b 都发散,则数列{}n n a b +一定发散. (错误) 4.若S 为无上界的数集,则S 中存在一递增数列趋于正无穷. (正确)
5.若一数列收敛,则该数列的任何子列都收敛. (正确)
二、选择题
1.设2,1()3,
1
x x f x x x -≤⎧=⎨
->⎩, 则 [(1)]f f =(
A ) .
A 3- ;
B 1- ;
C 0 ;
D 2
2.“对任意给定的)1,0(∈ε,总存在正整数N ,当N n ≥时,恒有2||2n x a ε-≤”是数列
}{n x 收敛于a 的( A ).
A 充分必要条件;
B 充分条件但非必要条件;
C 必要条件但非充分条件;
D 既非充分又非必要条件
3.若数列}{n x 有极限a ,则在a 的(0)ε>邻域之外,数列中的点( B ) A 必不存在 ; B 至多只有有限多个;
C 必定有无穷多个 ;
D 可以有有限个,也可以有无限多个 4.数列}{n x 收敛,数列}{n y 发散,则数列{}n n x y + ( B ).
A 收敛;
B 发散;
C 是无穷大;
D 可能收敛也可能发散 5.设a x n n =∞
→||lim ,则 ( C )
A 数列}{n x 收敛;
B a x n n =∞
→lim ;
C 数列}{n x 可能收敛,也可能发散;
D a x n n -=∞
→lim ;
6.若函数)(x f 在点0x 极限存在,则( C ) A )(x f 在0x 的函数值必存在且等于极限值;
B )(x f 在0x 的函数值必存在,但不一定等于极限值;
C )(x f 在0x 的函数值可以不存在;
D 如果)(0x f 存在的话必等于函数值
7.下列极限正确的是( D
)
A 0
1lim sin
1x x x
→=; B sin lim
1x x x
→∞
=; C 1lim sin
0x x x
→∞
=; D 0
1lim
sin 1x x x
→=
8. 1
1
21
lim
21
x x x →-=+( D )
A 0;
B 1 ;
C 1- ;
D 不存在
三、计算题
1.求极限 90
20
70
)
15()
58()63(lim
--++∞
→x x x x .
解:90
20
70
90
20
70
90
20
70
5
8
3
155863lim
)
15()
58()
63(lim
⋅=
⎪
⎭⎫ ⎝
⎛
-⎪
⎭⎫ ⎝
⎛
-⎪
⎭⎫ ⎝⎛
+=--++∞
→+∞
→x x x x x x x x
2.求极限 21
1lim (
)
2
x x x x +→∞
+-.
解: 21
1lim (
)
2
x x x x +→∞
+=-21111lim 22
11x
x x x x x →∞
⎛⎫
⎛⎫++ ⎪ ⎪⋅= ⎪ ⎪ ⎪ ⎪
--⎝⎭
⎝⎭211lim 21x
x x x →∞⎛
⎫
+
⎪= ⎪ ⎪-⎝⎭
2
(4)
2
1[(1)]
lim
2[(1)
]
x x x x x
→∞
-
-+
-
2
6
4
e e e
-==
3.求极限2
2
2
111lim (
)12n n n n n n n n →∞
+
++
++++++ .
解:因
2
2
2
2
11
1
1n
n n n n
n n n n n
n n ≤
++
≤
++++++++
22
lim
lim
11
n n n n n n n n n →∞
→∞
==++++,
故 2
2
2
1
1
1
lim (
)11
2
n n n n n n n n
→∞
+
++
=++++++
4.考察函数),(,
lim
)(+∞-∞∈+-=--∞
→x n
n n n x f x
x
x x n 的连续性.若有间断点指出其类型.
解:当0x <时,有221()lim
lim
11
x x x x
x
x
n n n n n f x n n
n
--→∞
→∞
--===-++;同理当0x >时,有()1f x =。
而(0)0f =,所以1,0
()sgn 0,01,0x f x x x x -<⎧⎪
===⎨⎪>⎩。
所以0是f 的跳跃间断点
四、证明题
设a a n n =∞
→lim ,b b n n =∞
→lim ,且b a <. 证明:存在正整数N ,使得当N n >时,有
n n b a <.
证 由b a <,有b b
a a <+<
2
. 因为2lim b
a a a n n +<
=∞
→,由保号性定理,存在01>N , 使得当1N n >时有2
b a a n +<。
又因为2
lim b a b b n n +>
=∞
→,所以,又存在02>N ,使得
当2N n >时有2
b a b n +>
. 于是取},max{21N N N =,当N n >时,有n n b b a a <+<
2。