直流电机的换向
直流电机的换向

直流电机的换向commutation of D.C.machine图片:图片:zhiliu di ɑnji de hu ɑnxi ɑng直流电机的换向(卷名:电工)commutation of D.C.machine带换向器的电枢绕组在运行中的一种特有现象。
图1所示为最简单的直流电机模型,其换向原理如下:假定电枢只有一个线圈abcd ,换向器只有两个换向片,它们分别与线圈首、尾相连接,A 与B 为静止的两个电刷。
当线圈在磁极N 、S 中逆时针转动时,处于N 极下的导体ab 产生的电动势,方向为从b 至a ,处于S 极下的导体cd 产生的电动势方向为从 d 至c 。
但当线圈转动180°后,导体ab 与导体cd 位置对调,导体中的电动势也与原来的方向相反。
所以在线圈连续旋转时,导体及整个线圈的电动势是在正最大值与负最大值之间不断交变,故为交流电动势。
但由图不难看到,电刷A 只与处在N 极下的导体引出端相连,永为正极性;电刷B 只与处在S 极下的导体引出端相连,永为负极性。
故电刷所引导出来的电动势及电流的方向始终不变,也就是说,对于外电路而言,引出的是直流电。
这就是直流电机换向的基本原理。
通常,电枢绕组由很多线圈串、并联而成,其中各线圈电流换向情况还要复杂些。
图2为一个元件(一个单元线圈)在被电刷短路时发生的换向过程。
当电枢元件随着电枢的旋转,依次从一条支路转移到另一支路时,各元件中的电流也就从一种流动方向改变为另一种流动方向。
这种利用机械方法(换向器和电刷)使元件中电流变换方向的现象称为换向。
换向过程总是与元件被电刷短路的过程相伴随的。
图2中,当元件a 开始被电刷短路时(图2a ),元件电流便进入了换向过程。
当元件a 脱离短路时(图2c),换向过程也就结束。
整个过程所耗时间称为换向周期(Tc)。
换向周期的长短与电刷的宽度及电枢的转速有关。
电刷越宽,转速越慢,换向周期越长。
换向过程中,由于电流变化,换向元件中会产生自感电动势,俗称电抗电动势。
直流电动机的换向

为了控制电动机的转速,电流的大小可以进行调节。通过改变输入电压或串入 电阻,可以调整电流的大小,从而控制电动机的转矩和转速。
电动机的磁场变化
磁场方向的改变
在直流电动机的换向过程中,磁 场的方向会发生周期性的变化。 定子磁场和电枢电流相互作用产 生旋转力矩,推动电动机旋转。
磁场强度的调节
提高换向器的制造精度
总结词
提高制造精度
详细描述
提高换向器的制造精度是改善直流电动机换向的另一个关键措施。通过采用高精度的制造工艺和设备 ,可以减小换向器各部件的误差,提高其配合精度。这有助于减少换向过程中的不均匀磨损和机械振 动,进一步改善电动机的性能。
加强电动机的维护保养
总结词:维护保养
详细描述:加强直流电动机的维护保养是保持其良好换向性能的重要措施。定期对电动机进行清洁、润滑和检查,及时更换 磨损的零部件,可以确保电动机的正常运行和延长其使用寿命。此外,合理的维护计划和规范的操作流程也有助于减少换向 故障的发生。
直流电动机的换向
目录
• 直流电动机换向概述 • 直流电动机换向过程 • 直流电动机换向器的作用 • 直流电动机换向不良的影响 • 直流电动机换向的改进措施 • 直流电动机换向的发展趋势
01 直流电动机换向概述
换向的定义
• 换向:在直流电动机中,换向是指通过改变电枢绕组的电流方向或磁场方向的顺序,以实现电动机连续旋转的过程。
电刷通过与铜片的接触,将电流引入或引出转子 绕组。
换向器的内缘通常与转子轴固定在一起,随转子 一起旋转。
换向器的维护与保养
01
定期检查换向器的表面 状况,确保没有磨损或 烧蚀现象。
02
检查电刷的磨损情况, 及时更换磨损严重的电 刷,以保证电流的稳定 传输。
直流电机的换向

5、电刷下产生火花的原因
换向元件中存在两个方向相同的电势er和ea,合 成电势: e ea er 0 合成电势在换向元件闭合回路中产生的环流:
ik
e e e R R
a
r
i ik t
由闭合转为断开时,由 ik 建立的电磁能量以火花的 形式释放出来。
电动机工作原理演示 N
• 防止环火的措施:在主磁极的极靴装补偿绕组,
并与电枢绕组串联,产生的磁势方向与电枢反应 磁势相反。
思考?
换向极绕组应与电枢绕组相串联;
补偿绕组应与电枢绕组相串联;
励磁绕组与电枢绕组如何联接?
n N er
Φa
ea
S
4、换向元件中的感应电势
设换向元件匝数为Wk,电枢反应磁势在换向 元件处所生的磁密为Ba, 则ea的平均值:
ea 2 Ba Wk l va
旋转电势 的特点:
• ea I a n ,负载越重或者转速越高, 旋转电势 也越大。 • 根据右手定则,ea 的方向总是与换向前元件中 的电流方向相同,ea与 er方向一致,也是阻碍换 向的。
势的方向一致。 • 换向极绕组必须与电枢绕组串联,使在任何 时候,ek=- er。
9、加换向极后的结构图
10、环火及其防止措施
• 电枢反应使气隙磁场发生畸变, 使处于 B max 处
的元件的感应电势增大。当片间电压Uk 超过一定
值时,换向片间产生火花,称为电位差火花。
• 电位差火花与换向火花连成一片,构成环火。
di er Lr Lr:换向元件的电抗系数,包括自感和互感 dt 2i i er Lr Lr a er的平均值: t Tk
设电刷宽度bs等于换向片宽度bk,换向片数为K,
3 直流电机的换向解析

2018/10/10 第19页
• 三种不同的换向过程,分述如下。 • (1)∑e=0,直线换向。这是最理想的换向情况。 换向电流只有iL分量,随时间线性变化,从+ia均匀 地变化到-ia。可以证明,此时电刷下的电流密度 也是均匀分布的。
2018/10/10 第20页
• (2)∑e >0,延迟换向。此时,换向电流同时包含iL和ik分量, 且ik≥0,其结果是曲线轨迹处于直线换向上方(图(d)),致使过 零时间滞后于直线换向,“延迟换向”由此而得名。 • 延迟换向时,左刷边(参见前图,电刷与换向片l接触的部分, 通称后刷边)的电流密度会大于右刷边(与换向片2接触部分, 亦称前刷边)的值。当电刷滑离换向片1时,很大的电流突然 突然断路,换向回路中贮存的电磁能量通过空气释放,便导 致火花在后刷边产生。 2018/10/10 第21页
第三章 直流电机的换向
• • • • • • • 引言 §3.1直流电机的换向过程 §3.2 经典换向理论 §3.3 产生火花的原因 §3.4 改善换向的措施 §3.5环火及补偿绕组 小结
2018/10/10 第1页
引言
• 换向是一切装有换向器的电机的一个专门问 题,它对电机的正常运行有重大影响,是直 流电机的关键问题之一。 • 本章首先介绍换向的电磁理论,并简要地介 绍点接触,离子导电、氧化膜等理论作为补 充,进而分析火花发生的原因和改善换向的 方法。最后扼要地介绍环火、补偿绕组。
2018/10/10 第13页
• 综上可知,换向元件中总的电动势应是旋转 电动势和电抗电动势的代数和,即 • ∑e=ek+er • 对于换向良好的电机,在理想情况下,ek和er 大小相当,方向相反,∑e≈0;反之,∑e不为 零,导致换向不良,就有可能在电刷下发生 火花。
直流电机的启动、换向

实验一直流电机的启动、换向一、实验目的1、学习电机实验的基本要求与安全操作注意事项。
2、认识在在直流电机实验中所用的电机、仪表、变阻器等组件及使用方法。
3、熟悉他励电动机(即并励电动机按他励方式)的接线、启动、改变电机转向方法。
二、预习要点1、如何正确选择使用仪器仪表。
特别是电压表电流表的量程。
2、直流电动机启动时,为什么在电枢回路中需要串接起动变阻器?不串接会产生什么严重后果?3、直流电动机启动时,励磁回路串接的磁场变阻器应调至什么位置?为什么?若励磁回路断开造成失磁时,会产生什么严重后果?4、直流电动机改变转向的方法。
三、实验项目1、了解4-02电源控制屏中的电枢电源、励磁电源、校正过的直流电机、变阻器、直流电压表、电流表及直流电动机的使用方法。
2、直流他励电动机的启动、改变转向。
四、实验设备1、型号4-14的导轨、测速发电机及转速2、型号4-15的直流他励电动机表3、型号4-09的直流数字电压表4、型号4-10的直流数字电流表5、型号4-04的三相可调电阻器6、型号4-05的三相可调电阻器五、实验内容及操作步骤1、由实验指导人员介绍ZX-TIA481型电机与变压器综合实验装置型电机及电气技术实验装置各面板布置及使用方法,讲解电机实验的基本要求,安全操作和注意事项。
2、 用伏安法测电枢的直流图2-1测电枢绕组直流电阻接线图(1) 按图2-1接线,电阻R 用4-05上1800Ω和4-04上180Ω。
串联共1980Ω阻值并调至最大。
A 表选用4-09直流电流表,开关S 选用4-13开关模块。
(2) 经检査无误后接通电枢电源,并调至220V o 调节R 使电枢电流达到0.2A (如果电流太大,可能由于剩磁的作用使电机旋转,测量无法进行;如果此时电流太小,可能由于接触电阻产生较大的误差),迅速测取电机电枢两端电压U 和电流I 。
将电机分别旋转三分之一和三分之二周,同样测取U 、I 三组数据列于表2-1中。
直流电机原理以及换向工作介绍

直流电机原理以及换向工作介绍直流电机换向器的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。
电刷上不加直流电压,用原动机拖动电枢使之逆时针方向恒速转动,线圈两边就分别切割不同极性磁极下的磁力线,而在其中感应产生电动势,电动势方向按右手定则确定。
这种电磁情况表示在图上。
由于电枢连续地旋转,,因此,必须使载流导体在磁场中所受到线圈边ab和cd交替地切割N极和S极下的磁力线,虽然每个线圈边和整个线圈中的感应电动势的方向是交变的.线圈内的感应电动势是一种交变电动势,而在电刷A,B端的电动势却为直流电动势(说得确切一些,是一种方向不变的脉振电动势)。
因为,电枢在转动过程中,无论电枢转到什么位置,由于换向器配合电刷的换向作用,电刷A通过换向片所引出的电动势始终是切割N极磁力线的线圈边中的电动势,因此,电刷A始终有正极性。
同样道理,电刷B始终有负极性,所以电刷端能引出方向不变的但大小变化的脉振电动势。
如每极下的线圈数增多,可使脉振程度减小,就可获得直流电动势。
这就是直流发电机的工作原理。
同时也说明子直流发电机实质上是带有换向器的交流发电机。
从基本电磁情况来看,一台直流电机原则上既可工作为电动机运行,也可以作为发电机运行,只是约束的条件不同而已。
在直流电机的两电刷端上,加上直流电压,将电能输入电枢,机械能从电机轴上输出,拖动生产机械,将电能转换成机械能而成为电动机,如用原动机拖动直流电机的电枢,而电刷上不加直流电压,则电刷端可以引出直流电动势作为直流电源,可输出电能,电机将机械能转换成电能而成为发电机。
同一台电机,能作电动机或作发电机运行的这种原理.在电机理论中称为可逆原理。
直流电机换向方法

直流电机换向方法
直流电机换向通常使用两种方法:
1. 机械换向:机械换向是通过改变直流电机电枢绕组中电流的方向,使它们与磁场的方向相反,从而改变电机的转动方向。
机械换向通常使用多个电刷和集电环来实现,当电机转子旋转一定角度时,电刷与集电环之间的电路会自动切换,从而改变电流的方向。
2. 电子换向:电子换向是使用电子电路来控制电机转子的方向。
电子换向通常使用电机驱动器来实现,将直流电源转换为变频交流电源,然后通过变频器控制交流电源的频率和相位,从而改变电机的转动方向。
电子换向通常比机械换向更可靠,效率更高,同时也可以实现更精确的速度和位置控制。
直流电机换向绕组的作用_概述说明以及解释

直流电机换向绕组的作用概述说明以及解释1. 引言1.1 概述直流电机是一种将直流电能转化为机械能的重要设备。
在直流电机中,换向绕组作为一个关键部件,起到了至关重要的作用。
换向绕组通过改变电流方向和大小,实现了电机中磁场的反向变化,从而使得电机能够产生稳定的旋转运动。
1.2 文章结构本文将全面介绍直流电机换向绕组的作用、概述说明以及解释。
文章结构主要分为五个部分:引言、直流电机换向绕组的作用、换向绕组的概述说明、换向绕组的解释和结论。
1.3 目的本文旨在对直流电机换向绕组进行深入探讨,详细阐述其在直流电机中的重要性和应用,并对不同类型的换向绕组进行解释。
通过对这些内容的阐述,读者能够全面了解和掌握直流电机换向绕组相关知识,并在实际应用中更好地理解和运用该技术。
以上是“1. 引言”的详细内容,希望对您有所帮助!2. 直流电机换向绕组的作用2.1 换向绕组的定义直流电机换向绕组是指在直流电动机中用于实现电流方向切换和换向过程的一种绕组结构。
它通过改变电流的通路,使得电机能够按照既定的运行规律进行正常工作。
2.2 换向绕组在直流电机中的应用换向绕组在直流电机中起到了至关重要的作用。
通过合理设计和布置换向绕组,可以实现直流电动机的正常启停、方向切换以及输出转矩控制等功能。
首先,直流电动机需要实现换相操作,也就是在不同位置上将电流方向适时地切换。
这样才能使得转子磁极始终与定子磁场保持一定的相对位置关系,从而产生旋转力。
换相过程中,通过控制换向器或者其他器件来控制换相角度和时刻,可以更好地调整电动机转子的位置与速度。
其次,在不同负载条件下,需要通过调整交变磁链大小来改变输出扭矩。
这就需要针对不同工况设计合适的换相角度和时刻,并利用换向绕组来实现这一调节过程。
通过换向绕组的布置,可以在换相时改变电机的励磁方式,从而调整输出扭矩大小。
2.3 换向绕组对电机性能的影响换向绕组设计合理与否对直流电机性能有着直接的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。