饱和水及蒸汽常用公式与数据
(完整版)换热器的传热系数K

介质不同,传热系数各不相同我们公司的经验是:1、汽水换热:过热部分为800~1000W/m2.℃饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。
水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003实际运行还少有保守。
有余量约10%冷流体热流体总传热系数K,W/(m2.℃)水水 850~1700水气体 17~280水有机溶剂 280~850水轻油 340~910水重油60~280有机溶剂有机溶剂115~340水水蒸气冷凝1420~4250气体水蒸气冷凝30~300水低沸点烃类冷凝 455~1140水沸腾水蒸气冷凝2000~4250轻油沸腾水蒸气冷凝455~1020不同的流速、粘度和成垢物质会有不同的传热系数。
K值通常在800~2200W/m2·℃范围内。
列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。
螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。
板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。
1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
饱和水蒸汽的压力与温度的关系的介绍

饱和水蒸汽的压力与温度的关系 ( 摘自仲元: "水和水蒸气热力性质图表" p4~10 )真空计算常用公式1、玻义尔定律体积V,压强P,P·V=常数(一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。
即P1/P2=V2/V1)2、盖·吕萨克定律当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:(V1/V2=T1/T2=常数)当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。
3、查理定律当气体的体积V保持不变,一定质量的气体,压强P与其他绝对温度T成正比,即:P1/P2=T1/T2在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。
4、平均自由程:λ=(5×10-3)/P (cm)5、抽速:S=dv/dt (升/秒)或 S=Q/PQ=流量(托·升/秒) P=压强(托) V=体积(升) t=时间(秒)6、通导: C=Q/(P2-P1) (升/秒)7、真空抽气时间:对于从大气压到1托抽气时间计算式: t=8V/S (经验公式)(V为体积,S为抽气速率,通常t在5~10分钟选择。
)8、维持泵选择:S维=S前/109、扩散泵抽速估算:S=3D2 (D=直径cm)10、罗茨泵的前级抽速:S=(0.1~0.2)S罗 (l/s)11、漏率:Q漏=V(P2-P1)/(t2-t1)Q漏-系统漏率(mmHg·l/s) V-系统容积(l)P1-真空泵停止时系统中压强(mmHg)P2-真空室经过时间t后达到的压强(mmHg)t-压强从P1升到P2经过的时间(s)12、粗抽泵的抽速选择:S=Q1/P预 (l/s)S=2.3V·lg(Pa/P预)/tS-机械泵有效抽速 Q1-真空系统漏气率(托·升/秒)P预-需要达到的预真空度(托) V-真空系统容积(升)t-达到P预时所需要的时间 Pa-大气压值(托)13、前级泵抽速选择:排气口压力低于一个大气压的传输泵如扩散泵、油增压泵、罗茨泵、涡轮分子泵等,它们工作时需要前级泵来维持其前级压力低于临界值,选用的前级泵必须能将主泵的最大气体量排走,根据管路中,各截面流量恒等的原则有:PnSg≥PgS 或Sg≥Pgs/PnSg-前级泵的有效抽速(l/s) Pn-主泵临界前级压强(最大排气压强)(l/s)Pg-真空室最高工作压强(托) S-主泵工作时在Pg时的有效抽速。
蒸气流量计算公式

水蒸汽密度计算式(显示) 乌卡诺维奇状态方程ρ=[]63322110)()()(1⨯+++P T F P T F P T F RT P式中 F 1(T)=(b 0+b 1φ+…+ b 5φ5)×10-9F 2(T)=(c 0+c 1φ+…+ c 8φ8)×10-16 F 3(T)=(d 0+d 1φ+…+ d 8φ8)×10-23b 0 = -5.01140c 0 = -29.133164d 0 = -34.551360 b 1 =+19.6657 c 1 = +129.65709 d 1 = +230.69622 b 2 = -20.9137 c 2 = -181.85576 d 2 = -657.21885 b 3 = +2.32488 c 3 = +0.704026 d 3 = +1036.1870 b 4 = +2.67376 c 4 = +247.96718 d 4 = -977.45125 b 5 = -1.62302 c 5 = -264.05235 d 5 = +555.88940c 6 = +117.60724d 6 = -182.09871 c 7 = -21.276671 d 7 = +30.554171 c 8 = +0.5248023 d 8= -1.9917134P —绝压,MPa ,P=P 表+0.101325;T=t+273.15,°K ; t —工况温度,℃; ρ—密度,kg /m 3 R —气体常数,R=461J/(kg ·K), φ=103/T 。
唐山天辰电器基于IAPWS-IF97的高精度蒸汽流量仪表的研制凌波,徐英(1.天津大学电气与自动化工程学院天津300072;2.塘沽第一职业中专天津300451)引言当前多数智能仪表都采取了一定的流量补偿技术,但补偿的数学模型建立过程考虑并不十分周全,计量的准确性仍然不高。
3纯液体饱和蒸汽压的测定

实验二液体饱和蒸汽压的测定一、实验目的与要求:对液体饱和蒸汽压与温度的关系作实验上的研究。
根据建立起的经验方程式,求算液体的平均摩尔汽化热。
二、预习要求:1、明确蒸气压、正常沸点、沸腾温度的含义;了解动态法测定蒸气压的基本原理。
2、了解真空泵、气压计的使用及注意事项。
3、了解如何检漏及实验操作时抽气、放气的控制。
三、实验原理:在封闭体系中,液体很快和它的蒸汽达到平衡。
这时的蒸汽的压力称为液体的饱和蒸汽压。
蒸发一摩尔液体需要吸收的热量,即为该温度下液体的摩尔汽化热。
它们的关系可用克拉贝龙~克劳修斯方程表示:(2-1)D H:摩尔汽化热(J·mol-1) R:气体常数(8.314J·mol-1·K-1)若温度改变的区间不大,D H可视为为常数(实际上D H与温度有关)。
积分上式得:(2-2)或 (2-3)常数,。
(3)式表明与有线性关系。
作图可得一直线,斜率为-B。
因此可得实验温度范围内液体的平均摩尔汽化热D H。
(2-4)当外压为101.325kPa(760mmHg)时,液体的蒸汽压与外压相等时的温度称为液体的正常沸点。
在图上,也可以求出液体的正常沸点。
液体饱和蒸汽压的测量方法主要有三种:1、静态法:在某一固定温度下直接测量饱和蒸汽的压力。
2、动态法:在不同外部压力下测定液体的沸点。
3、饱和气流法:在液体表面上通过干燥的气流,调节气流速度,使之能被液体的蒸汽所饱和,然后进行气体分析,计算液体的蒸汽压。
本实验利用第二种方法。
此法基于在沸点时液体的饱和蒸汽压与外压达到平衡。
只要测得在不同外压下的沸点,也就测得在这一温度下的饱和蒸汽压。
四、仪器和药品:液体饱和蒸汽测定仪1套抽气泵1台福廷式压力计1支加热电炉1个搅拌马达1台1/10°C温度计2支五、装置简介:图2--1中,平衡管由三个相连通的玻璃球构成,顶部与冷凝管相连。
冷凝管与U形压力计6和缓冲瓶7相接。
在缓冲瓶7和安全瓶11之间,接一活塞9,用来调节测量体系的压力。
29.5摄氏度时水的饱和蒸气压

29.5摄氏度时水的饱和蒸气压29.5摄氏度时水的饱和蒸气压是多少?为了回答这个问题,我们首先需要了解水的蒸发和饱和蒸汽的概念。
接下来,我们将会详细讨论水蒸气的压力与温度之间的关系,并通过实验数据计算出29.5摄氏度时的饱和蒸汽压力。
水是地球上最常见的液体之一,同时也是我们生活中最为重要的物质之一。
当水受热时,它会逐渐转化为水蒸气,这个过程被称为蒸发。
蒸发是由于水分子在液体表面得到足够的能量而转化为气体分子,从而逸出到空气中。
当水分子蒸发时,它们会增加空气中水蒸汽的浓度,直到达到一个特定的点,被称为饱和。
在饱和状态下,水蒸汽的浓度不再增加,因为与液体中蒸发的水分子相对应的水分子也会通过凝结重新以液体形式出现。
饱和蒸汽的压力是指在特定温度下,当水与其饱和水蒸汽达到平衡时,所产生的压力。
这个压力可以通过实验观测来确定。
下图展示了水的饱和蒸汽压力与温度之间的关系,这个关系被称为水的蒸汽压力曲线。
[image]从图中可以看出,水的饱和蒸汽压力随着温度的增加而增加。
这是因为随着温度的升高,水分子获得更多的热能,从而有更高的概率逃逸到空气中形成水蒸汽,导致饱和蒸汽压力增加。
为了进一步确定29.5摄氏度时水的饱和蒸汽压力,我们可以利用经验公式或实验数据来计算。
其中一个常用的经验公式是饱和蒸汽压力与温度之间的关系公式,称为ClausiusClapeyron方程:ln(P2/P1) = (ΔHvap/R)*(1/T2 1/T1)在这个公式中,P1和T1是参考温度和压力,P2和T2是我们要计算的温度和压力,ΔHvap是水的蒸发潜热,R是气体常数。
通过实验测量,我们可以得到P1和T1的数值。
然而,计算ΔHvap比较困难,因为它取决于水的性质和温度范围。
在这种情况下,我们可以使用已知的实验数据来确定29.5摄氏度时的饱和蒸气压力。
通过查阅相关文献或使用在线数据库,我们可以找到29.5摄氏度时的饱和蒸气压力的实验数据。
例如,根据NIST(美国国家标准技术研究所)的数据,29.5摄氏度时水的饱和蒸汽压力约为3.496千帕。
饱和水蒸汽的压力与温度的关系介绍

饱和水蒸汽的压力与温度的关系介绍温度℃水蒸气压力 MPa 相应真空度 MPa220.002640.09869240.002980.09835260.003360.09797280.003780.09755300.004240.09709320.004750.09658340.005320.09601360.005940.09539380.006620.09471400.007380.09395温度℃水蒸气压力 MPa 相应真空度 MPa420.008200.09313440.009100.09223460.010090.09124480.011160.09017500.012340.08899520.013610.08772540.015000.08633560.016510.08482580.018150.08318600.019920.08141温度℃水蒸气压力 MPa 相应真空度 MPa620.021840.07949640.023910.07742660.026150.07518680.028560.07277700.031160.07017720.033960.06737740.036960.06437760.040190.06114780.043650.05768800.047360.05397温度℃水蒸气压力 MPa 相应真空度 MPa820.051330.05000840.055570.04576860.060110.04122880.064950.03638900.070110.03122920.075610.02572940.081460.01987960.087690.01364980.094300.007031000.10133温度℃水蒸气压力 MPa1020.108781040.116681060.125041080.133901100.143271120.153161140.163621160.174651180.186281200.19854温度℃水蒸气压力 MPa1220.211451240.225041260.239331280.254351300.270131320.278311340.304071360.322291380.341381400.36138真空计算常用公式1、玻义尔定律体积V,压强P,P·V=常数(一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。
饱和水气压的计算公式及常用值

饱和是一种动态平衡态,在该状态下,气相中的水汽浓度或密度保持恒定。
在整个湿度的换算过程中,对 于饱和水蒸气压公式的选取显得尤为重要,因此下面介绍几种常用的。
(1)、克拉柏龙-克劳修斯方程该方程是以理论概念为基础的,表示物质相平衡的关系式,它把饱和蒸汽压随温度的变化、容积的 变化和过程的热效应三者联系起来。
方程如下:T-为循环的温度;dT-为循环的温差;L-为热量,这里为汽化潜热(相变热);ν-为饱和蒸 汽的比容;ν^-为液体的比容;e-为饱和蒸汽压。
这就是著名的克拉柏龙-克劳修斯方程。
该方程不但适用于水的汽化,也适用于冰的升华。
当用于 升华时,L 为升华潜热。
(2)、卡末林-昂尼斯方程实际的蒸汽和理想气体不同,原因在于气体分子本身具有体积,分子间存在吸引力。
卡末林 - 昂 尼斯气体状态方程考虑了这种力的影响。
卡末林-昂尼斯于 1901 年提出了状态方程的维里表达式(e 表示水汽压)。
这些维里系数都可以通过实验测定,其中的第二和第三维里系数都已经有了普遍的计算 公式。
例如接近大气压力,温度在 150K到 400K 时,第二维里系数计算公式:一般在我们所讨论的温度范围内,第四维里系数可以不予考虑。
(3)、Goff-Grattch 饱和水汽压公式从 1947 年起,世界气象组织就推荐使用 Goff-Grattch 的水汽压方程。
该方程是以后多年世界公 认的最准确的公式。
它包括两个公式,一个用于液 - 汽平衡,另一个用于固 - 汽平衡。
对于水平面上的饱和水汽压式中,T0 为水三项点温度 273.16 K对于冰面上的饱和水汽压以上两式为 1966 年世界气象组织发布的国际气象用表所采用。
(4)、Wexler-Greenspan 水汽压公式1971 年,美国国家标准局的 Wexler 和 Greenspan 根据 25 ~ 100 ℃范围水面上饱和水汽压的 精确测量数据,以克拉柏龙一克劳修斯方程为基础,结合卡末林 - 昂尼斯方程,经过简单的数学运算并参照试验数据作了部分修正, 导出了 0 ~ 100 ℃ 范围内水面上的饱和水汽压的计算公式,该式的计算值与实验值基本符合。
水蒸气含水率

水蒸气含水率水蒸气含水率是指在一定的温度和压力下,水蒸气中所含水分的质量与水蒸气总质量的比值。
这个指标在化工、能源、环保等领域具有重要的意义,因为它直接影响着设备的运行效率和安全性能。
本文将从水蒸气含水率的计算方法、影响因素以及降低水蒸气含水率的措施三个方面进行阐述。
一、水蒸气含水率的计算方法水蒸气含水率的计算方法有多种,其中最常用的是根据饱和蒸汽压力与实际压力之间的关系来计算。
根据道尔顿定律,混合物的总压力等于各组分分压之和。
在水蒸气中含有水分的条件下,可以利用下列公式计算水蒸气含水率:ω= (P_w / P_s) ×100%其中,ω表示水蒸气含水率,P_w表示水蒸气的实际压力,P_s表示相同温度下饱和蒸汽的压力。
通过测量水蒸气的实际压力和饱和蒸汽的压力,就可以得到水蒸气的含水率。
二、影响水蒸气含水率的因素1.温度:温度对水蒸气含水率的影响非常大。
在其他条件不变的情况下,温度越高,饱和蒸汽的压力越大,水蒸气中的含水率也就越高。
2.压力:压力对水蒸气含水率的影响也很大。
随着压力的增大,饱和蒸汽的压力也会增大,从而使得水蒸气中的含水率降低。
3.气体组成:气体组成对水蒸气含水率也有影响。
当气体中除水蒸气外,还含有其他成分时,如二氧化碳、氮气等,会降低水蒸气的含水率。
4.设备材料和表面粗糙度:设备材料和表面粗糙度会影响水蒸气与设备表面的换热效果,从而影响水蒸气的含水率。
表面粗糙度越大,换热效果越好,水蒸气中的含水率越高。
三、降低水蒸气含水率的措施1.提高蒸汽温度:提高蒸汽温度可以降低水蒸气中的含水率。
在实际操作中,可以通过提高锅炉的燃烧效率、优化锅炉结构和调节燃料与空气的配比等方法来提高蒸汽温度。
2.降低蒸汽压力:降低蒸汽压力也可以降低水蒸气含水率。
在实际操作中,可以通过调整锅炉的负荷、使用减压阀等方法来降低蒸汽压力。
3.采用分离装置:在蒸汽输送过程中,可以采用分离装置(如凝汽器、干燥器等)来分离蒸汽中的水分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PI 输入u: 输入d: 计算Vs:
m/s mm m3/h
外径: 壁厚: 长度: 密度: 重量: CS密度: SS密度:
89 3 24 7.94 0.160 7.85 7.94
mm mm m t/m3 T t/m3 t/m3
热量计算: 工况条件: 输入数据 冷介质 Ws1: t1: C冷: t2: h1: h2: r冷: Ws2: T1: C热: T2: H1: H2: r热: 10.00 50.00 4.01 10.00 10.00 1.00 10.00 热介质 11.10 100.00 4.19 70.00 1.00 21.00 1.00 关风机排量计算 Kg/h ℃ KJ/Kg·℃ ℃ J/Kg J/Kg J/Kg Kg/s ℃ KJ/Kg·℃ ℃ J/Kg J/Kg J/Kg 管道热伸长量计算 Q热= Q热= Q热= Ws2= Ws2= Ws2= 1395.27 222 1384.17 11.1 11.1 KJ/h KJ/h KJ/h Kg/h Kg/h Kg/h Q冷= Q冷= Q冷= Ws1= Ws1= Ws1= 输出数据 1604 90 1504 10 10 KJ/h KJ/h KJ/h Kg/h Kg/h Kg/h
cm
t/h
L:计算管长 m α:管道线胀系数 cm/(m·℃) t2:管内介质温度 ℃ t1:管道安装温度 ℃ 输入: t1= 0 t2= 240 α= 13.18 L= 100 计算结果: ΔL= 31.632 cm
进料量: X进(w/w): X出(w/w): 蒸发量 出料量:
蒸发量计算 10.00 T/h 40.0% 70.0% 4.29 T/h 5.71 T/h
已知
F
W X 1 0 X1
已知
W
F2 X1 1 X1 X 0
出料量: X出(w/w): 蒸发量: X进(w/w):
15.00 T/h 70.0% 15.00 T/h 35.0% 泵轴功率计算
已知
X0
X 1 F2 F2 W
Ne
输入: Q: H: ρ: η: Ne=
QH 3600 102
G=0.06V·n·Y·r·K 输入: V= n= Y= r= K= G=0.06V·n·Y·r·K G= 0 V:关风机容积,升/转 n:关风机转速,转/分 Y:关风机容积效率 颗粒状物料,Y=0.8 粉状物料,Y=0.5~0.6 r:物料密度,t/m3 K:修正系数,0.7~0.8
ΔL=Lα(t2-t1)
50 50 1150 0.7 11.19 kw m3/h m kg/m3
P Ne K
Ne≤22 22<Ne≤55 55<Ne 输入K: P= K=1.25 K=1.15 K=1.00 1.25 13.98 kw
ቤተ መጻሕፍቲ ባይዱ
显热法 焓差法 潜热法 显热法 焓差法 潜热法
Ws*C*(t2-t1) Ws*(h2-h1) Ws*C*(t2-t1)+W*r
Q235A 12.20 12.60 12.66 13.00 13.09 13.14 13.18 13.23 13.27 13.32 13.36 13.41 13.45
20# 11.16 11.64 11.72 12.12 12.25 12.32 12.38 12.45 12.52 12.59 12.65 12.72 12.78 12.89 12.99 13.10 13.20 13.31
无相变 无要求 有相变
显热法 焓差法 潜热法 显热法 焓差法 潜热法
Ws*C*(t2-t1) Ws*(h2-h1) Ws*C*(t2-t1)+W*r
无相变 无要求 有相变
线胀系数:×10-4cm/(m·℃)
T 100 150 158 200 220 230 240 250 260 270 280 290 300 310 320 330 340 350
已知
W
F X 1 0 X1
蒸发量: X进(w/w): X出(w/w): 进料量 出料量: 出料量: X进(w/w): X出(w/w): 蒸发量: 进料量:
10.00 T/h 40.0% 70.0% 23.33 T/h 13.33 T/h 15.00 T/h 35.0% 70.0% 15.00 T/h 30.00 T/h
名称
数据 管径 3.1415926 60 60000 594.7 流量 3.1415926 60 300 15268.14
单位
名称
数据 流速 3.1415926 100 40 1.41 管道材料重量
单位
π: 输入u: 输入Vs: 计算d=
m/s m /h mm
3
π: 输入d: 输入Vs: 计算u=
mm m3/h m/s