光催化剂的分类和机理总结ppt课件
光催化剂的分类和机理总结

光催化剂的分类和机理总结光催化剂是一种特殊的催化剂,能够在光照下促进化学反应的进行。
它们通常由半导体材料制成,能够吸收光能,并在其表面上产生活性中间体,从而加速反应的进行。
光催化剂在环境清洁、新能源开发等领域具有广泛的应用前景。
本文将对光催化剂的分类和机理进行总结。
光催化剂的分类可以根据其材料组成、能带结构、光吸收范围等多个方面进行。
根据材料组成,光催化剂可分为无机光催化剂和有机光催化剂。
其中,无机光催化剂主要是由金属氧化物(如二氧化钛、氧化锌等)和半导体纳米材料(如二氧化硅、ZnS等)构成。
有机光催化剂则主要是由含有特定功能团的有机分子构成,如染料分子、金属有机化合物等。
根据能带结构,光催化剂可以分为具有带隙结构的半导体光催化剂和无带隙结构的金属光催化剂。
根据光吸收范围,光催化剂可以分为可见光催化剂和紫外光催化剂。
不同的光催化剂在光催化反应中的机理也有所不同。
典型的光催化反应包括光解水制氢、光催化降解有机污染物等。
以光解水制氢反应为例,介绍光催化剂的机理。
在光解水反应中,最常用的光催化剂是二氧化钛(TiO2)。
二氧化钛实际上是一种能带宽度很大的半导体材料,其带隙宽度约为3.0eV,能够吸收紫外线(带有较高能量的光)。
当光照到二氧化钛表面时,光子的能量被二氧化钛吸收,激发出电子-空穴对。
电子位于导带中,而空穴位于价带中。
在光解水反应中,二氧化钛的导带电子和水分子中的氧原子发生反应,形成O2-中间体。
同时,价带中的空穴和水分子中的氢原子发生反应,形成OH+中间体。
这两个反应过程共同促进了水的光解过程。
最终产生的O2-和OH+进一步发生反应,形成氢氧根离子(OH-)。
通过电解水或其他方式,可以将OH-还原为氢气(H2)。
这样就实现了水的光解制氢过程。
除了二氧化钛,其他半导体光催化剂如氧化锌、Ti-based等,其机理大致相似。
由于不同光催化剂的带隙结构、能带位置等特性不同,它们对于不同光照波长和光强的吸收利用也不尽相同,因此在实际应用中需要根据具体需求选择合适的光催化剂。
光催化原理PPT课件

12
第三步
超氧负离子和氢 氧自由基具有很 强的氧化性,能将 绝大多数的有机 物氧化至最终产 物CO2和H2O,甚 至对一些无机物 也能彻底分解。
化学与药学院.
二氧化钛的光催化原理
半导体的光吸收阈值与带隙的关系:
K=1240/Eg(eV)
因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。
11
化学与药学院.
光催化原理
第一步
当光子能量高于半 导体吸收阈值的光 照射半导体时,半导 体的价带电子发生 带间跃迁,即从价带 跃迁到导带,从而产 生光生电子(e-)和 空穴(h+)。
第二步
E=hC/λ 所以可以知道波长小于380nm的光可以激发锐钛型二氧化钛。
❖有研究表明接近7nm粒径时,锐钛矿要比金红石更为稳定,这也是很多纳 米光触媒采用锐钛型的原因。
16
化学与药学院.
光催化应用技术
❖ 光催化净化是基于光催化剂在紫外线照射下具有 的氧化还原能力而净化污染物。
❖ 光催化净化技术的特点:半导体光催化剂化学性质稳
光催化的基本知识
化学与药学院 马永超
1
.
主要内容
光催化剂的定义 光催化起源
光催化材料 光催化的原理 光催化的应用
2
.
催化剂是加速化学反应速率的化学物质, 其本身并不参与反应。
光催化剂就是在光子的激发下能够起到催化作用的 化学物质的统称。
3
化学与药学院.
光催化 剂
状态 液体催化剂 固体催化剂
4
反应体系的相态
普通的二氧化钛一般称为体相半导体,这是与纳米二氧化钛 相区别的。
光催化课件

(2)表面羟基: 催化剂表面羟基与空穴反应生成表面过氧化物,起复合中心的
作用,因此表面羟基越少,催化剂活性越高。若对催化剂进行热处 理,可使表面羟基总量减少。 (3)混晶效应:
锐钛矿与金红石的混晶(非机械混合)具有较高的催化活性。 原因在于:锐钛矿晶体表面生长了薄的金红石结晶层,由于晶体结 构的不同,能有效促进锐钛矿晶体中的光生电子和空穴电荷分离。
1977年,Yokota T 等发现在光照条件下, TiO2对丙烯环氧化具 有光催化活性,从而拓宽了光催化的应用范围,为有机物氧 化反应提供了一条新的思路。
近十年来,光催化技术在环保、能源、有机合成等方面的应 用研究发展迅速,半导体光催化成为国际上最活跃的研究领 域之一。
目前广泛研究的半导体光催化剂,大多数属于宽禁带型半导体化合 物,如CdS、SnO2、TiO2、ZnO、ZnS、PbS、MoO3、SrTiO3、V2O5、 WO3和MoSi2等。其中TiO2、 ZnO、 CdS的催化活性最高,但ZnO、 CdS在光照时不稳定,因为光阳极腐蚀而产生Cd2+和Zn2+,这些离子对 对生物有毒性,对环境有害。
3.1 氧化钛的能带结构
半导体粒子具有能带结构,一般由填满电子的低能价带(Valence band,VB)和空的高能导带(Conduction band,CB)构成,价带和 导带之间存在禁带。电子填充时,优先从能量低的价带填起。氧化钛 是宽禁带半导体。金红石相禁带宽度3.0eV,锐钛矿相3.2eV。
4、催化剂的寿命。
评价催化剂的3个重要指标: 活性、选择性和稳定性。
TiO2表面性质和结构对反应有重要影响。催化剂表面存 在的晶格缺陷对光催化反应是必要的。
TiO2表面有3种氧缺陷:晶格空位、单桥空位和双桥空位。 TiO2表面能吸附多种无机分子:如CO、SO2、NO、NH3 等。有机分子:如甲烷、甲醇、苯酚、氯代烃等。 表面缺陷越多的TiO2表面越容易吸附气体分子。而结构近 乎完美的TiO2表面,不能吸附SO2、NH3分子。 制成纳米颗粒或薄膜的TiO2,尺寸减少的优势在于对紫外 光的吸收边蓝移,禁带宽度增加,产生更大的氧化还原电位 而向底物的电荷转移和溶剂重组自由能保持不变,这会增加 电荷的转移速率常数,提高量子产率和光催化反应效率。
半导体光催化基础光催化剂课件

半导体能带结构
能带理论
能带理论是描述固体中电 子运动的模型,它把电子 的运动状态分为不同的能 带。
价带和导带
价带是最高填满电子的能 带,导带是最低未被填满 电子的能带。
能隙
能隙是价带顶和导带底之 间的能量差,它决定了半 导体的光学和电学性质。
半导体光催化过程
光催化过程定义
光催化过程是在光的照射下,半导体 材料吸收能量,使得电子从价带跃迁 到导带,从而产生电子-空穴对的过程 。
化学沉淀法
总结词
化学沉淀法制备的光催化剂成本较低,但纯度较低。
详细描述
化学沉淀法是一种常用的光催化剂制备方法,通过向金属盐溶液中加入沉淀剂, 使金属离子形成沉淀物,再经过洗涤、干燥和热处理得到光催化剂。该方法制备 的光催化剂成本较低,但纯度较低,需要进一步提纯。
热解法
总结词
热解法制备的光催化剂具有较高的热稳定性和化学稳定性, 但制备过程需要高温条件。
详细描述
热解法是一种常用的光催化剂制备方法,通过将有机金属盐 或金属醇盐在高温下进行热解反应,得到光催化剂。该方法 制备的光催化剂具有较高的热稳定性和化学稳定性,但制备 过程需要高温条件,且原料成本较高。
其他制备方法
总结词
除了上述方法外,还有多种其他制备光催化剂的方法,如水热法、微波法等。
详细描述
光催化技术的发展历程
总结词
光催化技术的发展经历了基础研究、技术成熟和应用拓展三个阶段。
详细描述
光催化技术的研究始于上世纪70年代,最初主要是对光催化反应机理的基础研究。随着技术的不断发 展,进入90年代后,光催化技术逐渐走向成熟,并开始应用于实际生产中。目前,随着科研的深入和 技术进步,光催化技术的应用领域不断拓展,成为一种备受关注的环境友好型技术。
光催化剂的分类和机理总结[优质PPT]
![光催化剂的分类和机理总结[优质PPT]](https://img.taocdn.com/s3/m/30c9da0f1eb91a37f1115cea.png)
A/D电对:IO3− /I −、Fe3+ /Fe2+ , [Co(bpy)3 ]3+/2+ , [Co(phen)3]3+/2+ 、NO3−/NO2−
PS-A/D-PS体系
• 缺陷:
• 由于氧化还原电对的存在,该催化剂仅适用于液态的催化 反应,且不适合污染物的降解,因为污染物会影响电对的 氧化还原反应,所以该体系的催化剂局限于水的光催化分 解领域。
光催化剂的影响因素
• 1、光子能量要比催化剂的禁带宽度Eg高;(窄的禁带宽 度有利于太阳能的利用)
• 2、反应物的氧化还原电势应在导带电位与价带电位之间; (更负的导带电位和更正的价带电位有利于氧化还原反应)
光催化反应体系
• 1、加入电子给体和电子受体(牺牲剂) • 2、担载助催化剂 • 3、双光子系统(Z-Scheme)
PS-C-PS体系
• 无A/D电对,利用导体C作为电子传递媒介。
PSⅡ导带中的光生电子与 PSⅠ价带中的光生空穴结合 ※既阻止了两种半导体中光生 电子和空穴的再复合; ※又降低了电子的传递距离; ※也可避免A/D电对造成的逆 反应。
PS-C-PS体系
• 常见的催化剂: • TiO2-ห้องสมุดไป่ตู้u-CdS • TiO1.96C0.04-Au-Pt/CdS(由于TiO2对可见光的吸收能力弱,所以
• 常用的助催化剂有:Pt、NiO、Ru2O等; • 在水溶液粉末悬浮Pt/TiO2光催化体系中,Pt的作用就是助
催化剂。
助催化剂的作用
• 金属与半导体界面上形成了势垒,称为Schottky势垒,作 为电子陷阱,能有效阻止半导体上的电子与空穴的复合。
光催化氧化技术ppt课件

大量研究表明,半导体光催化具有氧化性强的
特点,对臭氧难以氧化的某些有机物如三氯甲
烷、四氯化炭、六氯苯、都能有效地加以分解,
所以对难以降解的有机物具有特别意义。 4. 寿命长 理论上,光催化剂的寿命是无限长的。
18
光催化的技术特征
5. 广谱性
光催化对从烃到羧酸的众多种类有机物都 有氧化效果,美国环保署公布的九大类 114 种污染物均被证实可通过光催化氧化 法降解,即经过持续反应可达到完全净 化。
12
TiO2
有机磷杀虫剂:DDVP、DEP
TiO2
紫外 Cl-、PO43-、CO2
◎ TiO2光催化氧化的原理
◎ 光催化剂 ◎ 光催化反应器
◎ TiO2光催化技术的应用
◎ 展望
13
TiO2光催化氧化原理
14
TiO2光催化氧化原理
图中所反映的机理涉及的基本的反应式表达如下:
TiO2 h h e
4
均相光催化氧化——UV/Fenton试剂法
二、Fenton氧化机理
Fe2+ + H2O2 → · OH + OH- + Fe3+ Fe3+ + H2O2 → Fe2+ + · HO2 + H+
操作条件:pH = 3~5
三、Fenton试剂在废水处理中的应用
——单独作为一种处理方法氧化有机废水
——与其他技术联用,如混凝沉降法、活性炭法、生 物法、UV
缺点:对反应器的构型、设备的材质、加热及进料方式 等均有很高的要求。
◎ 液相法
优点:合成温度低、设备简单、成本低。
缺点:颗粒大小、形状不均,分散性差,影响产品的使 用效果和应用范围
第三章 光催化及材料ppt课件
ecb- + h + ecb- + TiIVOH·+ hvb+ + TiIIIOH
表面电荷转移:
hv or TiIVOH TiIVOH
ps 100ns—s
10ns
etr- + Ox TiIVOH·+ + Red
TiIVOH + Ox ·TiIVOH + Red ·+
很慢 ms 100ns
• 制约光催化制氢实用化的主要原因是:
1) 光化学稳定的半导体(如:TiO2)的能隙太宽(以2.0 eV为宜)只吸收紫外光;
2) 光量子产率低(约4 %),最高不超过10 %; 3) 具有与太阳光谱较为匹配能隙的半导体材料(如:CdS等)存在光腐蚀及有
毒等问题,而p-型InP、GaInP2等虽具有理想的能隙,且一定程度上能抗 光腐蚀,但其能级与水的氧化还原能级不匹配。
沉积Ag后的TiO2光催化性能
光生电子在Ag岛上 富集,光生空穴向TiO2 晶粒表面迁移,这样行 成的微电池促进了光生 电子和空穴的分离,提 高了光催化效率。
.
• 掺杂金属或非金属离子。在半导体价带与导带间形成一个缺陷能量状 态,为光生电子提供了一个跳板,可以利用能量较低的可见光激发电子 ,由价带分两步传输到导带,从而减少光生电子-空穴复合。
TiO2中光生电子、空穴的不同衰减过程的特征弛豫时间
主要过程
特征时间尺度
电子、空穴的产生:
TiO2 + hv
hvb+ + ecb-
fs
载流子被捕获过程:
hvb+ + TiIVOH
ecb- + TiIVOH ecb- + TiIV
《光催化技术》PPT课件
等多种催化剂,取得了很大进展,紫外光照射纯水的
活性已由最初的几μmol/goh催化剂增大到几百μmol /goh
2021/3/8
28
东北大学承担了国家自然科学基金项目“光解水
用掺杂稀土新型TiO2半导体电极的研究”,采用溶胶
-凝胶法、气相沉积法等在电极中添加不同稀土及其
它金属氧化物,利用稀土的催化活性及扩展材料吸光
2021/3/8
22
可见光光催化降解有毒有机污染物研究 获重要进展
在国家自然科学基金委,科技部及中科院的支 持下,化学所光化学院重点实验室赵进才研究员 课题组与有机固体院重点实验室帅志刚研究员合 作,在可见光光催化降解有毒有机污染物方面取 得重要进展。研究成果发表在最近一期的 J. Am. Chem. Soc. (2004,126,4782)上。
光催化技术
2021/3/8
宋光辉
1
什么是光催化?
概括说来,就是光触媒在外界可见光的作用下 发生催化作用。
光催化一般是多种相态之间的催化反应。 光触媒在光照条件(可以是不同波长的光照)
下所起到催化作用的化学反应,统称为光反应。
2021/3/8
2
光合作用也可以看作光催化
2021/3/8
3
2021/3/8
由于是借助光的力量促进氧化分解反应,因此后 来将这一现象中的氧化钛称作光触媒。 这种现象相当 于将光能转变为化学能。
2021/3/8
12
几种常用的光触媒
TiO2、 CdS 、 WO3 、ZnO、ZnS、Fe2O3、SnO2等 纳米光触媒:CdS,Fe2O3,TiO2,ZnO等 TiO2的优点:
2021/3/8
10
光触媒
光触媒[PHOTOCATALYSIS] 是 光 [Photo=Light] + 触媒(催化剂)[catalyst] 的合成词。光触媒是一种在光的照射下,自身不起变化,却可以 促进化学反应的物质,光触媒是利用自然界存在的光能转换成为 化学反应所需的能量,来产生催化作用,使周围之氧气及水分子 激发成极具氧化力的 OH - 及 O 2 - 自由负离子。几乎可分解所 有对人体和环境有害的有机物质及部分无机物质,不仅能加速反 应,亦能运用自然界的定侓,不造成资源浪费与附加污染形成。
光催化ppt课件
16
❖ 半导体结构与绝缘体类似,所不同的是Eg较窄,电 子从价带克服禁带能垒跃迁至导带有两种途径。
❖ 一种可以通过热激发或光激发实现。 ❖ 另一种通过掺杂改变半导体材料的电子分布状况实
现。
17
掺杂半导体
❖ 在半导体中含有少量杂质原子称为掺杂半导体。 ❖ 若掺杂原子的价电子除了成键外还有剩余,则为施
高效光催化材料的设计、 制备与应用
1
内容
❖ 发展背景 ❖ 能带理论 ❖ 光催化理论 ❖ 光催化反应的影响因素 ❖ 光催化材料的结构与性能 ❖ 光催化剂的制备方法 ❖ 光催化剂的表征方法 ❖ 光催化材料的应用 ❖ 存在的问题与展望
2
背景、发展
❖ 1967年还是东京大学研究生的藤岛昭教授,在一次试验中对 放入水中的氧化钛单结晶进行了光线照射,结果发现水被分 解成了氧和氢。由于是借助光的力量促进氧化分解反应,因 此后来将这一现象中 的氧化钛称作光触媒。
❖ 随着研究深入,人们发现半导体光催化技术在去除污 染物等方面,具有能耗低、氧化能力强、反应条件温 和、操作简便,可减少二次污染等突出特点,有广阔 应用前景。
4
❖ 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行, 日本发表许多关于光触媒的新观念,并提出应用于氮氧 化物净化的研究成果。此后,光触媒应用于抗菌、防污、 空气净 化等领域的相关研究急剧增加。
光催化材料PPT课件
THANKS
感谢观看
• 光催化材料的发展也将更加注重环保和可持续发展。在材料的制备和应用过程 中,将更加注重资源的节约和环境的保护,同时推动光催化技术的绿色化和产 业化发展。
光催化材料面临的挑战与机遇
光催化材料在实际应用中仍面临一些挑战,如光催化反应的效率、反应动力学和稳定性等问题。此外,光催化材料的回收和 再利用也是需要解决的重要问题。
光催化材料等。
04
光催化材料的应用实例
光催化水处理
01
去除有害物质
光催化材料能够利用光能将水中的有害物质,如重金属离子、有机污染
物等,进行氧化或还原反应,将其转化为无害或低毒性的物质,从而达
到净化水质的目的。
02
杀菌消毒
光催化材料在光照条件下能够产生具有强氧化性的自由基,这些自由基
能够破坏细菌和病毒的细胞膜结构,从而杀死细菌和病毒,起到杀菌消
光谱响应范围
描述光催化材料能够吸收的光的 波长范围。一些材料主要吸收紫 外光,而另一些则能吸收可见光 或红外光。
光吸收效率
衡量材料在特定波长下吸收光的 程度。高吸收效率意味着材料能 更有效地利用光能。
化学性质
稳定性
指光催化材料在化学环境中保持其结 构和性能的能力。
氧化还原能力
指材料在光催化反应中的氧化或还原 能力,影响其光催化活性。
• 除了传统的金属氧化物、硫化物、氮化物等材料外,新型复合光催化材料、异 质结构光催化材料等也将成为研究热点。这些新型材料通过结构设计、元素掺 杂、表面改性等方式,能够进一步提高光催化性能和拓宽应用范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ni装饰的CdS纳米棒
• ★影响因素:PH值
• OH-浓度是影响H2生产速率的重要因素 • 说明OH-是不只是改变碱度,而是直接参与反应的 • 随着PH升高,H2生产速率显著提高。尤其在14向14.7过
渡时,也说明在这个PH范围内,催化的反应机制发生的 本质上的改变。
14
Ni装饰的CdS纳米棒
Eg
ECB
EVB
CdS 2.41 -0.52 1.88
TiO2 3..2 -0.29 2.91
ZnO
3.2
-0.31 2.89
20
PS-A/D-PS体系
• PSⅠ与PSⅡ无直接接触,靠氧化还原电对传递电子; • PSⅠ不易被光氧化,易被光还原; • PSⅡ不易被光还原,易被光氧化。
21
PS-A/D-PS体系
自然界中的光合作用
[3]P. Zhou, J. Yu, M. Jaroniec, All-Solid-State Z-Scheme Photocatalytic Systems1.7 Adv. Mater. 26 (2014) 4920-4935.
光催化反应体系
• 分类: • 1、PSⅠ-PSⅡ体系 • 2、PSⅠ-A/D-PSⅡ体系 • 3、PSⅠ-C-PSⅡ体系
光催化
北京科技大学 方志
1
光催化的机理和应用
2
防止电子和空穴的再结合
1、用一种陷阱式的纳米结构限制光生空穴或者捕捉光生电子; 2、用牺牲剂(乙醇、Na2S、Na2SO3)作为电子给体消耗价带 空穴,是导带电子还原氢离子;用牺牲剂(AgNO3)作为电子 受体消耗导带电子,使价带空穴氧化氧离子。 3、多种半导体共存,让半导体Ⅰ导带上的电子转移到半导体 Ⅱ的导带上或价带上;
5
加入牺牲剂
★用牺牲剂(乙醇、Na2S、Na2SO3) 作为电子给体消耗价带空穴,是导带 电子还原氢离子;
★用牺牲剂(AgNO3)作为电子 受体消耗导带电子,使价带空 穴氧化氧离子。
6
加入牺牲剂
[1] M.J. Berr, P. Wagner, S. Fischbach, A. Vaneski, et al., Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocataly7tic hydrogen generation. Appl. Phys. Lett. 100 (2012) 223903.
• 常用的助催化剂有:Pt、NiO、Ru2O等; • 在水溶液粉末悬浮Pt/TiO2光催化体系中,Pt的作用就是助
催化剂。
10
助催化剂的作用
• 金属与半导体界面上形成了势垒,称为Schottky势垒,作 为电子陷阱,能有效阻止半导体上的电子与空穴的复合。
• 光生电子向金属迁移,为Schottky势垒所俘获,空穴向半 导体其他位置移动,促进了电子与空穴分离,有利于光催 化反应的进行。
22
PS-A/D-PS体系
• 缺陷:
• 由于氧化还原电对的存在,该催化剂仅适用于液态的催化 反应,且不适合污染物的降解,因为污染物会影响电对的 氧化还原反应,所以该体系的催化剂局限于水的光催化分 解领域。
23
PS-C-PS体系
• 无A/D电对,利用导体C作为电子传递媒介。
• 两步氧化反应
当PH=14时
EVB=1.70V
因此,价带空穴可 以氧化OH生成的羟基再去氧 化乙醇,该过程很 快,其中空穴的转 移是控诉环节
15
光催化反应体系
• 1、加入电子给体和电子受体(牺牲剂) • 2、担载助催化剂 • 3、双光子系统(Z-Scheme)
16
双光子系统(Z-Scheme)
加入牺牲剂
SO32-相对于标准氢电极的电极电势最负,最易失电子,所以最易消耗价带空穴8
加入牺牲剂
• 缺点:
• 当牺牲剂的量消耗殆尽时,催化效率也会大大降低。 • 所以需要定时加入牺牲剂。
9
担载助催化剂
• 紫外光照射时单纯的光催化剂并不能有效分解水析出氢气 和氧气, 在光催化剂颗粒表面上担载一些金属或金属氧化 物可以促进水的分解;
18
光催化反应体系
• 分类: • 1、PSⅠ-PSⅡ体系 • 2、PSⅠ-A/D-PSⅡ体系 • 3、PSⅠ-C-PSⅡ体系
19
PS-PS体系
• 将两种半导体直接固-固接触,可通过离子间的静电吸附 (物理方法)和多相的成核生长(化学方法)
• 常见的有:TiO2-C3N4、TiO2-CdS、ZnO-CdS
Ni装饰的CdS纳米棒
• ★制备:
• Ni的前驱体NiCl2加到CdS纳米棒的分散系中,用447nm激 光照射;
• CdS导带中的光生电子将NiCl2还原成Ni纳米颗粒,便沉积 在CdS纳米棒表面。
• ★性能: • 447nm激光照射,表观量子效率53%,内部量子效率71%,
H2生产速率:63mmol g-1 h-1
存在逆反应:受电子体A与PSⅠ导带中的电子反应; 供电子体D与PSⅡ价带中的空穴反应。
解决措施:改变半导体表面结构,阻止A在PSⅠ上与D在PSⅡ上的吸附,但无法 杜绝。
A/D电对:IO3− /I −、Fe3+ /Fe2+ , [Co(bpy)3 ]3+/2+ , [Co(phen)3]3+/2+ 、NO3−/NO2−
3
光催化剂的影响因素
• 1、光子能量要比催化剂的禁带宽度Eg高;(窄的禁带宽 度有利于太阳能的利用)
• 2、反应物的氧化还原电势应ቤተ መጻሕፍቲ ባይዱ导带电位与价带电位之间; (更负的导带电位和更正的价带电位有利于氧化还原反应)
4
光催化反应体系
• 1、加入电子给体和电子受体(牺牲剂) • 2、担载助催化剂 • 3、双光子系统(Z-Scheme)
11
Ni装饰的CdS纳米棒
[2]T. Simon, N. Bouchonville, M.J. Berr, A. Vaneski, et al., Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mate12r. 13 (2014) 1013-1018.