梁弯曲时横截面上的正应力
梁的弯曲正应力公式

梁的弯曲正应力公式在我们学习力学的奇妙世界里,梁的弯曲正应力公式就像是一把神奇的钥匙,能帮我们打开很多难题的大门。
先来说说梁是啥吧。
想象一下,你家里的房梁,或者是一座桥上的大梁,它们都是承受各种力量的重要结构。
梁在受到外力作用时,会发生弯曲,而这时候梁内部就会产生应力。
那梁的弯曲正应力公式到底是啥呢?它其实就是用来计算梁在弯曲时,不同位置处的应力大小的。
公式是:σ = My / I 。
这里的σ就是正应力,M 是弯矩,y 是所求应力点到中性轴的距离,I 是惯性矩。
咱们来具体讲讲这个公式里的每个部分。
先说弯矩 M ,它就像是一个大力士,决定了梁弯曲的程度和力量大小。
比如说,在一个建筑工地上,一根钢梁要承受上面重重的建筑材料的压力,这个压力让钢梁产生弯曲,而这个弯曲的力量大小就是弯矩。
再看 y ,也就是所求应力点到中性轴的距离。
中性轴就像是梁的“平衡线”,上面的部分受压,下面的部分受拉。
比如说,你拿一根竹条弯曲,中间不怎么变形的那一条线就类似中性轴。
而应力点到中性轴的距离越大,应力也就越大。
惯性矩 I 呢,它反映了梁横截面的形状和尺寸对抗弯能力的影响。
比如说,同样长度的钢梁,如果一个是实心的粗钢梁,一个是空心的细钢梁,那实心的粗钢梁惯性矩就大,抗弯能力也就更强。
我记得有一次去工厂参观,看到工人们正在加工一批钢梁。
工程师拿着图纸,嘴里不停地念叨着梁的弯曲正应力公式,计算着每根钢梁在不同工作条件下的应力情况。
他们神情专注,一丝不苟,因为哪怕一点点的误差,都可能导致钢梁在使用过程中出现问题,造成严重的后果。
在实际应用中,梁的弯曲正应力公式用处可大了。
比如在设计桥梁的时候,工程师得根据车辆的通行量、桥的跨度等因素,利用这个公式准确计算出桥梁中各个部位的应力,确保桥梁的安全稳固。
又比如在机械制造中,要设计一个能承受特定载荷的传动轴,也得靠这个公式来确定轴的尺寸和材料。
总之,梁的弯曲正应力公式虽然看起来有点复杂,但它可是力学世界里的宝贝,能帮助我们解决很多实际问题,让我们的生活更加安全和便捷。
纯弯曲时梁横截面上的正应力

(2) a点的正应力
a点到中性轴的距离为
ya
560 2
21
259
mm
所以a点的正应力为
a
M max ya Iz
375103 259103 65600108
148.1 MPa
例3 图示梁由工字钢制成。许用弯曲正应力[]
=152 MPa, F=75 kN,试选择工字钢的型号 。
解: 求约束反力, 作弯矩图 F F F
5.2 纯弯曲时梁横截面上的正应力 E E y
M z
y dA M
A
E y2dA EIz M
A
Iz
y2dA 为横截面对中性轴z轴的惯性矩。
A
1M
EIz
是梁中性层的曲率表达式。
EIz称为梁的抗弯刚度。
5.2 纯弯曲时梁横截面上的正应力
E E y
1 M
EIz
My
最大正应力的分析*********
1 当中性轴为对称轴时
以 ymax表示最大应力点到中性 轴的距离, 则横截面上的最大
正应力为:
max
M max ymax Iz
矩形截面梁横截面上正应
力分布如图所示
cmax t max max
C
ymax
z
ymax
y
c max
M
t max
最大正应力的分析
max
MC y2 Iz
( F 2) 0.086 4 5493108
90 106
120
180 40 134 86
C
形心
z
20 y
20
F
q=F/b
A
CB
D
b
3.3纯弯曲时梁横截面上的正应力详解

剪切弯曲:横截面上既有剪力 又有弯矩。 纯弯曲:横截面上只有弯矩而 无剪力。
4
《化工设备设计基础》
3.3.1 纯弯曲时的变形现象与假设
1、变形现象 ① 两条横向线mm nn不再相互平行,而是相互 倾斜,但仍然是直线,且仍与梁的轴线垂直。 ② 两条纵向线aa、 bb 变成 曲线 梁的轴线 内凹一侧的纵向线aa缩短了, 外凸一侧的纵向线bb伸长了。 中性层既不伸长也不缩短。
①纯弯曲 ( pure bending )
2
《化工设备设计基础》
3.3纯弯曲时梁横截面上的正应力
1.纯弯曲和横力弯曲
②横力弯曲
3
《化工设备设计基础》
3.3纯弯曲时梁横截面上的正应力
1.纯弯曲和横力弯曲
纯弯曲 ( pure bending )
横力弯曲 ( transverse load bending )
W I /y
Z z
max
14
《化工设备设计基础》
第三章 直梁的弯曲
3.1 平面弯曲的概念 3.2 直梁弯曲时的内力分析 3.3纯弯曲时梁横截面上的正应力 3.4 截面惯性矩和抗弯截面模量 3.5 梁的弯曲强度计算 3.7 提高梁弯曲强度的主要途径 3.8 梁的弯曲变形与刚度校核
1
《化工设备设计基础》
3.3纯弯曲时梁横截面上的正应力
1.纯弯曲和横力弯曲
3.3.2 弯曲变形与应力的关系
4.弯曲应力
横力弯曲正应力公式
弹性力学精确分析表明,当跨 度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时,纯弯曲正应力公 式对于横力弯曲近似成立。 危险点应力:
max
M max ymax Iz
Mmax:在梁的所有横截面中,选择弯矩为峰值的截面 ymax: 在指定的横截上,选择离中性轴最远的点
纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告一、实验目的1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力计算公式二、实验仪器设备和工具3.XL3416 纯弯曲试验装置4.力&应变综合参数测试仪5.游标卡尺、钢板尺3、实验原理及方法在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为σ= My / I z式中M为弯矩,I z为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。
为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
实验采用半桥单臂、公共补偿、多点测量方法。
加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量σ实i=E△ε实i将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。
四、实验步骤1.设计好本实验所需的各类数据表格。
2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变片到中性层的距离y i。
见附表13.拟订加载方案。
先选取适当的初载荷P0(一般取P0 =10%P max左右),估算P max(该实验载荷范围P max≤4000N),分4~6级加载。
4.根据加载方案,调整好实验加载装置。
5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。
6.加载。
均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。
实验至少重复两次。
见附表27.作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。
附表1 (试件相关数据)附表2 (实验数据)P 50010001500200025003000载荷N △P 500500500500500εP -33-66-99-133-166△εP -33-33-34-334平均值-33.25εP -16-33-50-67-83△εP -17-17-17-162平均值16.75εP 00000△εP 00001平均值0εP 1532476379△εP 171516163平均值16εP 326597130163△εP 33323333 各 测点电阻应变仪读数µε5平均值32.75五、实验结果处理1.实验值计算根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算应变片至中性层距离(mm )梁的尺寸和有关参数Y 1-20宽 度 b = 20 mm Y 2-10高 度 h = 40 mm Y 30跨 度 L = 620mm (新700 mm )Y 410载荷距离 a = 150 mm Y 520弹性模量 E = 210 GPa ( 新206 GPa )泊 松 比 μ= 0.26惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4。
横力弯曲时的正应力计算公式

F
a/2
A
C
l/2 l/2
D
B
解: 分析:关键在于何为最佳,对于该题最佳就是两梁最大弯曲 应力同时达到最大。
主梁AB的最大弯矩
M maxAB
F (l a) 4
副梁CD的最大弯矩
M maxCD
Fa 4
由 即
M max AB M max CD
F Fa (l a) 4 4
得
4.纯弯曲的特点: 靠近凹入的一侧,纤维缩短,靠近凸出的一侧,纤维伸长; 由于纤维从凹入一侧的伸长或缩短到突出一侧的缩短或伸长 是连续变化的,故中间一定有一层,其纤维的长度不变,这 层纤维称为中性层。中性层与横截面的交线称为中性轴; 弯曲变形时,梁的横截面绕中性轴旋转。
中性层
中性轴
o
对称轴
z
目录
§6-3 非对称梁的纯弯曲
前面讨论的是梁上的弯曲力偶作用于纵向对称面内的情况; 下面讨论,当梁没有这样的纵向对称面时,或着虽然有纵向对称 面,但弯曲力偶并不作用于这一平面时的情况。
图6—7
如图(a)所示: Y、Z轴——横截面的形心主惯性轴
X轴——梁的轴线
My、Mz——对y轴、z轴的力偶矩
一.公式推导:
y
(6—1)
即:纵向纤维的线应变与它到中性层的距离成正比
(二) 物理关系 假设纵向纤维之间不存在相互挤压,那么当应力小于比 例极限时,可用单向拉伸时的虎克定律:
E E
y
物理意义:任意纵向纤维的正应力与它到中性层的距离成正 比,即:在横截面上的正应力沿截面高度按直线 曲率中心O 规律变化。
中性轴必然通过截面形心。 E 1 M EI z sin 0 0 (由于y 和z是形心主惯性轴,故Iyz=0)
工程力学-弯曲应力

6 弯曲应力1、平面弯曲梁横截面上的正应力计算。
正应力公式是在梁纯弯曲情况下导出的,并被 推广到横力弯曲的场合。
横截面上正应力公式为j zM y I σ=横截面上最大正应力公式为 max zM W σ=2、横力弯曲梁横截面上的切应力计算,计算公式为*2z QS I bτ= 该公式是从矩形截面梁导出的,原则上也适用于槽形、圆形、工字形、圆环形截面梁横截面切应力的计算。
3、非对称截面梁的平面弯曲问题,开口薄壁杆的弯曲中心。
4、梁的正应力强度条件和切应力强度条件为[]max σσ≤[]max ττ≤根据上述条件,可以对梁进行强度校核、截面设计和容许荷载的计算,与此相关的还要考虑梁的合理截面问题。
5、梁的极限弯矩6.1图6-6所示简支梁用其56a 号工字钢制成,试求此梁的最大切应力和同一截面腹板部分在与翼板交界处的切应力。
图 6.1[解] 作剪力图如图(c).由图可知,梁的最大剪力出现在AC 段,其值为max 7575000Q kN N ==利用型钢表查得,56a 号工字钢*247.7310z z S I m -=⨯,最大切应力在中性轴上。
由此得以下求该横截面上腹板与翼板交界处C 的切应力。
此时*z S 是翼板面积对中性轴的面积矩,由横截面尺寸可计算得*3435602116621()9395009.401022z S mm m -=⨯⨯-==⨯ 由型钢表查得465866z I cm =,腹板与翼板交界处的切应力为*max max max max23*max7500012600000126.47.731012.510z a z z z Q S Q MP I I dd S τ--=====⨯⨯⨯⨯a MP 6.12解题范例483750009.40108.6658661012.510fc a MP τ---⨯⨯==⨯⨯⨯6.2长为L 的矩形截面悬臂梁,在自由端作用一集中力F ,已知b =120mm ,h =180mm 、L =2m ,F =1.6kN ,试求B 截面上a 、b 、c 各点的正应力。
梁弯曲时的正应力

梁弯曲时的正应力§7-1 梁弯曲时的正应力一、纯弯曲时的正应力如图7-2a 所示的简支梁,荷载与支座反力都作用在梁的纵向对称平面内,其剪力图和弯矩图加图7-2b 、c 所示。
在梁的AC 和DB 段内,各横截面上同时有剪力和弯矩,这种弯曲称为剪力弯曲或横力弯曲。
在CD 段中,各横截面上只有弯矩而无剪力,这种弯曲称为纯弯曲。
b )c )a )图7-2为了使问题简单,现以矩形截面梁为例,推导梁在纯弯曲时横截面上的正应力。
其方法和推导圆轴在扭转时的剪应力公式的方法相同,从几何变形、物理关系和静力学关系等三方面考虑。
1、几何变形为观察梁纯弯曲时的表面变形情况,在矩形截面梁的表面画上一些纵向直线和横向直线,形成许多小矩形,然后在梁两端对称位置上加集中荷载P ,梁受力后产生对称变形,在两个集中荷载之间的区段产生纯弯曲变形,如图7-3所示。
从实验中观察到如下现象:m n nma )b )d )ij i j图7-31)所有纵向直线均变为曲线,靠近顶面(凹边)的纵向线缩短,靠近底面(凸边)的纵向线伸长,如图7-3b 中的i ′—i ′和j ′—j ′。
2)所有横向直线仍为直线,只是各横向线之间作了相对转动,但仍与变形后的纵向线正交, 如图7-3b 中的m ′—m ′。
3)变形后横截面的高度不变,而宽度在纵向线伸长区减小,在纵向线缩短区增大,如图7-3b 右所示。
根据以上观察到的现象,并将表面横向直线看作梁的横截面,可作如下假设:1)平面假设:变形前为平面的横截面,变形后仍为平面,它像刚性平面一样绕某轴旋转了一个角度,但仍垂直于梁变形后的轴线。
2)单向受力假设:认为梁由无数微纵向纤维组成。
各纵向纤维的变形只是简单的拉伸或压缩,各纵向纤维无挤压现象。
根据平面假设,梁变形后的横截面转动,使得梁的凸边纤维伸长,凹边纤维缩短。
由变形的连续性可知,中间必有一层纤维既不伸长也不缩短,此层纤维称为中性层,如图7-3d 所示。
§7 1 纯弯曲梁横截面上的正应力

Z
h
b
d
[注:各种型钢的抗弯截面模量可从型钢表中查到]
若梁的横截面对中性轴不对称,其最大拉、压应力并不相等,这时 应分别进行计算。
§7-1 纯弯曲梁横截面上的正应力 思考题1:
梁发生平面弯曲时,其横截面绕______旋转。 A.梁的轴线 B.中性轴 C.截面的对称轴 D.截面的上(或下)边缘
答案 B.
扭转时横截面才绕轴线旋转,A不对。弯曲时横截面是绕中性轴旋转。 中性轴不一定是对称轴,中性轴过形心,不会在上、下边缘,所以C、D不 对。
§7-1 纯弯曲梁横截面上的正应力
思考题2:
图示截面的抗弯截面系数WZ =_________。 h
A. d 3 1 bh2
32 6
B. d 4 1 bh3
§7-1 纯弯曲梁横截面上的正应力
d
中性层
o1
Z
中性轴
y
O
o1
纵向对称面
dx
Y
§7-1 纯弯曲梁横截面上的正应力 三、正应力计算公式
1、几何关系 中性层:纤维长度不变 中性轴:中性层与横截面的交线。通常用Z表示。
cd cd cd
( y)d d yd cd yd y cd d
14.4 kN.m
2、计算横截面的惯性矩
Iz
BH 3 12
bh3 12
6 12 3 (
3 83
)cm4
12 12
736 cm4
§7-1 纯弯曲梁横截面上的正应力
3、计算应力
外max
M max Iz
H 2
14.4103 N m 736 10 8 m4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梁弯曲时横截面上的正应力
在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。
1、纯弯曲与横力弯曲
从火车轴的力学模型为图2-53a所示的外伸梁。
画其剪力、弯矩图(见图2-53b、c),在其AC、BD段内各横截面上有弯矩M和剪力F Q同时存在,故梁在这些段内发生弯曲变形的同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。
在其CD段内各段截面,只有弯矩M而无剪力F Q,梁的这种弯曲称为纯弯曲。
2、梁纯弯曲时横截面上的正应力
如图2-54a所示,取一矩形截面梁,弯曲前在其表面两条横向线m—m和n—n,再画两条纵向线a—a和b—b,然后在其两端外力偶矩M,梁将发生平面纯弯曲变形(见图2-54b)。
此时可以观察到如下变形现象:
⑴横向线m—m和n—n任为直线且与正向线正交,但绕某点相对转动了一个微小角度。
⑵纵向线a—a和b—b弯成了曲线,且a—a线缩短,而b—b线伸长。
由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。
可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。
从图2-54b中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c)。
中性层与横截面的交线称为中性轴。
梁弯曲时,横截面绕中心轴绕动了一个角度。
由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点:
⑴中性轴的线应变为零,所以其正应力也为零。
⑵距中性轴距离相等的各点,其线应变相等。
根据胡克定律,它们的正应力也必相等。
⑶在图2-54b 所示的受力情况下,中性轴上部分各点正应力为压应力(即负值),中性轴下部分各点正应力为拉应力(即正值)。
⑷横截面上的正应力沿y 轴呈线性分布,即ky =σ(k 为特定常数),如图2-55、图2-56所示。
最大正应力(绝对值)在离中性轴最远的上、下边缘处。
由于距离中性层上、下的纵向纤维的线应变与到中性层的距离y 成正比,当其正应力不超过材料的比例极限时,由胡克定律可知
y E y E E •=•=•=ρρεσ
2-24
对于指定的横截面,ρ
E 为常数(即为上述k 的值)看,由于此时梁轴线的曲率半径ρ还是一个未知量,通过静力学平衡关系∑z
F )(=0,可得
图2-55 正应力分布图
图2-56 梁纯弯曲时横截面上的内力和应力
⎰=A M ydA σ
2-25 将公式(2-24)代入(2-25),得
M dA y E
dA y E
A A ==⎰⎰22ρρ
令
dA y I A
z ⎰=2 为截面对中性轴z 轴的轴惯性矩)(4mm ,则
z EI M =ρ
1 这是研究梁变形的一个基本公式,式中z EI 称为梁的抗弯刚度。
将公式(2-26)代入(2-24),即得到梁在纯弯曲时截面上任一点处的正应力计算公式:
z I My =σ 为计算梁横截面上的最大正应力,可定义抗弯截面系数m ax y I W z z =
,则式(2-27),可写作:
z W M =
max σ 式中 M ——截面上的弯曲(N ·mm );
W z ——抗弯截面系数(mm 3).
I z 和W z 是仅与截面几何尺寸有关的量,常用型钢的I z 和W z 可在有关设计手册中查得。
式(2-27)和(2-28)是由梁受纯弯曲变形推导出的,但只要梁具有纵向对称面,且载荷作用在其纵向对称面内,梁的跨度又较大的,横力弯曲也可以应用上述两式。
当梁横截面上的最大应力大于材料的比例极限时,公式不在适用。
3、惯性矩和抗弯截面系数的计算
梁常见横截面的I z 、W z 计算公式表2-2。