应变片实验报告

合集下载

应变片 实验报告 灵敏

应变片 实验报告 灵敏

应变片实验报告灵敏引言应变片是一种常用于测试物体受力情况的传感器。

其具有灵敏性能的重要指标是其在不同受力情况下的响应能力。

本实验旨在测试应变片的灵敏性能,并分析实验结果。

实验材料和设备- 应变片- 电源- 数字示波器- 受力装置- 变阻器实验步骤1. 将应变片粘贴在要测试的物体表面,并保证其充分贴合。

2. 连接应变片与电源和数字示波器,确保电路连接良好。

3. 利用受力装置对测试物体施加不同大小的力,记录下力的大小和对应的应变片输出信号。

4. 根据实验需求,对应变片输出信号进行转换和调节,以便与数字示波器适配。

5. 将转换后的信号输入到数字示波器中,记录下实验数据。

数据分析通过实验记录的数据,我们可以对应变片的灵敏性能进行分析。

我们可以将施加的力与应变片输出的电压信号进行对比,以便确定其灵敏度和线性范围。

结果与讨论根据实验记录的数据,我们绘制了应变片的灵敏性能曲线。

曲线上的每个点表示施加不同大小力时应变片的输出电压信号。

通过对曲线进行分析,我们可以得到以下结论:1. 灵敏度:灵敏度是应变片的输出电压和外力之间的关系。

经实验测得,应变片的灵敏度为X mV/N,表明应变片对外力的变化相当敏感。

2. 线性范围:线性范围是指应变片在力作用下输出电压与力的关系保持线性的区间范围。

根据实验数据,我们可以确定应变片的线性范围为X N至Y N之间。

结论本实验通过测试应变片的灵敏性能,得出了应变片的灵敏度和线性范围等重要指标。

这些指标将有助于我们在实际应用中选择合适的应变片,并确保其测量结果的准确性。

参考文献[1] 张三, 李四. 应变片传感器的原理与应用. 科学出版社, 20XX.[2] 王五, 赵六. 传感器技术基础. 电子工业出版社, 20XX.。

应变片实验报告

应变片实验报告

应变片实验报告
实验名称:应变片实验
实验目的:通过应变片实验,研究材料在受力过程中的应变情况。

实验原理:
应变片是一种用于测量物体受力时产生的应变的传感器。

其原理基于电阻应变效应,即应变片在受力作用下会发生微小形变,从而改变其电阻值。

通过测量电阻值的变化,可以获知材料的应变情况。

实验仪器和材料:
1. 应变片
2. 电流源
3. 万用表
实验步骤:
1. 将应变片粘贴在需要测量应变的材料表面。

2. 将电流源与应变片相连,调整电流源的输出电流。

3. 使用万用表测量应变片上的电阻值。

4. 在材料上施加不同的受力,记录电阻值随受力变化的情况。

5. 根据电阻值的变化计算应变大小。

实验结果:
根据实验数据记录的电阻值随受力变化的情况,可以得到应变片的应变曲线。

根据应变曲线可以分析材料在受力过程中的应
变行为,如线性弹性应变、屈服应变等。

根据测得的电阻值变化,还可以计算出材料的应变量。

实验结论:
通过应变片实验,可以获知材料在受力过程中的应变情况,并分析材料的力学性能。

应变片作为一种常用的力学测试传感器,具有灵敏度高、测量精度高等优点,在工程领域有着广泛的应用。

应变片全桥实验报告(1)

应变片全桥实验报告(1)

应变片全桥实验报告(1)应变片全桥实验报告一、实验目的本次实验的目的是通过对应变片全桥的实验操作,学习应变测量原理与应用,了解应变传感器的工作原理,掌握应变片传感器的使用方法,以及应变片的标定和灵敏度测量方法。

二、实验原理应变片是利用金属材料受力后会产生形变的物理原理,通过将应变片粘贴在试件上进行应变的传感器。

当试件受到力的作用,应变片也会跟随变形,从而导致内部的应变变化。

应变片旁边粘有导线,通过连接到采集器中来连接计算机,进而记录下应变片受到的应变值。

三、实验操作1. 提前准备:将所需设备的连接准备工作完成,包括收集器、应变片、试件、电缆等设备准备就绪。

2. 清洁试件表面:将脏物和杂质从试件表面切除,确保应变片能够正常贴合。

3. 应变片粘贴:仔细去除应变片上的塑料薄膜,然后附在试件上,用指压将其平整环绕在试件的表面上。

4. 连接装置:使用电缆将应变片连接到收集器,以便将其应变数据传输到计算机上。

5. 核对应变片灵敏度:比较已经安装应变片的试件与没有应变片的试件之间的区别,获得标准应变片灵敏度。

四、实验结果本次实验使用全桥形式的应变传感器,选择20×10 mm2的一块薄金属片作为试件,经过应变片的安装和采样,得到了试件在不同施力条件下的应变值。

通过计算和记录每个读数,我们得到了如下测试数据:力(N) 应变(με)0 01.5 0.933 1.854.5 2.756 3.707.5 4.549 5.5五、实验结论本次应变片全桥实验得出的结论是,应变片全桥的使用使得我们可以对金属类材料的变形进行精确的观测和计算。

通过监测装置和薄金属片的读数数据,可以获得牢固且精确的变形读数,这使得我们可以更好地了解这些材料的物理特性和反应。

六、实验分析本次应变片全桥实验的记录和观测数据非常精准,没有明显的差异,这表明应变片传感器在材料应变测量中的重要性和它的可靠性。

由于应变片反应的是试件表面的应变情况,所以应用范围还是有限的。

应变片全桥实验报告

应变片全桥实验报告

应变片全桥实验报告实验目的:掌握应变片全桥测量方法,了解应变片的应变测量原理,熟悉应变片在力学实验中的应用。

实验原理:应变片是一种将物体在应变情况下的应变转化为电阻变化的敏感元件,其原理是根据伏安特性的基本规律。

全桥电路通过测量电阻变化来间接地获得物体的应变情况,从而间接地得到物体受力过程中的各种参数。

全桥电路包括应变片、标准电阻和电桥。

在实际测量过程中,通过向电桥的两个对角电阻R1和R2加上恒定的电流I,通过测量电桥两对角的电压U1和U2的大小,通过改变电桥上的电阻Rx的大小来使电桥平衡,从而测量到被测物体的应变。

实验器材:1.应变片全桥实验仪;2.应变片;3.标准电阻箱;4.电源;5.万用表;6.手动蝼蚁拉力机。

实验步骤:1.将手动蝼蚁拉力机的加荷靠右的滑块拉到最右端,使得下方的呆扳手完全松开。

2.在呆扳手上紧固上准备安装应变片的试件。

3.将应变片按照预先设计的位置进行安装,并使用胶水固定。

4.将应变片连接到应变片全桥实验仪上,注意连接正确。

5.打开电源,将电源电压调整到适当范围。

6.使用标准电阻箱调整电桥电阻,使得电桥平衡。

7.通过万用表测量电桥两对角的电压值,记录下来。

实验结果及分析:在实验中,我们通过应变片全桥实验仪测量了应变片在力学实验中的应变情况。

根据测量结果,我们可以计算出力学实验中的应变量。

通过调整电桥电阻,使得电桥平衡,我们可得到电桥两对角的电压值为U1和U2、根据应变片的标定系数,我们可以将电压值转化为应变值。

应变值可以通过应变本构模型进一步计算得到应力。

在实验中,我们还可以测量到随着受力的增加,应变值的增加情况。

通过绘制应变-应力曲线,我们可以分析被测物体的力学性质,如在材料屈服之前的弹性变形情况、屈服点的位置等。

实验结果也可以与材料的材料力学性质进行比对,从而检验被测物体的机械性能和使用性能。

结论:通过应变片全桥实验,我们可以测量出应变片在被力作用下的应变情况,并进一步计算得到应力。

应变片实验报告

应变片实验报告

传感器实验----金属箔式应变片:单臂、半桥、全桥比较【实验目的】了解金属箔式应变片,单臂单桥的工作原理和工作情况。

验证单臂、半桥、全桥的性能及相互之间关系。

【所需单元及部件】直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、电压/频率表、电源, 重物加在短小的圆盘上。

【旋钮初始位置】直流稳压电源打到±2V 挡,电压/频率表打到2V 挡,差动放大增益最大。

【应变片的工作原理】当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属的电阻应变效应。

设有一根长度为L 、截面积为S 、电阻率为ρ的金属丝,在未受力时,原始电阻为(1-1)当金属电阻丝受到轴向拉力F 作用时,将伸长ΔL,横截面积相应减小ΔS ,电阻率因晶格变化等因素的影响而改变Δρ,故引起电阻值变化ΔR 。

对式(1-1)全微分,并用相对变化量来表示,则有:ρρ∆+∆-∆=∆S S L L R R (1-2) 【测量电路】应变片测量应变是通过敏感栅的电阻相对变化而得到的。

通常金属电阻应变片灵敏度系数K 很小,机械应变一般在10×10-6~3000×10-6之间,可见,电阻相对变化是很小的。

例如,某传感器弹性元件在额定载荷下产生应变101000⨯=ε-6,应变片的电阻值为Ω120,灵敏度系数K=2,则电阻的相对变化量为⨯⨯==∆10002εK RR10-6=0.002,电阻变化率只有0.2%。

这样小的电阻变化,用一般测量电阻的仪表很难直接测出来,必须用专门的电路来测量这种微弱的电阻变化。

最常用的电路为电桥电路。

(a )单臂 (b )半桥 (c )全桥图1-1 应变电桥直流电桥的电压输出当电桥输出端接有放大器时,由于放大器的输入阻抗很高,所以,可以认为电桥的负载电阻为无穷大,这时电桥以电压的形式输出。

输出电压即为电桥输出端的开路电压,其表达式为U R R R R R R R R U ))((432142310++-=(1-3)设电桥为单臂工作状态,即1R 为应变片,其余桥臂均为固定电阻。

电阻应变片粘贴实验报告_2

电阻应变片粘贴实验报告_2

电阻应变片粘贴实验
一.实验目的
1. 初步掌握常温电阻应变片的粘贴技术;
2. 初步掌握导线焊接技术;
3. 了解应变片防潮和检查等。

二.实验设备和器材
1. 常温电阻应变片;
2. 试件;
3. 纱布;
4. 丙酮和酒精;
5. 502粘接剂;
6. 测量导线;
7. 电烙铁;
8. 万用表。

三.实验步骤
1.定出试件被测位置,画出贴片定位线。

在贴片处用浸有丙酮的棉球擦洗残留的502粘接剂,再用细纱布按45°方向交叉打磨,然后用浸有酒精的棉球将打磨处擦洗干净,擦洗时注意单方向擦洗,直至棉球洁白为止。

2.待试件打磨处晾干后,一手镊住应变片引线,一手拿502胶,在应变片基底底面涂上502胶(一滴即可),立即将应变片底面朝下放在试件被测位置上,并使应变片基准
对准定位线。

将一小片薄膜盖在应变片上,用手指柔和滚压挤出多余的胶,然后手指
静压一分钟,使应变片和试件完全粘和后再放开。

从应变片无引线的一端向有引线的
一端揭掉薄膜。

检查应变片与试件之间有无气泡、翘曲、脱胶等情况,若有则需重贴。

3.将导线与应变片连接的一端去掉2mm塑料皮,涂上焊锡。

4.将应变片引线与试件轻轻拉开,把一端涂上焊锡的导线与应变片引线靠近,用胶布固定在试件上,然后用电烙铁将应变片引线与导线焊接。

焊点要光滑,防止虚焊。

5.用万用表检查:与应变片焊接的导线是否导通(两导线之间电阻约为120欧左右);
应变片与试件之间是有绝缘。

1。

应变片全桥实验报告

应变片全桥实验报告

竭诚为您提供优质文档/双击可除应变片全桥实验报告篇一:金属箔式应变片——全桥性能实验实验报告金属箔式应变片——全桥性能实验实验报告一.实验目的:了解全桥测量电路的优点。

二.基本原理:全桥测量电路中,将受力性质相同的两应变片接入电桥对边,受力方向不同的接入邻边,当应变片初始阻值:R1?R2?R3?R4,其变化值?R1??R2??R3??R4时,其桥路输出电压uo3?Ke?。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三.需用器件和单元:应变单元电路、应变式传感器、砝码、数显表(实验箱上电压表)、±4V电源、万用表。

四.实验步骤:图1应变式传感器全桥实验接线图1.保持单臂、半桥实验中的Rw3和Rw4的当前位置不变。

2.根据图1接线,实验方法与半桥实验相同,全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,将实验结果(:应变片全桥实验报告)填入表1;进行灵敏度和非线性误差计算。

表1全桥输出电压与加负载重量值3.根据表1计算系统灵敏度s,s??u/?w(?u输出电压变化量;?w重量变化量);计算非线性误差:?f1??m/yF?s?100%,式中?m为输出值(多次测量时为平均值)与拟合直线的最大偏差,yF?s满量程输出平均值。

五.实验结果计算1.计算系统灵敏度s,s??u/?w(?u输出电压变化量;?w重量变化量)表2全桥测量灵敏度2.计算非线性误差:?f1??m/yF?s?100%,式中?m为输出值(多次测量时为平均值)与拟合直线的最大偏差,yF?s 满量程输出平均值。

实验时,测的最大重量为80(g),因此,yF?s?0.157(电压表测得)、yF?s=0.15293(LAbVIew测得)(1)由电压表测得数据拟合得到的方程为:y?0.0017x?0.0185拟合得到数据:拟合得到图像:01020304050607080计算得到非线性误差为:表3电压表测得数据计算得到非线性误差由LAbVIew测得数据拟合得到的方程为:y?0.0017x?0.0182拟合得到数据:拟合得到图像:01020304050607080计算得到非线性误差为:表4LAbVIew测得数据计算得到非线性误差六.试验后感通过本次实验,我了解了用全桥电路对物体侧重的方便性,以及全桥电路的高灵敏性,相信通过本次实验可以帮助我在以后的实验以及生活中更好地运用全桥电路。

应变片黏贴实验报告(3篇)

应变片黏贴实验报告(3篇)

第1篇一、实验目的1. 理解应变片的工作原理和测量应变的机制。

2. 掌握应变片粘贴的基本步骤和注意事项。

3. 通过实验验证应变片粘贴的准确性和可靠性。

二、实验原理应变片是一种将机械应变转换为电阻变化的传感器。

其基本原理是基于电阻应变效应,即当金属导体或半导体材料在外力作用下产生应变时,其电阻值也会发生相应的变化。

应变片通常由金属丝或金属箔制成,通过粘贴在需要测量的结构上,当结构受到外力作用时,应变片随之产生形变,从而改变其电阻值,通过测量电路将电阻变化转换为电压或电流信号,从而实现对应变的测量。

三、实验仪器1. 应变片(金属箔式)2. 粘贴剂3. 打磨机4. 砂纸5. 酒精棉6. 粘贴工具7. 测量电路8. 数字多用表(DMM)四、实验内容1. 应变片准备- 检查应变片的外观,确保无划痕、裂纹等缺陷。

- 使用数字多用表测量应变片的电阻值,确保其阻值符合实验要求。

2. 构件表面处理- 选择合适的构件作为实验对象,确保其表面平整、光滑。

- 使用打磨机对构件表面进行打磨,去除油漆、氧化层和污垢。

- 使用砂纸对打磨后的表面进行精细打磨,确保表面光滑。

3. 应变片粘贴- 将应变片放置在处理好的构件表面上,确保其位置准确。

- 使用酒精棉清洁应变片和构件表面的粘贴区域。

- 在应变片背面滴上适量的粘贴剂,确保粘贴剂均匀分布。

- 将应变片粘贴在构件表面上,确保其与构件紧密贴合。

- 使用粘贴工具对粘贴好的应变片进行按压,确保其牢固粘贴。

4. 测量电路搭建- 按照实验要求搭建测量电路,包括应变片、电阻、电源、放大器等。

- 将应变片接入测量电路,确保连接正确。

5. 实验测试- 对构件施加不同大小的力,观察应变片的电阻值变化。

- 使用数字多用表测量应变片的电阻值,记录实验数据。

- 分析实验数据,验证应变片粘贴的准确性和可靠性。

五、实验结果与分析1. 实验结果- 通过实验,观察到应变片的电阻值随着构件受力的增加而增大,符合电阻应变效应的原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器实验----
金属箔式应变片:单臂、半桥、全桥比较
【实验目的】
了解金属箔式应变片,单臂单桥的工作原理和工作情况。

验证单臂、半桥、全桥的性能及相互之间关系。

【所需单元及部件】
直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、电压/频率表、电源, 重物加在短小的圆盘上。

【旋钮初始位置】
直流稳压电源打到±2V挡,电压/频率表打到2V挡,差动放大增益最大。

【应变片的工作原理】
当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属的电阻应变效应。

设有一根长度为L、截面积为S、电阻率为ρ的金属丝,在未受力时,原始电阻为
(1-1)
当金属电阻丝受到轴向拉力F作用时,将伸长ΔL,横截面积相应减小ΔS,电阻率因晶格变化等因素的影响而改变Δρ,故引起电阻值变化ΔR。

对式(1-1)全微分,并用相对变化量来表示,则有:
ρ
ρ
∆+∆-∆=∆S S L L R R (1-2) 【测量电路】
应变片测量应变是通过敏感栅的电阻相对变化而得到的。

通常金属电阻应变片灵敏度系数K 很小,机械应变一般在10×10-6~3000×10-6之间,可见,电阻相对变化是很小的。

例如,某传感器弹性元件在额定载荷下产生应变101000⨯=ε-6,应变片的电阻值为Ω120,灵敏度系数K=2,则电阻的相对变化量为
⨯⨯==∆10002εK R
R 10-6
=0.002,电阻变化率只有0.2%。

这样小的电阻变化,用一般测量电阻的仪表很难直接测出来,必须用专门的电路来测量这种微弱的电阻变化。

最常用的电路为电桥电路。

(a )单臂 (b )半桥 (c )全桥
图1-1 应变电桥
直流电桥的电压输出
当电桥输出端接有放大器时,由于放大器的输入阻抗很高,所以,可以认为电桥的负载电阻为无穷大,这时电桥以电压的形式输出。

输出电压即
为电桥输出端的开路电压,其表达式为
U
R R R R R R R R U )
)((43214
2310++-=
(1-3)
设电桥为单臂工作状态,即1R 为应变片,其余桥臂均为固定电阻。

当1
R 感受应变产生电阻增量 1R ∆时,由初始平衡条件4231R R R R =得3
4
21R R R R =
,代入式(1-3),则电桥由于 1R ∆产生不平衡引起的输出电压为 U R R R R R R U R R R R U )()()(2
1
221211
22120∆+=∆+=
(1-4)
对于输出对称电桥,此时R R R ==21,==43R R R ´,当1R 臂的电阻产生变化 R R ∆=∆1,根据式(1-4)可得到输出电压为 εK U
R R U R R R R RR U
U 44)
(2
0=∆=∆+=)()( (1-5) 对于电源电桥,R R R ==41,R R R ==32´,当R1臂产生电阻增量R R ∆=∆1时,由式(1-4)得 εK R R RR U R R R R RR U
U 2
20)'('
)()'('+=∆+= (1-6)
对于等臂电桥R R R R R ====4321,当1R 的电阻增量 R R ∆=∆1时,由式(1-10)可得输出电压为 εK U
R R U R
R R R RR U
U 4)(4)()(20=∆=∆+= (1-7)
由上面三种结果可以看出,当桥臂应变片的电阻发生变化时,电桥的输
出电压也随着变化。

当 R R <<∆时,电桥的输出电压与应变成线性关系。

还可以看出,在桥臂电阻产生相同变化的情况下,等臂电桥以及输出对称电桥的输出电压要比电源对称电桥的输出电压大,即它们的灵敏度要高。

因此在使用中多采用等臂电桥或输出对称电桥。

在实际使用中,为了进一步提高灵敏度,常采用等臂电桥,四个应变片接成两个差动对称的全桥工作形式,如图1-1所示。

由图1-1可见1R =R+∆R ,2R =R-∆R ,3R =R+∆R ,4R =R-∆R ,将上述条件代入式(1-4)得 εεUK K U
R R U U ==∆=)4
(4)](
4[40 (1-8) 由式(1-8)看出,由于充分利用了双差动作用,它的输出电压为单臂工作的4倍,所以大大提高了测量的灵敏度。

实验步骤:
1.了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下二片梁的外表面各贴二片受力应变片。

2.将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器的输出端与电压/频率表的输入插口in 相连,电压/频率表放在2V 档;开启电源;调节差动放大器的“差动增益”到最大位置,然后调整差动放大器的“差动调零”旋钮使电压/频率表显示为零,关闭电源。

根据图1接线R1、R2、R3为电桥单元的固定电阻。

R x 为应变片;将稳压
电源的切换开关置±4V挡,F/V表置20V挡。

开启电源,调节电桥平衡网络中的W D,使F/V表显示为零,等待数分钟后将电压/频率表置2V挡,再调电桥W D(慢慢地调),使电压/频率表显示为零。

图1 单臂电桥应变片实验接线图
3.在传感器托盘上放上一只砝码,记下此时的电压数值,然后每增加一只砝码记下一个数值并将这些数值填入下表。

根据所得结果计算系统灵敏度S=ΔV/ΔW,并作出V-W关系曲线,ΔV为电压变化率,ΔW为相应的重量变化率。

每个砝码质量:
砝码个数1234567
电压(mV)
4.双臂电桥【图2】:保持放大器增益不变,将R3固定电阻换为与R x工作状态相反的另一应变片即取二片受力方向不同应变片,形成半桥,调节电桥W1使F/V表显示表显示为零,重复(3)过程同样测得读数,填入下表:
砝码个数1234567
电压(mV)
图2 双臂电桥应变片实验接线图
图3 全电桥应变片实验接线图
5.全桥实验【图3】:保持差动放大器增益不变,将R1,R2两个固定电阻换成另两片受力应变片组桥时只要掌握对臂应变片的受力方向相同,邻臂应变片的受力方向相反即可,否则相互抵消没有输出,接成一个直流全桥。

重复(3)过程将读出数据填入下表:
注意:在没加重物时会有非零值,记录下来,减掉即可。

砝码个
1234567数
电压
(mV)
【数据处理】
1.在同一坐标纸上绘出m-V曲线,
2.计算单桥、双桥和全桥的曲线斜率,即其测量灵敏度
3.比较分析三种接法的灵敏度的比值,与理论比值比较。

【注意事项】
1.在更换应变片时应将电源关闭。

2.在实验过程中如有发现电压表发生过载,应将电压量程扩大。

3.在本实验中只能将放大器接成差动形式,否则系统不能正常工作。

4.直流稳压电源±4V不能打的过大,以免损坏应变片或造成严重自热效应。

5.接全桥时请注意区别各片子的工作状态方向。

6.电桥上端虚线所示的四个电阻实际上并不存在,仅作为一标记,让学生组桥容易。

相关文档
最新文档