单相半桥型逆变电路原理
半桥逆变电路工作原理

半桥逆变电路工作原理
半桥逆变电路是一种常用的电子电路,常用于直流电源向交流电源的转换。
它由两个逆变器组成,每个逆变器分别由两个开关管、两个电容和一个负载组成。
在半桥逆变电路中,两个开关管交替开关。
当第一个开关管打开时,电源电压施加在负载上,并且电容开始充电。
同时,第二个开关管关闭,阻止负载电流流过它。
当第一个开关管关闭时,电容会开始放电,将负载电流继续供应。
接着,第二个开关管打开,将电源电压施加在负载上。
逆变电路中的开关管不断地进行开关操作,使得电源电压以交替的方式施加在负载上,从而实现直流到交流的转换。
通过控制开关管的开关时间,可以调整输出交流电压的频率和形态。
此外,半桥逆变电路还可以实现输出电压的调节,通过改变开关管的开关周期和占空比来控制输出电压的大小。
在实际应用中,半桥逆变电路通常用于电力电子设备和交流驱动器中。
它具有结构简单、效率高、可靠性好等优点,广泛应用于工业生产和家庭用电领域。
同时,半桥逆变电路的工作原理也为其他类型的逆变电路提供了基础和参考。
单相半桥逆变器

一、 单相半桥逆变器Vo(s)图1 单相半桥逆变器拓扑结构Vo(s)与Vi(s)之间的传递函数G(S):R r S rC R L LCs r Ls CSR CS R S G ++++=++++=1)(1/11/11)(2 (1) 当忽略滤波电感的等效电阻r 时,式(1)可以简化为:11)(2++=S RLLCs S G (2)双极性PWM 调制时,vi 可以表示为:)12(2-=S U V dci (3) 式(3)中S 为开关函数。
当S1(或VD1)导通时,S=1;当S2(或VD2)导通时,S=0。
显然,由于开关函数S 的存在,式(3)中vi 不连续。
对式(3)求开关周期平均值,得到)12(2)1(22)(22-=--=--=D U D U D U T ton T Uton U V dc dc dc dc dc i (4)Vi 表示开关周期平均值,D 是占空比。
图2 占空比D 求取)21(2trim tri mtriV v V v V D +=+= (5)式中,m v 为参考正弦波信号;tri V 为三角载波峰值。
把(5)带入(4)中得。
trimdcV v U V = (6)所以有:t r idc m V U v V= (7) 因此,从调制器输入至逆变桥输入的传递函数为:tridcm i pwm V U s V s V K ==)()( (8) 从式(8)中可以看出,在SPWM 中,载波频率远高于输出频率时,逆变桥部分可以看成是一个比例环节,比例系数为K PWM 。
结合式(1)和式(8)可以得到调制器输入至逆变桥输出的传递函数为:tri dcm i i o m O O V U Rr S rC R L LCs S V S V S V S V S V S V S G ++++===1)(1)()()()()()()(2 (9)图3 单相逆变器主电路等效框图二、 单相全桥逆变器Vo(s)图4 单相全桥逆变器主电路等效框图单相全桥逆变器推到过程略。
igbt单相电压型半桥无源逆变电路设计

igbt单相电压型半桥无源逆变电路设计本文介绍了一种IGBT单相电压型半桥无源逆变电路设计,该电路采用半桥拓扑结构,通过IGBT管控制开关实现正负半周期无源逆变,具有高效、可靠、稳定等优点。
同时,本文还介绍了电路的设计流程和注意事项。
一、电路拓扑结构IGBT单相电压型半桥无源逆变电路采用半桥拓扑结构,如图1所示。
电路中,IGBT1和IGBT2分别代表上管和下管,L1和L2为变压器的两个线圈,C为输出滤波电容。
该拓扑结构有以下优点:1、半桥结构可以避免直流电离子飘移问题,提高电路的可靠性。
2、IGBT管负责开关电流,电压由变压器自行绝缘,可以避免功率管受到高频电磁干扰而损坏的问题。
3、半桥拓扑结构使得电路的效率较高,能够满足高效、小型化的需求。
二、电路设计1、选择IGBT管根据电路的工作电压和电流,选择适合的IGBT管是很重要的。
可以根据功率、电压承受能力、开关速度、漏电流等因素进行选择。
2、选择变压器变压器是半桥无源逆变电路的关键元件之一,变压器的参数需要根据电路需求进行选择。
如果输出功率较大,则需选择大功率变压器;如果需要较小的体积,则可以选择小型化的变压器。
3、选择输出电容电容可以用来过滤输出端的噪声和杂波。
根据输出电压、输出电流等参数选择适合的电容,并确保电容的电压承受能力充足。
4、电路参数计算根据电路的拓扑结构和工作参数,进行电路参数的计算。
需要计算的参数包括变压器的线圈数、电感值、电容容值等。
这些参数的计算需要根据电路需求进行合理设置。
三、注意事项在使用IGBT管时,需要防止温度过高和静电干扰等问题。
建议在使用IGBT管时加装散热器,并采用静电保护措施,以保证管子的正常工作。
总之,IGBT单相电压型半桥无源逆变电路是一种高效、可靠、稳定的电路结构,在工业自动化控制等领域有着广泛的应用。
半桥逆变电路原理

半桥逆变电路原理
半桥逆变电路原理是一种常见的逆变电路,其基本原理是利用MOSFET管的导通和截止来实现直流电压到交流电压的转换。
半桥逆变电路主要由两个MOSFET管、两个二极管和一个中
间电路组成。
其中一个MOSFET管和一个二极管组成一个半桥,两个半桥并联连接在一个中间电路上。
输入端连接直流电源,而输出端则可以得到需要的交流电压。
当输入端有电压时,两个MOSFET管的门极被驱动,使其分
别导通和截止,从而实现交替的导通和截止,使得输出端得到一个交流电压。
当一个MOSFET管导通时,输出电压为正,
而另一个MOSFET管截止时,输出电压为零。
然后,当两个MOSFET管的状态互换时,输出电压变为负,从而实现完整
的交流电压。
半桥逆变电路的工作原理可以通过PWM(脉宽调制)来实现。
通过控制两个MOSFET管的导通时间比例,可以调节输出电
压的幅值。
脉宽调制技术可以通过改变PWM信号的占空比来
调整输出电压的幅值。
通过合理地控制PWM信号的占空比,
可以得到所需的输出电压。
需要注意的是,半桥逆变电路在工作时需要注意MOSFET管
的开关时间,以避免短路和过电流等问题的发生。
另外,在设计和搭建半桥逆变电路时,还需要考虑电路的损耗和效率等因素,以达到最优的工作效果。
总的来说,半桥逆变电路通过两个MOSFET管的导通和截止来实现直流电压到交流电压的转换。
控制PWM信号的占空比可以实现对输出电压幅值的调节。
在设计中需要注意电路的工作时间和效率等因素,以确保电路的正常运行。
单相半桥电压型逆变电路的工作原理

单相半桥电压型逆变电路的工作原理
单相半桥电压型逆变电路是一种常见的逆变电路拓扑结构,常用于单相交流电源到直流电源的转换,适用于小功率应用。
以下是单相半桥电压型逆变电路的基本工作原理:
1.电源输入:单相半桥逆变电路通常接收单相交流电源作为输入。
这可以是来自电网的交流电,例如家用电源。
2.整流桥:输入的交流电源首先经过整流桥,将交流电转换为直
流电。
整流桥可以采用二极管桥或可控硅桥等。
3.滤波电容:为了减小直流电的脉动,逆变电路的输出端连接一
个滤波电容,用于平滑直流电压。
4.半桥逆变器:接下来是半桥逆变器部分,由两个功率开关(通
常是可控硅或晶闸管)组成。
这两个功率开关分别连接到正负
直流电压源和负载。
5.PWM控制:半桥逆变器通过PWM(脉宽调制)控制方式来
实现输出波形的控制。
通过调整开关的导通时间,可以控制输
出波形的幅值。
6.输出变压器:在半桥逆变器的输出端连接一个输出变压器,用
于改变输出电压的大小,以适应负载的需要。
7.输出负载:最终,经过输出变压器调整后的交流电源输出到负
载,可以是各种电器设备或电动机。
总体而言,半桥电压型逆变电路通过控制功率开关的导通时间,实现对输出交流电压幅值的调节,从而满足负载的电源需求。
这种逆变
电路通常用于小功率、单相电源的应用,例如家用电器、电子设备等。
半桥逆变电路工作原理

半桥逆变电路工作原理
半桥逆变电路是一种常见的电力电子变换器,通常用于将直流电源转换为交流电源。
其工作原理如下:
首先,半桥逆变电路由两个功率开关器件组成,通常是晶体管或者功率MOSFET。
这两个开关器件分别被连接到一个共同的直流电源上,形成一个半桥结构。
当其中一个开关器件导通时,另一个则截止,反之亦然。
这种交替导通的方式可以使得电压在输出端产生一个交流电压。
在工作时,当上面的开关器件导通时,直流电源的正极连接到负载,负极连接到地。
这时,负载上就会出现一个正向的电压。
而当下面的开关器件导通时,直流电源的正负极连接会发生变化,负载上就会出现一个反向的电压。
通过这种方式,半桥逆变电路能够产生一个交流电压。
此外,半桥逆变电路通常还配备有一个控制电路,用来控制开关器件的导通和截止。
这个控制电路可以根据需要来调整开关器件的导通时间,从而控制输出交流电压的幅值和频率。
总的来说,半桥逆变电路通过控制开关器件的导通和截止,以及配备的控制电路,实现了将直流电源转换为可控的交流电源的功能。
这种电路在许多应用中都具有重要的作用,比如在电力变换、电机驱动和太阳能逆变器等领域都有广泛的应用。
单相半桥电压型逆变电路参数计算

单相半桥电压型逆变电路参数计算引言:单相半桥电压型逆变电路是一种常见的电力电子变换电路,广泛应用于交流电源与直流负载之间的能量转换。
本文将详细介绍单相半桥电压型逆变电路的参数计算方法,帮助读者更好地理解和设计这一电路。
一、电路结构和工作原理单相半桥电压型逆变电路由两个开关管和一个中心点连接的电容组成。
当S1和S2两个开关管交替导通时,电容上会产生一个交流电压。
通过控制开关管的导通和关断,可以实现对输出电压的控制。
二、参数计算1. 电压和频率:根据应用需求确定逆变电路的输出电压和频率,常见的输出电压有220V或110V,输出频率一般为50Hz或60Hz。
2. 电容容值:电容的容值决定了逆变电路的输出电压波形的平滑程度。
容值过小会导致输出电压波形产生较大的纹波,容值过大则会增加成本和体积。
容值的计算方法如下:C = (2*I_max)/(f*ΔV)其中,C为电容的容值,I_max为输出电流的最大值,f为输出频率,ΔV为输出电压的纹波值。
3. 电阻选取:为了保证开关管工作的可靠性和效率,需要在电路中加入适当的电阻。
电阻的选取主要考虑开关管的导通和关断速度,防止产生过大的电流和电压冲击。
一般情况下,电阻的阻值可根据开关管的额定电流和额定电压来确定。
4. 开关管选取:开关管的选取需要考虑工作电流、额定电压、导通和关断速度等因素。
常用的开关管有晶闸管、MOS管等,根据具体需求进行选择。
5. 电感选取:电感的作用是平滑输出电流,减小电压纹波。
电感的选取需要考虑输出电流的大小、频率以及纹波要求。
一般情况下,电感的选取范围为输出电流的10%至20%。
6. 纹波滤波电感选取:为了进一步减小输出电压的纹波,可以在逆变电路的输出端串联一个纹波滤波电感。
电感的选取需要根据输出电流的大小和纹波要求来确定。
7. 电压限制器选取:为了保护逆变电路和负载,常常在电路中添加电压限制器。
电压限制器的选取需要考虑逆变电路的额定电压和负载的额定电压,以及工作电流和保护电流等参数。
半桥逆变电路的工作原理

半桥逆变电路的工作原理老铎半桥逆变电路技术应用于电子节能灯、电子变压器、高压低压逆变技术。
电容C7、C8组成无源半桥支路,半桥的中点电压为直流电压的一半,即为E/2,灯管作为负载与电感L2相串联,跨接在两个半桥中点之间。
VT1、VT2是半桥逆变电路中的重要组件,起着功率开关的作用,选择时,应优先考虑其开关参数。
其工作原理是:加上电源后,由直流电压VDC(E)提供的电流经R1对积分电容C5充电,一旦此电压达到并超过触发二极管VDB3的转折电压(约30~40V)后,该二极管击穿导通,并有电流流入VT2的基极,使VT2导通,此时,电流流经的路径为电源VC3→C7→灯丝→C6→灯丝→电感L 2→磁环变压器Tr的初级绕组N3→VT2的集电极→地。
VT2集电极电流的增长趋势在磁环变压器的初级绕组N3上产生感应电动势,同时在其次级(N1、N2)也产生感应电动势,其极性是使各绕组上用•表示的同名端为正,从而使VT2的基极电位升高,基极电流、集电极电流进一步加大,即在电路中产生如下的连锁反应.连锁式的正反馈作用使VT2导通并饱和。
顺便指出,在VT2导通后,电容Cs的电荷通过二极管VD。
和晶体管VT2放电,其电压下降,不再使触发管导通,该支路也不再对VT2基极产生影响。
所以,由R1、C5及VDB3提供的触发信号只在电源接通后对VT2起触发作用。
在VT1、VT2轮流工作后,其工作频率较高,VT2截止时间很短,在这样短的时间内C5来不及得到充分的充电。
而VT2导通后,C5又放电。
这样,它上面的电压是一些幅度很小的锯齿波,达不到足以使VDB3导通的电压。
因此,一旦电路转换,VT1、VT2轮流导通与截止后,VDB3将不再能导通,对VT2也不起任何作用。
当VT2电流增加使磁环趋向饱和,各绕组感应电动势急剧下降,VT2基极电位也下降,ic2减小,在磁环变压器中将产生与ic2以增加时相反极性的电动势,即各绕组中用•表示的同名端电压为负,这样一来,VT1的基极电位上升,集电极电流ic1增加,电流的流通路径为Vc3→VT1集电极→电感L2→灯丝→C6→灯丝→C8→地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相半桥型逆变电路原理
在直流侧接有两个相互串联的足够大的电容,两个电容的联结点是直流电源的中点。
半桥逆变电路有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。
负载联结在直流电源中点和两个桥臂联结点之间。
设开关器件V1和V2栅极信号在一周期内各半周正偏、半 周反偏,两者互补。
当负载为感性时,工作波形如图所示
+
-a)
U VD
1
VD
2
t3时刻io 降为零时,VD2截止,V2开通,io 开始反向并逐渐增大。
t4时刻给V2关断信号,给V1开通信号,V2关断,VD1先导通续流,t5时刻V1才开通。
-u o U
U m
i
o
1
2
1
2
-u o U
U m
i
o
V1或V2通时,负载电流io 和电压uo 同方向,直流侧向负载提供能量 VD1或VD2通时,io 和uo 反向,负载电感中贮藏的能量向直流侧反馈 负载电感将其吸收的无功能量反馈回直流侧,反馈 回的能量暂时储存在直流侧电容器中,直流侧电容 器起着缓冲这种无功能量的作用。
反馈二极管
续流二极管
是负载向直流侧反馈能量的通道
使负载电流连续
-u o U
U m
i
o
1
2
1
2
可控器件是不具有门极可关断能力的晶闸管时,须附加强迫换流电路才能正常工作。
半桥逆变电路特点
优点:简单,使用器件少
缺点:输出交流电压幅值Um仅为Ud/2,直流侧需两电容器串联,工作时要控制两个电容器电压均衡
半桥逆变电路常用于几kW以下的小功率逆变电源。