PWM技术在单相全桥逆变电路中的应用-MATLAB仿真结果(副本)
单相单极性SPWM逆变电路matlab仿真

单相单极性SPWM逆变电路matlab仿真————————————————————————————————作者:————————————————————————————————日期:计算机仿真实验报告专业:电气工程及其自动化班级:11电牵4班姓名:江流在班编号:26指导老师:叶满园实验日期:2014年5月15日一、实验名称:单相单极性SPWM逆变电路MATLAB仿真二、目的及要求了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。
三、实验原理1.单相单极性SPWM逆变的电路原理图2、单相单极性SPWM逆变电路工作方式单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当Ur<U c时使V4断,V3通,U0=0。
Ur负半周,V1保持断,V2保持通,当Ur<cu时使V3通,V4断,U0=-U d,当Ur>Uc时使V3断,V4通,U0=0。
输出电压波形四、实验步骤及电路图1、建立MATLAB仿真模型。
以下分别是主电路和控制电路(触发电路)模型:2、参数设置本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。
设置正弦波周期为0.02s,幅值为1。
直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。
五、实验结果与分析1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果:2、设置三角脉冲波形的周期t=0.02/21s时的仿真结果:根据仿真结果和面积等效原理可知,模拟电路成功的实现了将直流逆变成交流。
应用Matlab仿真单相PWM整流器的一种简单方法

1引言在高功率因数PWM 整流器的设计中,通常需要对控制策略进行仿真。
常用的电力电子仿真工具中,Pspice,Saber 仿真时间长,产生大量的中间数据,占用资源多,会引起不收敛问题,适合于电路级仿真[1]。
而Matlab 以描述功率变换的状态方程为基础,有了状态方程,电路很容易用Matlab 中的Simulink 里的函数模块来表述,而且各种控制算法容易实现,而不必应用实际的元器件模型,减小了仿真运算的难度。
由于PWM 型功率变换器是一类强非线性(电子开关器件在一个周期中既工作在饱和区又工作在截止区)或断续(即按时间分段线性,在几个时间段内电路都是线性的,但拓扑结构不同)或时变(电子开关器件导通时的电阻很小,截止时的电阻很大)的电路[3]。
因此,变换器电路动态特性的解析分析方法较复杂,阻碍了这类变换器系统的动态分析与设计的顺利进行。
而把状态空间平均法应用于功率变换器的建模,是一种简单有效的研究方法。
当变流器运行于连续导电模式,并忽略其开关过程,即认为开关动作是瞬时完成的,这样,一个工作于连续导电模式下的PWM 变流器可以用两个线性非时变电路来表示。
它们与一个周期中的两种开关状态相对应,设其状态空间方程分别为1)在时间间隔DT (0≤t ≤t 0):=A 1X2)在时间间隔(1-D )T (t 0≤t ≤T ):=A 2X式中T 为PWM 开关周期,D 是其占空比,X 为状态向量,A 1,A 2为系统矩阵,将上述两个开关模型综合为一个平均模型为=[DA 1+(1-D )A 2]X2单相PWM 整流器的数学模型单相PWM 整流器主电路如图1所示。
忽略电感中的等效电阻,在仿真中用理想开关S 来代替实际器件,并把与开关器件并联的快恢复二极管的作用融入到理想开关中,当其中之一导通时,即认为该理想开关导通。
用以下方式来定义开关函数:S m =1(S m ′=0)上桥臂理想开关导通,下桥臂理想开关关断S m =0(S m ′=1)上桥臂理想开关关断,下桥臂理想开关导通。
基于Matlab的单相电压型全桥逆变器的仿真研究

输入直流电压通过全桥逆变 电路逆变为交流电压
输出交流电压经过滤波电路后, 可以输出平滑的交流电压
逆变器的控制策略
电压控制:通过调 节输出电压的幅值 和相位来实现控制
电流控制:通过调 节输出电流的幅值 和相位来实现控制
空间矢量控制:通 过调节输出电压的 空间矢量来实现控 制
滑模控制:通过在 开关状态下进行切 换来实现控制
电容和电感:根据 实际需求进行选择
和计算
仿真模型的验证与调试
验证方法:通过对比实验数据与仿真结果,验证模型的正确性
调试过程:对仿真模型进行参数调整,以达到最佳性能指标
调试结果:经过调试后的仿真模型能够更好地模拟实际电路的工作情况
验证结论:仿真模型的验证与调试对于基于Matlab的单相电压型全桥逆变器的仿真 研究具有重要意义
单相电压型全桥 逆变器的基本原 理
逆变器的定义和分类
逆变器的定义:将直流电转换为交流电的电力电子设备 逆变器的分类:电压型逆变器、电流型逆变器、单相逆变器、三相逆变器等
单相电压型全桥逆变器的工作原理
输出交流电压的频率和幅值可 以通过控制逆变电路的开关状 态进行调节
通过改变逆变电路的开关状态, 可以实现输出交流电压的正负 半波的切换
结论与展望
本研究的贡献与局限性
贡献:本研究为单相电压型全桥逆变器的仿真研究提供了新的方法和思路,有助于深入理解逆变器 的运行原理和性能特点。
局限性:本研究主要关注了逆变器的仿真研究,未涉及实际应用中的问题和挑战,未来研究可以进 一步拓展到实际应用领域。
后续工作:针对本研究存在的局限性,后续研究可以进一步优化仿真模型和方法,提高仿真精度和 可靠性,同时探索逆变器的实际应用和优化方案。
基于Matlab的单相电压型PWM整流电路仿真与设计

毕业设计(论文)基于Matlab的单相电压型PWM整流电路仿真与设计摘要现代工业中,很多场合需要进行电能变换,例如把直流电能变为交流电能,交流电能变为直流电能。
直流电能变为交流电能由逆变器实现,交流电能变为直流电能由整流器实现。
随着整流器的广泛应用,关于传统整流器的一些问题也日益突出,输入功率因数较低,输入电流含有大量谐波。
针对传统的不控整流和相控整流中存在的谐波污染问题,采用直接电流控制中的双环控制策略,设计了单相全桥电压型PWM整流器的控制系统。
建立了系统的SIMULINK模型并进行了仿真。
仿真结果表明:该控制系统结构设计合理,参数选取适当,能实现有效控制。
详细分析单相电压型PWM整流电路的工作原理和工作模式。
说明通过对PWM电路进行控制,选择合适的工作模式和工作时序,可使PWM整流电路的输出直流电压得到有效的稳定。
近年来PWM整流器迅速成为了研究热点,因为它不仅获得了可控的AC/DC变换性能,而且具有输入单位功率因数和低谐波电流,能量双向传输等优点。
关键词:单相电压型;PWM整流;功率因数;Matlab仿真The single-phase voltage source PWM rectifier circuit based onMatlab simulation and designAbstractIn modern industry, we need for power conversion on many occasions, for example, the exchange of AC power into DC power and DC power into AC power.AC power can be transferred into DC power by using the rectifier and DC power can be transferred into AC power by using the inverter. Since the rectifiers are extensively used, several problems with regard to traditional rectifiers have arisen in recent years, such as a low input power factor,and the harmonics in the input currents.In order to eliminate the harmonic pollution caused by the traditional phase controlled or uncontrolled rectifiers, a single-phase full-bridge voltage-type rectifier has been designed in which the 2-ring control PWM technique of directly current-controlled strategies is adopted.And the SIMULENK model has been built to simulate this system. The result thus indicates that the control system is of logical configuration and proper parameter.The theory and working modes about single-phase voltage source PWM rectifier are elaborately analysed in this paper,which illust rate that the voltage in DC side can be effectively stabilized with PWM control by selecting burst mode and time.Therefore, pulse-width modulated rectifiers have rapidly attracted the research interest over the past few years due to some of their significant advantages, such as controllable of AC-DC voltage, unity power factor, low harmonic distortion of input currents, power regeneration capability, etc.Keywords:single-phase voltage type;PWM Rectifier;The power factor;Matlab Simulation.目录引言 (V)第1章概述............................................................................................................- 1 -1.1本课题研究的意义 .............................................................................................- 2 -1.2国内外研究现状.................................................................................................- 2 -1.3本论文研究的主要工作.......................................................................................- 3 -第2章P WM控制技术.............................................................................................- 4 -2.1PWM简介..........................................................................................................- 4 -2.2PWM控制原理和应用 ........................................................................................- 4 -2.3PWM控制技术的应用 ........................................................................................- 8 - 第3章功率因数校正技术.................................................................................... - 10 -3.1功率因数校正简介 ........................................................................................... - 10 -3.2有源功率因数校正(APFC)技术.................................................................... - 17 -3.3提高功率因数的几种方法................................................................................. - 21 -3.4提高功率因数的实际意义................................................................................. - 21 -第4章Matlab仿真实验 ...................................................................................... - 22 -4.1电路的工作原理............................................................................................... - 22 -4.2实验要求......................................................................................................... - 23 -4.3Matlab仿真步骤和波形..................................................................................... - 23 -4.4主封装图以及各子系统 .................................................................................... - 28 -4.5仿真结论......................................................................................................... - 29 -结论和展望................................................................................ 错误!未定义书签。
PWM逆变器Matlab仿真设计

PWM逆变器MATLAB仿真1设计方案的选择与论证从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。
除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示:图1-1方案一:先升压再逆变图1-2方案二:先逆变,再升压方案选择:方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。
方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。
从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关容也会在后文予以讨论。
2逆变主电路设计2.1逆变电路原理及相关概念逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。
根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。
2.2逆变电路的方案论证及选择从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论:方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。
基于Matlab的单相双极性spwm逆变电路仿真报告

基于Matlab的单相双极性spwm 逆变电路仿真报告单相双极性SPWM桥式逆变电路实验报告学院:电气与电子工程班级:xxxxx 姓名:xx一、理论介绍SPWM控制技术是逆变电路中应用最为广泛的PWM型逆变电路技术。
对SPWM型逆变电路进行分析,首先建立了逆变器控制所需的电路模型,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和SPWM控制电路的工作原理进行了分析,运用MATLAB中的SIMULINK 模块对电路进行了仿真,给出了最终仿真波形。
SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同. (此处采用等面积法)SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.二、主电路设计分析根据设计要求,采用单相全桥PWM逆变电路,工作方式为单极性PWM方式,开关器件选用IGBT,直流电源电压为200V,电阻电感负载。
设计主电路图如图一所示。
图一单相桥式PWM逆变电路分析:a、主电路采用IGBT作为开关器件的单相桥式电压型逆变电路。
采用负载为阻感负载,工作时V1和V2的通断状态互补,V3和V4的通断状态也互补。
在输出电压u0的正半周,让V1保持通态,V2保持断态,V3和V4交替通断。
当uco>utri,且-uco<utri ,触发VTA+和VTB-导通,输入电源Ud经过VTA+、负载和VTB-构成电流回路,uo=-Ud,电流上升;当uco<utri,使VTA+断开,触发VTA-,但由于是感性负载,电流不能突变,因此负载电流经VDA-和VTB-续流,使VTA-不能导通,uo=0,同时电流下降;当uco>utri,且-uco<utri ,触发VTA+和VTB-导通,输入电源Ud经过VTA+、负载和VTB-构成电流回路,uo=-Ud,电流上升;当-uco>utri,使VTB-断开,触发VTB+,由于是感性负载,电流不能突变,因此负载电流经VTA+和VDB+续流,使VTB+不能导通,uo=0,同时电流下降;直至下一个周期触发VTA+和VTB-导通。
基于PWM技术的逆变器设计及Matlab仿真

基于PWM技术的逆变器设计及Matlab仿真作者:刁俊涛来源:《科学与财富》2017年第35期摘要:PWM控制技术是逆变电路中应用最广泛的技术,逆变电路则是PWM控制技术最为重要的应用场合。
课题研究基于PWM技术逆变器的原理,用Matlab软件建立基于PWM技术逆变器的电路结构模型,设置好相关参数,并用Matlab里的Simulink模块进行仿真,并对仿真结果的图形进行分析,利用MATLAB的可视化仿真工具Simulink建立该电路模型进行分析,简单、直观,适合电力电子技术的教学及其研究工作。
关键词:PWM;逆变器;Simulink;仿真一、课题来源及设计思路PWM控制技术是逆变电路中应用最广泛的技术,逆变电路则是PWM控制技术最为重要的应用场合。
课题研究基于PWM技术逆变器的原理,用Matlab软件建立基于PWM技术逆变器的电路结构模型,设置好相关参数,并用Matlab里的Simulink模块进行仿真,并对仿真结果的图形进行分析,利用MATLAB的可视化仿真工具Simulink建立该电路模型进行分析,简单、直观,适合电力电子技术的教学及其研究工作。
二、自建注意问题如果要观察模块的内部结构,右键模块,然后选择Look Under Mask即可。
编辑模块封装选择Edit Maks。
把要封装的东西全部用鼠标框起来,选择Edit中的Creat Subsystem就可以将选中的东西封装起来了。
左键单击模块,用Edit中的Mask Subsystem即可进行模块的封装。
同样用Edit 下的Look Under Mask即可观察模块的内部结构。
三、自建模块图形由图1可知,当调制信号的正弦波Ur大于三角载波Uc时,逆变器输出高电平,否则,输出低电平,可设计如图2触发电路,以A相电路上下桥臂为例。
图中用了两个逻辑比较器Relational Operator来比较两列输入波形的大小,Relational Operator的工作原理是,符合图中逻辑关系时,输出1;反之,输出0。
单相全桥逆变器matlab仿真

用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。
本文选用双极性SPW调制。
1双极性单相SPW原理SPWM采用的调制波的频率为f s的正弦波U s U sm Sin s t , s 2f s;载波U c 是幅值为U cm,频率为f c的三角波。
载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m通常采用调制信号与载波信号相比较的方法生成SPW信号.当Us>Uc 时,输出电压Uo等于Ud,当UsvUc时,输出信号Uo等于-Ud.随着开关以载波频率fc轮番导通,逆变器输出电压不断在正负Ud之间来回切换。
2 建立仿真模型2.1 主电路模型第一步设置电压源:在Electrical Sources 库中选用DCVoltage Source,设置Ud=300X第二步搭建全桥电路:使用Universal Bridge 模块,选择桥臂数为2,开关器件选带反并联二极管的IGBT/Diodes ,构成单项全桥电路。
第三步使用Series RLC Branch 设置阻感负载为1 Q, 2mH 并在Measurement 选项中选择Branch Voltage and current, 利用multimeter 模块观察逆变器的输出电压和电流。
电路如图2.1 所示。
图2.1单相全桥逆变逆变器电路图2.2双极性SPW 信号发生器在Simulink 的Source 库中选择Clock 模块,提供仿真时间t, 乘以2 f 后通过一个sin 模块即sin t ,乘以调整深度m 可获得所需的 正弦调整信号。
选择 Source 库中的Repeating Sequenee 模块产生三 角载波,设置 Time Values 为[0 1/fc/4 3/fc/4 1/fc ],设置OutputValues 为[0 -1 1 0],生成频率为fc 的三角载波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PWM技术在单相全桥逆变电路中的应用-MATLAB仿真结果(副本)
2
第一部分:单相电压型全桥逆变电路
一、逆变电路(纯电阻负载)
1、正常逆变电路
3
电感0.1H,电容0.07C。
4
5
6
7
负载串联电感并联电容之后的仿真结果:
8
第二部分:PWM波形发生器
正弦波调制波的频率决定了逆变器输出交流电压、电流的频率。
为了产生频率为50HZ的电压电流,将正弦波、三角波的参数设置如下:
9
10
一、单极性调制
正弦波幅值范围为[-3 3],三角波幅值范围为[0 4],信号波的范围为[0 3] 下面各图依次为半个、一个、两个周期的SPW波形图
二、双极性控制方式
第三部分:PWM技术在单相全桥逆变电路中的应用
下图依次为VT1、VT4与VT2、VT3不同周期时的波形图。
一、纯电阻下的波形图
下图依次为整流输出的电流、电压波形图:
电流的幅值范围为[-1.7 1.7],电压幅值范围为[-10 10]
二、负载与电感串联然后再与电容并联,在电感、电容滤波作用下的波形图
下图依次为整流输出的电流、电压波形图:
电流的幅值范围为[-0.8 0.8],电压幅值范围为[-10 10]
参考文献
[1]中北大学电子设计课程设计说明书. 中北大学. /
[2]黄忠霖黄京. 电力电子技术MATLAB实践. 北京:国防工业出版社. 2009.1.
[3]单相SPWM逆变电源仿真设计. 黄朝飞. /
[4]广西大学毕业设计. /。