大数据的介绍
大数据介绍PPT课件

数据清洗与转换
缺失值处理
对缺失数据进行填充、插值或删除等操作。
数据转换
将数据转换为适合分析的格式,如数值型、 类别型等。
异常值处理
识别并处理数据中的异常值,如离群点、噪 声等。
数据规约
降低数据维度,减少数据冗余和复杂性。
数据集成与融合
01
数据集成
将来自不同数据源的数据进行整合, 形成一个统一的数据视图。
副本机制
为确保数据可靠性和可用性,对每个数据分片创建多个副本,并将 它们存储在集群的不同节点上。
一致性协议
通过分布式一致性协议(如Paxos、Raft等)确保数据在多个副本之 间保持一致性。
数据备份与恢复策略
定期备份
制定定期备份计划,将数据备份到远程存储或云 存储中,以防止数据丢失。
增量备份
仅备份自上次完整备份以来发生更改的数据,以 减少备份时间和存储空间。
数据去重
识别并删除重复的数据记录,确保 数据的唯一性。
03
02
数据融合
对多个数据源的数据进行融合,提 取出更全面、准确的信息。
数据校验
对数据进行校验,确保数据的准确 性和一致性。
04
04 大数据存储与管 理
分布式存储原理
数据分片
将大数据集分割成小块,分别存储在多个节点上,以实现数据的分 布式存储。
大数据可视化
处理大规模数据集的可视化技术,如分布式可视化、并行可视化等。
06 大数据挑战与未 来趋势
数据质量与可信度问题
数据来源多样性
大数据来自各种渠道和源头,数 据质量参差不齐,可能存在不准 确、不完整或误导性的数据。
数据清洗与预处理
为确保数据质量,需要进行数据 清洗、去重、异常值处理等预处 理步骤,增加数据处理复杂性和 成本。
大数据概念及应用

大数据概念及应用一、概念介绍大数据是指规模庞大、种类繁多且难以通过传统数据处理方式进行管理和处理的数据集合。
大数据的特点主要包括四个方面:数据量大、处理速度快、数据种类多样以及数据价值密度低。
二、大数据的特点1. 数据量大:大数据的特点之一是数据量庞大,通常以TB、PB、EB甚至更大的单位来衡量。
这些数据来自于各种来源,包括社交媒体、互联网、传感器等。
2. 处理速度快:大数据的处理速度要求非常高,需要在有限的时间内对大量的数据进行分析和处理。
传统的数据处理方式已经无法满足这一需求,因此需要借助新的技术和工具来处理大数据。
3. 数据种类多样:大数据不仅包括结构化数据,还包括非结构化数据和半结构化数据。
结构化数据是指可以通过表格或数据库进行存储和管理的数据,如数字、文本等;非结构化数据是指无法通过传统方式进行存储和管理的数据,如音频、视频、图像等;半结构化数据是指介于结构化数据和非结构化数据之间的数据,如XML、JSON等。
4. 数据价值密度低:大数据中的数据价值密度通常较低,即其中包含的有价值信息只占总数据量的一小部分。
因此,在处理大数据时需要进行数据清洗和筛选,提取出有价值的信息。
三、大数据的应用1. 商业智能:大数据可以帮助企业进行商业智能分析,通过对大数据的挖掘和分析,可以发现潜在的商业机会和趋势,提供决策支持。
2. 金融风控:大数据可以用于金融风控领域,通过对大量的金融数据进行分析,可以预测风险,提高金融机构的风险管理能力。
3. 医疗健康:大数据在医疗健康领域的应用非常广泛,可以帮助医疗机构进行疾病预测、个性化治疗等方面的工作。
4. 城市管理:大数据可以用于城市管理,通过对城市中的各种数据进行分析,可以提高城市的管理效率,改善城市居民的生活质量。
5. 交通运输:大数据可以用于交通运输领域,通过对交通数据进行分析,可以优化交通路线,提高交通效率,减少交通拥堵。
6. 电子商务:大数据在电子商务领域的应用也非常广泛,可以通过对用户数据进行分析,提供个性化的推荐服务,提高用户的购物体验。
大数据的概念

大数据的概念概述:大数据是指规模庞大、复杂多样且难以处理的数据集合。
它通常具有三个特征:数据量大、数据类型多样、数据处理速度快。
大数据的出现源于互联网的发展和智能设备的普及,它已经成为当今社会的重要资源和竞争力的来源。
本文将详细介绍大数据的概念、特征、应用以及相关技术。
一、大数据的特征:1. 数据量大:大数据的数据量通常以TB、PB、EB甚至更大的单位来衡量,远远超过传统数据处理能力的范围。
2. 数据类型多样:大数据不仅包含结构化数据(如关系型数据库中的数据),还包括半结构化数据(如日志文件、XML文件)和非结构化数据(如文本、图像、视频等)。
3. 数据处理速度快:大数据的处理需要在短时间内完成,以满足实时决策和应用的需求。
二、大数据的应用:1. 商业智能和决策支持:通过对大数据的分析,企业可以获取市场趋势、客户需求等信息,从而进行精准定位和决策。
2. 金融风控:大数据分析可以帮助金融机构识别潜在风险,提高风控能力,保障金融系统的稳定运行。
3. 医疗健康:利用大数据分析技术,可以实现医疗数据的整合和分析,提高医疗服务的质量和效率。
4. 城市管理:通过对大数据的分析,可以实现城市交通优化、环境监测、公共安全等方面的管理和决策。
5. 社交网络分析:通过对大数据的分析,可以了解用户的兴趣和行为,提供个性化的推荐和服务。
三、大数据的相关技术:1. 数据采集和存储技术:包括传感器技术、分布式文件系统、NoSQL数据库等。
2. 数据处理和分析技术:包括数据挖掘、机器学习、自然语言处理等。
3. 数据可视化技术:通过图表、地图等方式将数据可视化,使人们更直观地理解数据。
4. 数据安全和隐私保护技术:保障大数据的安全性和隐私性,防止数据泄露和滥用。
结论:大数据的概念、特征、应用和相关技术的不断发展和创新,已经深刻影响了各个行业和领域。
在未来,随着技术的进一步发展和应用场景的不断拓展,大数据将继续发挥重要作用,为社会带来更多的机遇和挑战。
大数据介绍ppt

大数据的价值与影响
01
价值
02
商业价值:通过大数据分析,企业可以更准确地了 解市场需求,优化产品和服务。
03
社会价值:政府和企业可以利用大数据提高公共服 务和决策效率。
大数据的价值与影响
• 个人价值:大数据也可以帮助个人更好地了解自己和他人 。
大数据的价值与影响
影响 经济影响:大数据产业已经成为全球经济的重要组成部分。
医疗资源优化
通过分析医疗资源的使用数据,优化医疗资源的 配置和调度,提高医疗效率和质量。
金融投资
1 2
市场预测
通过对历史市场数据的挖掘和分析,预测市场走 势和未来趋势,为投资决策提供支持。
风险管理
通过对金融数据的分析和建模,识别和评估潜在 的风险因素,为风险管理提供依据。
3
客户画像
通过对客户数据的挖掘和分析,了解客户的投资 偏好和风险承受能力,为个性化服务提供支持。
数据完整性
由于数据丢失、篡改等原因,数据完整性难以保证,需要采用数据 校验和恢复技术。
数据可信度
由于数据造假、欺骗等问题,数据可信度受到挑战,需要建立数据 信任机制。
数据处理与分析效率问题
数据存储与处理
大数据量巨大,需要高效的数据 存储和处理技术,如分布式存储 、并行计算等。
数据查询与分析
大数据查询和分析需要快速响应 和高效处理,需要采用实时计算 、流式计算等技术。
数据安全与隐私保护
数据安全
通过加密技术、访问控制和安全审计等手段,确保大数据的 安全性和完整性。
隐私保护
在处理大数据时,需要遵守隐私保护原则,保护个人隐私和 敏感信息,避免数据泄露和滥用。
03
大数据应用领域
大数据的概念

大数据的概念概述:大数据是指规模庞大、类型多样、处理速度快的数据集合,这些数据集合的大小超出了传统数据库和软件工具的处理能力。
大数据的概念已经成为当今信息时代的热点话题,它对各行各业的发展和决策起到了重要的推动作用。
本文将详细介绍大数据的概念、特征、应用以及对社会经济发展的影响。
一、大数据的概念大数据是指由于数据量巨大、数据类型多样、数据生成速度快等特点而无法使用传统的数据处理工具进行管理和处理的数据集合。
大数据的概念最早由美国科技咨询公司Gartner于2022年提出,其定义为“大数据是指高速生成、传播和共享的信息资源,对现有数据处理能力进行挑战,无法使用传统数据库技术进行捕捉、管理和处理的数据集合”。
二、大数据的特征1. 体量巨大:大数据的特点之一是数据量巨大,这些数据来自各种各样的来源,包括传感器、社交媒体、挪移设备等。
根据国际数据公司IDC的统计,每两年数据量翻一番,估计到2022年全球数据量将达到44ZB(1ZB=10的21次方字节)。
2. 多样性:大数据不仅包括结构化数据(如数据库中的表格数据),还包括非结构化数据(如文本、图象、音频、视频等)。
这些数据类型多样,格式各异,传统的数据处理工具无法有效地处理和分析这些非结构化数据。
3. 时效性:大数据的生成速度非常快,数据的实时性要求越来越高。
例如,社交媒体上的实时推文、实时交易数据等都需要实时处理和分析,以便及时做出决策和调整。
4. 价值密度低:大数据中包含了大量的噪音和无用信息,价值密度相对较低。
因此,提取和挖掘有价值的信息成为大数据处理的重要任务之一。
三、大数据的应用领域1. 金融行业:大数据在金融行业的应用非常广泛,例如,通过对大量的交易数据进行分析,可以实现风险控制、欺诈检测、精准营销等。
2. 零售行业:大数据可以匡助零售商了解消费者的购物习惯和偏好,从而进行个性化推荐、精准营销和库存管理。
3. 医疗健康:大数据在医疗健康领域的应用可以匡助医生进行疾病诊断、药物研发、医疗资源调配等。
大数据介绍ppt课件

ASG Server ASG Server
Grid Server
Grid Server
ASG Server
Grid Server
移动终端
ASG Server
Grid Server
To Other Grid Nodes
ASG Server
PC用户
移动终端
ASG Server
ASG Server
邮件服务器
➢异常检测:识别其特征显著不同于其他 数据的观测值
实战项目1—— Python 网络爬虫
网络爬虫是一个自动提取网页的程序/脚 本,它可以搜索引擎从万维网上下载网 页,是搜索引擎的重要组成。 ➢做为oping、 chinahr) ➢科学研究:在线人类行为,在线社群 演化,复杂网络,数据挖掘领域的实证 科学研究,快速收集大量数据
Task:携程数据库(游客数据、点评记录)
实战项目2—— 数据分析及可视化应用
1.Python—2012年美国总统大选数据分析 2.动态气泡图的实现 3.热力感应图(heatmap.js)
管理大数据“易”,理解大数据“难”
•目前大数据管理多从架构和并行等方面考虑, 解决高并发数据存取的性能要求及数据存储 的横向扩展,但对非结构化数据的内容理解 仍缺乏实质性的突破和进展,这是实现大数 据资源化、知识化、普适化的核心.
作用:
- 成本降低,能用PC机,不用大型机和高端存储 - 软件容错硬件故障视为常态,通过软件保证可靠性 - 简化并行分布式计算,无须控制节点同步和数据交换
技术变革
云计算:把集中的运算分散开来
物联网:把分散的设备连在一起
Hadoop:把大数据切成小模块
大数据处理技术——Hadoop
大数据概念及应用

大数据概念及应用概念介绍:大数据是指规模庞大、类型多样且难以处理的数据集合。
它具有三个主要特点:数据量大、数据类型多样、数据处理速度快。
大数据的出现主要是由于互联网的发展和智能设备的普及,使得数据的产生和存储量大幅增加。
大数据的应用领域广泛,包括商业、科学研究、医疗保健、金融等。
应用场景:1. 商业领域:大数据在商业领域的应用非常广泛。
通过对大量的销售数据进行分析,企业可以更好地了解市场需求和消费者行为,从而制定更精准的营销策略。
例如,通过分析用户购买记录和浏览行为,电子商务公司可以向用户推荐个性化的产品,提高销售转化率。
2. 科学研究:大数据在科学研究中的应用可以帮助科学家进行更深入的研究和发现。
例如,在天文学领域,通过对大量的天文观测数据进行分析,科学家可以发现新的星系、行星等宇宙奥秘。
在生物医学领域,通过对大量的基因组数据进行分析,科学家可以研究人类基因的变异和疾病的发生机理。
3. 医疗保健:大数据在医疗保健领域的应用可以帮助医生进行更准确的诊断和治疗。
通过对大量的病历数据和医学影像数据进行分析,可以发现潜在的疾病模式和风险因素,提前预防和治疗疾病。
例如,通过对患者的基因数据和病历数据进行分析,可以为患者提供个性化的治疗方案,提高治疗效果。
4. 金融领域:大数据在金融领域的应用可以帮助银行和金融机构进行风险管理和投资决策。
通过对大量的交易数据和市场数据进行分析,可以发现市场趋势和投资机会,提高投资收益率。
同时,通过对客户的信用记录和消费行为进行分析,可以评估客户的信用风险,制定更准确的信贷政策。
5. 城市管理:大数据在城市管理中的应用可以帮助政府和城市管理部门提供更高效的公共服务。
通过对大量的交通数据、环境数据和人口数据进行分析,可以优化交通流量、改善环境质量、提高城市安全等。
例如,通过分析交通流量数据,可以优化交通信号灯的配时,减少交通拥堵。
总结:大数据的概念是指规模庞大、类型多样且难以处理的数据集合。
大数据的定义和特征

大数据的定义和特征近年来,随着信息技术的飞速发展,大数据成为了一个备受瞩目的词汇。
所谓大数据,指的是规模庞大、多样化的数据集合,这些数据以及它们背后的技术和应用,正在深刻改变我们的生活和社会。
本文将介绍大数据的定义和特征,帮助读者更好地理解其重要性。
一、大数据的定义大数据是指以至少TB级甚至PB级为单位的海量、高速、多样化的数据集合。
与传统数据不同,大数据不仅包括结构化数据,还包括半结构化数据和非结构化数据,如文本、音频、视频等。
大数据除了数据量大、多样化外,还有三个主要特征:速度快、价值密度低和全面性。
速度快指的是数据的传输、处理和分析速度较高,可以在实时或准实时的时间内获取和处理数据。
价值密度低意味着大数据中只有一小部分数据对应用具有实际价值,而大部分数据并不直接与应用相关。
全面性指的是大数据包含了丰富的信息,可以提供全面的视角和维度。
二、大数据的特征1.数据量大大数据的首要特征是数据量的庞大。
与传统数据相比,大数据的数据量达到了以往难以想象的级别。
这些数据涵盖了各个领域,例如商业、社交媒体、传感器网络等。
众多的数据源产生了海量的数据,这就要求我们具备高效的数据存储和处理能力。
2.多样性与传统数据相比,大数据具有更高的多样性。
大数据不仅包含了结构化数据,还包括半结构化和非结构化数据。
结构化数据指那些可以用表格或数据库表示的数据,如用户信息、销售数据等;半结构化数据指那些具有一定结构但不适合传统方法处理的数据,如日志文件、电子邮件等;非结构化数据则是指无特定结构或格式的数据,如文本、图像、音频和视频。
3.速度快大数据的处理速度要求相当高。
数据以极快的速度产生,要求我们能够及时获取、存储和处理大规模的数据流。
例如金融交易、网络传感器、社交媒体等领域的数据需要实时或准实时地进行分析和处理。
4.价值密度低大数据中只有一小部分数据对应用具有直接的价值。
相比之下,大部分数据并不直接与应用相关,这就要求我们能够通过数据分析和挖掘,快速找出有价值的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
自动泊车系统
自动泊车系统,顾名思义驾驶者双手可以离开方向盘,在车辆停好之前要做的只是 等待。
自动泊车系统主要由两部分组成:控制单元和位于前后保险杠以及两侧的超声波雷 达探头。
按动自动泊车辅助系统激活按钮之后,雷达探头可在车辆行驶时对车辆两侧进行扫 描。
麻省理工学院(MIT)的两位经济学家,通过一个软件在互联网上每天可以收集到50 万种商品的价格,他们能比官方数据提前发现通货紧缩趋势。
10
沃尔玛,请把蛋挞与飓风用品摆在一起
通过对历史交易记录这个庞大数据库进行观察,沃尔玛注意到,每当季节性飓风来 临之前,不仅手电筒销量增加,而且美式早餐含糖零食蛋挞销量也增加了。
谷歌通过观察人们在网上的搜索记录来预测流感的传播,得到的信息是非常准确和 及时的。
23
“量化自我”
通过一种非干预的手段,把一些所谓的医疗传感器放到我们的身边,比如我们戴一 个腕表、一枚戒指、一个耳塞、一副眼镜等,通过这些设备我们可以了解自己的心 跳、血压情况,甚至包括我们体表的健康状况,从而对一些大病(如癫痫等)进行 早期预测。
32
中英人寿保险有限公司(Aviva)
中英人寿保险有限公司(Aviva)是一家大型保险公司,他们想利用信用报告和顾 客市场分析数据来作为部分申请人的血液和尿液分析的关联物。
这些分析结果被用来找出更有可能患高血压、糖尿病和抑郁症的人。其中用来分析 的数据包括好几百种生活方式的数据,比如爱好、常浏览的网站、常看的节目、收 入估计等。
该系统向全社会免费开放,任何人都可以通过它查询分析全国各次航班的延误率及 机场等候时间。
29
The-Numbers与电影票房预测
The-Numbers在好莱坞电影上映之前,就能利用海量数据和特定算法预测出一部电 影的票房。
该公司拥有一个包括了过去几十年美国所有商业电影大约3000万条记录的数据库; 数据库里有所有关于预算、电影流派、拍摄、阵容、获得奖项和收入等数据。
美国最大的公立大学亚利桑那州公立大学曾运用这一系统来提高学生的数学水平, 全校2000名学生使用该系统两学期之后,该大学的辍学率下降了56%机上的座位,票价却千差万别,个中原因,只有航空公司知道。
奥伦-埃齐奥尼开发了一个系统,用来推测当前网页上的机票价格是否合理,预测当 前的机票价格在未来一段时间内会上涨还是下降,从而帮助乘客明智购票。
通过装载在车辆上的电子标签利用无线射频等识别技术,实现在信息网络平台上对 所有车辆的属性信息和静、动态信息进行提取和有效利用,并根据不同的功能需求 对所有车辆的运行状态进行有效的监管和提供综合服务。
17
无人驾驶
无人驾驶被人认为是车联网的终极目标
无人驾驶车依赖的技术很多,比如导航、雷达、庞大数据计算等,要实现这些技术 需要和物联网紧密结合起来。
大数据介绍
1
2
目录
大数据的概念 大数据与传统数据的区别? 大数据的典型特征(3V) 广义的大数据 大数据应用案例
3
大数据的概念
大数据(Big Data)是指无法用现有的软件工具提取、存储、搜索、共享、分析和处 理的海量的、复杂的数据集合
简单一点的说,就是用现有一般技术难以管理的数据。
美国Fitbit公司近期就推出了一款免费的苹果手机应用,用户可用于记录食物和液体 摄入量,从而跟踪其活动水平和营养摄入情况,通过分析这些数据可以很好的控制 体重。
24
小儿床垫
通过床垫上的压力与湿度传感器分析,来判断小孩子有没有比较严重的打鼾或者睡 姿不正确等问题。
25
在线教育
如著名的在线教育公司Coursera,已经和普林斯顿、伯克利、宾夕法尼亚大学等30 多所大学合作,在互联网上免费开放大学课程
分布在世界各地的学习者不仅可以在同一时间实时听取同一位老师的授课,还和在 校生一样,做同样的作业、接受同样的评分和考试。
在线教育是一个“行为评价和诱导”的智能平台
26
在线教育服务Knewton
在线教育服务Knewton是大数据应用于教育行业的典型,通过数据分析区分出每个 学生的优缺点,从而给学生有效的指导。
控制单元对雷达反馈的信息进行分析,从而估算出车位是否足以容纳车辆停放。
自动泊车系统随后将通过助力转向系统对车辆行驶方向进行干预,并以控制单元规 划好的路径将车辆停入车位。
19
日本先进工业技术研究院的坐姿研究与汽车
防盗系统
该研究所教授把每个驾车者的坐姿量化为精确的数据,使其对司机识别的正确率高 达98%。
UPS为货车定制的最佳行车路径是根据过去的行车经验总结而来的。2019年,UPS 的驾驶员少跑了近4828万公里的路程,节省了300万加仑的燃料并且减少了3万公吨 的二氧化碳排放量。
21
UPS与汽车修理预测
UPS国际快递公司从2000年就开始使用预测性分析来监测自己全美60000辆车规模 的车队,这样就能及时地进行防御性的修理。
5
大数据的典型特征(3V)
Volume(容量) 现在基本上是指从几十TB到几PB这样的数量级,未来,可能只有几EB数量级的数
据量才能称得上是大数据了。(1T=1024G,1P=1024T) Variety(多样性)
结构化和非结构化数据 Velocity(速度)
数据产生和更新的频率
6
广义的大数据
因此每当季节性飓风来临时,沃尔玛就会把蛋挞与飓风用品摆放在一起,从而增加 销量。
11
沃尔玛:东海岸——中海岸——西海岸
在美国,东海岸、中海岸、西海岸之间有两小时时差。
东海岸的沃尔玛营业两小时后之后,中海岸才开始营业,沃尔玛就会把东海岸当天 这两小时的营业情况、相关数据传给中海岸。
中海岸就会根据这个数据知道了这天人们的购物喜好,决定货品怎么摆放,哪些货 物摆放在一起会比较好。
这种方式给沃尔玛带来了很大的利润。
12
美国折扣零售商塔吉特与怀孕预测
塔吉特公司能在不被清楚告知的情况下预测出一个女性的怀孕情况
该公司找出了大概20多种与怀孕的关联物,给顾客进行“怀孕趋势”评分
这些数据甚至使得零售商能够比较准确地预测预产期,这样就能够在孕期的每个阶 段给客户寄送相应的优惠券
2019年,谷歌公司开始涉足机器翻译。这被当作实现“收集全世界的数据资源,并 让人人都可享受这些资源”这个目标的一个步骤。
谷歌翻译利用一个更大更繁杂的数据库,也就是全球的互联网。
谷歌翻译系统为了训练计算机,会吸收它能找到的所有翻译。它增加了很多各种各 样的数据,还接受了有错误的数据。
谷歌语料库的内容来自于未经过滤的网页内容,所以会包含各种错误。但谷歌语料 库是其他语料库的好几百万倍大,这样的优势完全压倒了缺点
1890年进行的人口普查,预计要花费13年的时间来汇总数据。
后来,美国人口普查局通过用赫尔曼-霍尔瑞斯发明的穿孔卡片制表机来进行1890年 的人口普查,耗时一年。
9
麻省理工与通货紧缩预测软件
美国劳工统计局的人员每个月都要公布消费物价指数(CPI),这是用来测试通货膨 胀率的。
政府通过人工采集价格信息数据每年大概需要花费两亿五千万美元。这些数据是精 确的也是有序的,但是数据往往会有几周的滞后。
4
大数据与传统数据的区别?
➢ 小明去了一百次书店 传统数据:要回答的问题是他第一百零一次买不买书,即业绩和经营指标的问题; 大数据:要回答的是他第一百零一次买什么书,需要将什么样的内容推荐给他。 ➢ 群体和个体的区别 传统定义上,更多关注的是一类人群,用同一类规则制订套餐给他们; 互联网时代,要把每个人都精准刻画出来,进行精准匹配。
所谓大数据,是一个综合性概念,它包括: (1)因具备3V特征而难以进行管理的数据 (2)对这些数据进行存储、处理、分析的技术 (3)以及能够通过分析这些数据获得实用意义和观点的人才和组织
大数据的应用案例
7
8
穿孔卡片与美国人口普查
美国在1880年进行的人口普查,耗时8年才完成数据汇总。因此,他们获得的很多 数据都是过时的。
30
VISA&MasterCard与商户推荐
像VISA和MasterCard这样的信用卡发行商,它们能够从自己的服务网获取更多的 交易信息和顾客的消费信息
它们的商业模式从单纯的处理支付行为转变成了收集数据
一个称为MasterCard Advisors的部门收集和分析了来自210个国家的15亿信用卡 用户的650亿条交易记录,用来预测商业发展和客户的消费趋势。然后,它把这些分 析结果卖给其他公司
通过利用相关关系,保险公司可以在每人身上节省125美元,然而这个纯数据分析法 只需要花费5美元。
33
Xoom与跨境汇款异常交易报警
Xoom是一个专门从事跨境汇款业务的公司,它会分析一笔交易的所有相关数据, 一旦发现用“发现卡”从新泽西州汇款的交易比平常多的话,系统就会报警。
34
无所不包的谷歌翻译系统
13
Hitwise,通过流量判断消费者喜好
数据创新再利用的一个典型例子是搜索关键词。
消费者和搜索引擎之间的瞬时交互形成了一个网站和广告的列表,实现了那一刻的 特定功能。这些信息除了实现基本用途之外,它还可以变得非常有价值。
如数据代理益百利旗下的网页流量测量公司Hitwise,让客户采集搜索流量来揭示消 费者的喜好。
通过监测车辆的各个部位,UPS只需要更换需要更换的零件,从而节省了好几百万 美元。
22
谷歌与甲型H1N1流感
2009年出现的甲型H1N1流感,当时还没有研发出对抗这种新型流感病毒的疫苗, 公共卫生专家能做的只是减慢它传播的速度。但要做到这一点,他们必须先知道这 种流感出现在哪里。
疾控中心得到流感方面的信息往往会有一两周的滞后,这种滞后导致公共卫生机构 在疫情爆发的关键时期反而无所适从。