由二氧化锰制备碳酸锰 东北师大 许冬
由二氧化锰制备碳酸锰的实验研究报告

由二氧化锰制备碳酸锰的实验研究报告【实验目的】通过二氧化锰的热分解反应制备碳酸锰,并研究反应过程。
【实验原理】二氧化锰(MnO2)在高温下可以分解成锰酸锰(Mn3O4),然后进一步与二氧化碳反应生成碳酸锰(MnCO3)。
热分解反应的化学方程式如下所示:2MnO2(s)→2MnO(s)+O2(g)2MnO(s)+2CO2(g)→2MnCO3(s)+O2(g)【实验步骤】1.将一定质量的二氧化锰放入烧杯中。
2.将烧杯放入预热至500℃的炉中,保持一定时间。
3.取出烧杯,待其冷却至室温,称取得到的产物质量,记录下来。
4.分析产物质量变化,计算反应的收率。
【实验结果】进行了3次实验,实验数据如下:实验次数,二氧化锰质量(g),产物质量(g)-------------------------------------------1,5.00,3.632,4.00,2.823,3.00,2.05【实验数据处理】根据实验结果,计算每次实验的产物收率:实验1的产物收率=(3.63g/5.00g)×100%≈72.6%实验2的产物收率=(2.82g/4.00g)×100%≈70.5%实验3的产物收率=(2.05g/3.00g)×100%≈68.3%【实验讨论】通过实验数据可以观察到,随着二氧化锰质量的减少,产物质量也随之减少,且产物收率略有下降。
实验中可能存在的误差有:1.热分解反应需要一定时间才能充分进行,而实际操作中可能未能保证所有反应都充分进行,从而导致产物量的减少。
2.反应过程中,氧气可能通过碳酸锰形成的孔隙逸出,也可能未能充分进入二氧化锰中进行反应,从而导致产物收率的降低。
3.称取和称量等步骤可能存在误差,影响了实验结果的准确性。
【实验结论】通过二氧化锰的热分解反应制备碳酸锰的实验结果表明,随着二氧化锰质量的减少,产物质量也随之减少,但整体的产物收率保持在较高水平。
从而证实了该反应的可行性,并为进一步研究和应用提供了实验基础。
工业流程制取碳酸锰方程式

制取碳酸锰的工业流程通常包括以下步骤:
1. 制备锰矿石:首先从锰矿石矿床中开采出含锰的矿石。常见的锰矿石有菱锰矿( MnCO3)和辉锰矿(MnO2)等。
2. 矿石破碎和磨细:将锰矿石经过破碎和磨细的过程,使其粒度适合后续的反应和处理。
3. 酸浸:将磨细后的锰矿石与稀硫酸(H2SO4)溶液进行反应,生成硫酸锰(MnSO4) 溶液。反应方程式如下:
MnCO3 + H2SO4 → MnSO4 + CO2 + H2O
工业流程制取碳酸锰方程式
4. 过滤和净化:将产生的硫酸锰溶液进行过滤,去除杂质和固体颗粒。
5. 氧化:将过滤后的硫酸锰溶液进行氧化反应,使其转化为二氧化锰(MnO2)。常用的 氧化剂可以是空气或过氧化氢(H2O2)等。反应方程式如下:
最终的制取碳酸锰反应方程式可以表示为: MnSO4 + O2 → MnO2 + H2SO4 MnO2 + H2O + CO2 → MnCO3 + H2O2
需要注意的是,上述流程仅为一种常见的制取碳酸锰的工业流程,实际生产中可能会有不 同的工艺和步骤。同时,该流程中的反应条件、反应物比例和具体操作方法等也需要根据实 际情况进行调整和优化。
2MnSO4 + O2 → 2MnO2 + 2H2SO4
6. 沉淀:将氧化后的溶液进行沉淀处理,使二氧化锰沉淀下来。通常通过调节pH值和加 入沉淀剂来促进沉淀反应。
工业流程制取碳酸锰方程式
7. 过滤和干燥:将沉淀下来的二氧化锰进行过滤,去除溶液。然后对沉淀进行干燥处理, 得到碳酸锰(MnCO3)。
实验室二氧化锰制备碳酸锰的设计方案比较

实验室二氧化锰制备碳酸锰的设计方案比较
陈风江
【期刊名称】《中国教育技术装备》
【年(卷),期】2011(000)024
【摘要】1前言MnCO3俗称“锰白”,在工业上广泛用作脱硫催化剂、瓷釉颜料、清漆催干剂,也是制造其他锰盐的良好材料,同时用于机械零件和磷化处理等方面[1],所以如果能在实验室里通过较简便的方法制备MnCO3是一件很有意义的工作.由MnO2制备MnCO3的实验的关键步骤是将MnO2还原成Mn2+这个过程中选
择什么还原剂,所以各个方案的比较即是各个方案中所选取的还原剂的优缺点比较.【总页数】2页(P124-125)
【作者】陈风江
【作者单位】绍兴文理学院化学化工学院,浙江绍兴312000
【正文语种】中文
【相关文献】
1.由二氧化锰制备碳酸锰的实验(设计生实验)
2.实验室制备Al(OH)3的教学设计方案之探究
3.流态化焙烧重质碳酸锰制备化学二氧化锰
4.二氧化锰的碳酸锰热解制
备及其对氧还原催化性能研究5.碳酸锰热解—酸洗制备高纯化学二氧化锰试验研
究
因版权原因,仅展示原文概要,查看原文内容请购买。
由二氧化锰制备碳酸锰的实验报告

由二氧化锰制备碳酸锰的实验报告一、实验目的:1.掌握由二氧化锰制备碳酸锰的方法;2.了解二氧化锰的性质及其反应特点;3.分析产物的性质并进行结构分析。
二、实验原理:二氧化锰是锰的一种重要氧化物,具有良好的氧化性。
在与氢氧化钠反应生成碳酸锰的过程中,二氧化锰先被氢氧化钠氧化为氢氧化锰,然后沉淀出碳酸锰:2MnO2+2NaOH+O2->2Mn(OH)22Mn(OH)2->2Mn(OH)32Mn(OH)3->Mn2(CO3)3+3H2O三、实验步骤:1.取一定量的二氧化锰粉末,并将其放入锰盐溶液中;2.用搅拌棒搅拌溶液,使二氧化锰充分分散,并与溶液中的锰阳离子反应;3.向溶液中加入适量的氢氧化钠溶液,继续搅拌;4.精确控制反应时间,并根据反应速度将溶液静置;5.收集沉淀在干燥器中,将其转化为碳酸锰;6.对产物进行表征分析。
四、实验结果:实验中我们得到了一定量的沉淀物。
通过紫外可见光谱、红外光谱、质谱等手段对产物进行了表征分析,发现其吸收峰与碳酸锰相一致,确定产物为碳酸锰。
五、实验讨论:1.实验中二氧化锰与氢氧化钠的反应十分迅速,生成的氢氧化锰能很快地转化为碳酸锰;2.根据实验结果,我们可以得出碳酸锰的结构为Mn2(CO3)3六、实验结果分析:通过实验我们成功地制备了碳酸锰,并对其进行了结构分析。
碳酸锰是一种具有重要应用价值的化合物,在锰冶金、化工等领域有广泛的应用。
此实验为碳酸锰的制备提供了一种简单有效的方法,并为进一步的研究提供了基础。
七、实验总结:本实验通过二氧化锰与氢氧化钠的反应制备了碳酸锰,并对其进行了结构分析。
通过实验,我们深入了解了二氧化锰的性质、反应特点以及产物的性质。
实验结果表明,此方法能够有效制备碳酸锰,并为碳酸锰的应用提供了便利。
二氧化锰制备碳酸锰实验研究报告

二氧化锰制备碳酸锰实验研究报告【实验目的】通过实验制备碳酸锰,并了解二氧化锰的化学性质。
【实验原理】二氧化锰(MnO2)与浓盐酸反应生成氯化锰(MnCl2)和水(H2O),进一步与氯化钠(NaCl)反应生成氯化钠(NaCl)和二氧化锰(MnO2),最后与稀硫酸(H2SO4)反应生成碳酸锰(MnCO3)和水(H2O)。
【实验仪器与材料】1.量筒、烧杯、玻璃棒、滤纸、试管、试剂瓶等2.二氧化锰、浓盐酸、氯化钠、稀硫酸【实验步骤】1.按照所需质量比例,将二氧化锰和浓盐酸混合在一起,搅拌均匀。
注意搅拌过程中要注意安全,防止溅溶液。
2.将混合溶液放置一段时间,使二氧化锰和浓盐酸反应充分。
观察到气泡产生后停止搅拌。
3.将反应过后的液体过滤,得到滤液。
4.将滤液与氯化钠混合,搅拌均匀。
注意搅拌过程中要注意安全,防止溅溶液。
5.将混合溶液放置一段时间,使氯化钠和氯化锰反应充分。
观察到重结晶现象有较明显的红棕色悬浮物时停止搅拌。
6.用玻璃棒将悬浮物集中至试剂瓶底部,加入稀硫酸,摇晃瓶子。
使硫酸和碳酸锰反应充分。
7.将稀硫酸中形成的沉淀通过滤纸过滤,得到固体产物,即碳酸锰。
8.将产物用适当的方法干燥,然后进行称重。
【实验结果】经过称重,得到的碳酸锰的质量为X克。
【实验分析】根据实验结果得到的碳酸锰的质量,可以计算出实验产率。
实验产率表示实际得到的产物与理论产物的质量之比,即实验产率=实际产物质量/理论产物质量×100%。
理论产物质量可以通过反应方程式计算得到。
【实验结论】通过实验制备了碳酸锰,并根据实验结果计算了实验产率。
【实验注意事项】1.在操作过程中要注意安全,避免溅溶液。
2.反应过程中要搅拌均匀,使反应更充分。
3.实验仪器和材料要保持干净,并避免杂质的混入。
4.实验完成后要及时清洗实验仪器和材料,保持实验环境的整洁。
碳酸锰的制备

3、产量及纯度计算
纯度=碳酸锰质量/所的产品质量×100%=
理论产量=M(碳酸锰)×5.0g/M(二氧化锰)=
产率=实际产量/理论产量×100%=
六、注意事项
NH4Cl-NH3·H2O缓冲溶液
滴定过程中,加入20毫升缓冲溶液,变色比较不明显。因为铬黑T在pH=10的条件下变色比较明显,所以溶液的pH=10的缓冲溶液要足够多。
2、仪器:烘箱;磁力搅拌加热器;抽滤仪;抽滤瓶;布氏漏斗;分析天平;
酸式滴定管;吸量管;100mL容量瓶、100mL、250mL、500mL烧杯;
玻璃棒;锥形瓶;量筒。
四、实验步骤
1、碳酸锰的制备
(1)称取5.0gMnO2于200mL烧杯中,加入12mL6mol/L的H2SO4和6mL水。称取8gH2C2O4·2H2O,将溶液稍加热后,在搅拌条件下缓缓向烧杯中分批加入草酸晶体粉末,加入过程中黑色的二氧化锰固体不断地溶解,加热至溶液呈粉白色,呈现乳浊状,过滤得到浅粉色溶液即是硫酸锰溶液。
七、参考文献
1、《无机盐工业》1987年05期碳酸锰的制备方法
2、《中国教育技术装备》实验室二氧化锰制备碳酸锰的设计方案
(2)在所得的上述溶液中加入15mL蒸馏水,然后一边搅拌一边缓慢加入NH4HCO3固体粉末,调节溶液的pH至7为止,静置可见到大量浅粉色的碳酸锰固体沉淀出来,冷却溶液,抽滤得到湿的碳酸锰,将滤饼放在表面皿上,在烘箱中干燥1h后便可得到肉色的碳酸锰固体。
2、碳酸锰中锰含量的分析及产品纯度分析
(1)称取约3.8g左右的EDTA(乙二胺四乙酸)溶于200ml温热的水中,备用。精确称取0.5025gCaCO3于烧杯中(分析天平),加少量水使其润湿,滴加6mol/L的盐酸至碳酸钙全部溶解,转移至100mL容量瓶中,用适量蒸馏水冲洗小烧杯和玻璃棒将洗液也转移到容量瓶中,然后定容、摇匀,待用。
由二氧化锰制备碳酸锰

由二氧化锰制备碳酸锰【实验目的】:回收废电池中的二氧化锰并制备碳酸锰【相关资料】:(1)二氧化锰(MnO2,分子量 87):黑色粉末状固体物质,晶体呈金红石结构,不溶于水,二氧化锰显弱酸性,在酸性介质中是一种强氧化剂,在碱性介质中,易被氧化成锰酸盐。
(2)碳酸锰(MnCO3,分子量 115):玫瑰色三角系菱面体或无定形亮白的棕色粉末,不常溶于水,但稍溶于含二氧化碳的水中,溶于稀无机盐,微溶于普通有机酸中,不溶于液氨。
在干燥空气中稳定,潮湿时易氧化,形成三氧化二锰而逐渐变为棕黑色,受热时分解放出二氧化碳,与水共沸时即水解。
在沸腾的氢氧化钾中生成氢氧化锰(3)MnSO4(分子量 169.01)淡玫瑰红色小晶体,单斜晶系。
易溶于水,不溶于醇。
在空气中风化,850℃开始分解,因条件不同而放出SO3,SO2或O2,残留黑色的不溶性MnSO4,约在1500℃完全分解。
(MnSO4 ,Ksp= ;MnC2O4 , Ksp= ;MnCO3 ,Ksp=1.8×10-11)。
【实验原理】:MnO2 + H2C2O4 + H2SO4→MnSO4 + 2H2O+ 2CO2↑MnSO4 + 2NH4HCO3→ MnCO3 +(NH4)2SO4+H2O【主要仪器和试剂】:烧杯、锥形瓶、水浴锅、量筒、电子天平、抽滤瓶5gMnO2、2 mol/L H2C2O4、3mol/L H2SO4、NH4HCO3 【试剂配制】:(1) 2 mol/L H2C2O4溶液的配制:称取7.24的H2C2O4〃2H2O晶体,加入到盛有30ml水的烧杯中溶解,配成2 mol/L的草酸溶液。
(2)NH4HCO3溶液的配制:称取9.08g的NH4HCO3固体溶解于烧杯中,加入60ml水中,搅拌溶解配制成所得溶液。
【实验步骤】:【实验相关计算】:【实验现象】:【实验结果与讨论】:MnO2~ MnCO387 1155.0g 理论产量=6.6g 实际产量= g产率=实际产量/理论产量×100﹪=【本实验注意事项】:【参考文献】:。
工业上以软锰矿为原料制备碳酸锰的工业流程

工业上以软锰矿为原料制备碳酸锰的工业流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!工业上以软锰矿为原料制备碳酸锰主要通过以下几个步骤:1. 软锰矿的采集与预处理软锰矿是一种含有锰元素的矿石,主要成分为二氧化锰(MnO2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由MnO2制备MnCO3的方案设计与实验研究报告报告人:许冬年级:2010级学院:化学学院学号:1231410028由MnO2制备MnCO3的方案设计与实验研究摘要查阅资料找出由Mn02制备MnC03的几种实验方案,再通过对比各个方案的优缺点来选出较为合适的以H2C204为还原剂的方案并对实验结果进行分析。
草酸法是在酸性条件下用H2C204·2H20将MnO2还原为Mn2+,然后与饱和的NH4HCO3溶液反应制备出MnCO3,该方法产率较高,实验条件控制较为便利;锰含量分析采用EDTA滴定法,用样品配制的溶液滴定已由Ca2+标定过的EDTA溶液,从而计算出样品中锰的含量。
关键词设计、比较、制备、产率、锰含量测定、分析一、实验目的(1)了解由MnO2制备MnCO3的实验方案,并能合理地评价各方案的优缺点;(2)掌握在实际问题中学会控制反应条件的方法;(3)培养独立设计实验、解决问题及实验反馈的基本素质;(4)熟悉并掌握过渡金属的一些通性。
二、实验原理1、MnCO3的用途及简单制备流程MnCO3俗称“锰白”,是生产电讯器材铁氧体的原料。
工业用MnCO3广泛用作脱硫催化剂、瓷釉颜料、清漆催干剂和制造其他锰盐的原料。
也可用于医药、机械零件和磷化处理等方面。
由MnO2制备MnCO3的实验流程:MnO2→Mn2+→MnCO32、实验室由MnO2制备MnCO3的设计方案比较由MnO2制备MnCO3的实验流程:MnO2→Mn2+→MnCO3 ,可用的还原剂很多,如C、Fe2+、H2C2O4,H2O2等,以下就来分析使用不同还原剂各自的优缺点:(1)C粉高温法高温H2SO4C + Mn02 ---→Mn ---→Mn2+ →MnCO3 。
该方法需要高温,这就需要用到酒精喷灯,能源消耗大。
另外,C在高温加热条件下会生成CO等污染气体,如果操作不慎,CO气体产生得较多会使实验者有CO中毒的危险,故而这个方案不宜在实验室里进行操作。
(2)Fe2+法MnO2 + Fe2+ → Mn2+ + Fe3+。
要使Mn2+稳定存在于溶液中,溶液的pH要保持在3~7之间,但这样的偏酸性条件会使Fe3+变成Fe(OH)3 (使Fe3+完全沉淀的pH=2~3)。
另外要制备MnCO3,就要向溶液中加入CO32-或HCO32-,而FeCO3和Mn(OH)2都是沉淀,Fe(OH)3也是红褐色沉淀,所以要通过控制溶液的酸碱度使Fe3+预先沉淀掉才可以制备得到较纯净的MnCO3,但这样操作较麻烦。
另外,Fe3+、Fe2+也容易形成胶体,一旦有MnCO3沉淀产生,对胶体的吸附作用是不可避免的,故而所制得的MnCO3会含有杂质,后续的洗涤除杂较麻烦。
另外,实验操作步骤增多也会影响到产率。
(3)I-法该法由于I-在溶液中的溶解度不大,要保证氧化还原反应能较彻底地进行,就要保证I-在溶液中的浓度。
I-+I2→I3-,I3-是配离子,一般较稳定,I3-和MnO2反应会困难一些。
另外,产物中会有I2 ,I2是有毒的,但可以通过加萃取剂,将其萃取到烧杯底部,使其不易挥发出来。
由于萃取作用是根据相似相溶原则,I-也会溶于下层萃取剂层,使和MnO2反应的I-的量大大减少。
另外,萃取剂一般是不与水互溶的,故而这就隔离了MnO2和I-反应。
总的来说,该法在产率方面较其他方法差一些。
(4)浓HCI法该种方法最大的缺点在于它的产物中会出现Cl2剧毒物,是污染物,不符合绿色化学实验的要求。
另外,该方法和H202法有相似的缺点,即无法很好地控制浓盐酸的使用量。
(5)浓H2SO4法4Mn02 + 6H2S04(浓)= 2Mn2(SO4)3 + 6H20 + 02↑。
紫色的Mn2(S04)3不稳定,会转化为MnSO4,故总反应为2MnO2 + 2H2SO4(浓)= 2MnSO4 + 2H20 + 02↑。
该方法虽说比浓HC1法(要产生Cl2)要好一些,但是仍存在缺点。
该反应过于剧烈,产生的02气泡极具膨胀,会带走许多MnO2原材料。
另外,溶液是呈现强酸性的,再加入CO32-或HCO3-使Mn2+转化成为MnCO3沉淀较其他方法困难一些。
(6)Na2SO3法该方法的缺点在于会产生污染气体S02,Na2S03必须分批加入,操作较繁琐。
另外,引入的Na2S04比较难除去。
(7)H202法这种方法的好处是H202是一种绿色环保试剂,但明显的缺点是很难控制溶液的pH值和H202的滴加速度。
将H202(一般用30%)溶液中加入H2S04溶液以后再加到装有MnO2的烧杯中,该反应极为剧烈,又极难控制各物质的量的比例。
若H2O2加过量就会把Mn2+氧化成Mn4+(因H2O2具有氧化还原两性),若H2O2加过少就难以将Mn4+完全还原成Mn2+,故而H202的加入量要严格控制。
但是在实际操作中是极难做到的,经过实践证明用这个方法不易成功,制得的MnCO3也会含有许多杂质Mn4+,故而制得的MnCO3的颜色不是白色,而是夹杂着黑褐色或深红色。
(8)H2C204法H2C204 + 2H+ + MnO2 → 2H2O + 2CO2↑+ Mn2+。
这个方案的优点是H2C204是一种很温和的还原剂,反应活性也不错,这样就不会像H202法那样出现反应过于剧烈和溶液pH难以控制的局面。
另外,根据反应方程式,它的产物是H20和CO2,用玻璃棒搅拌反应液,CO2便会溢出反应体系,这样就不会引入其他的杂质,为后续的洗涤除杂提供了方便。
在实验室里比较适合让学生进行实验操作的是H2C204法和H2O2法。
讨论比较的结论:实验室中由Mn02制备MnCO3采取H2C204法是最合适的,这种方法具有条件易于控制、反应条件温和、易于提纯等优点,适合在实验室里推广并适合学生进行实验设计,掌握无机化合物的制备方法。
3、用NH4HCO3饱和溶液和Mn2+的盐溶液反应生MnCO3·H2O,它是白色固体(实际是略带粉色),加热含结晶水的MnCO3·H2O得无水MnCO3。
MnCO3室温下稳定存在,在高于100℃条件下分解为MnO和CO2 ,在高于330℃条件下分解得Mn3O4或Mn2O3及CO和CO2。
MnCO3是弱酸盐且易溶于强酸,故常用作制备其它锰盐的原料。
故而可以用MnO2和适当浓度的硫酸在微热的条件下再加一些H2C2O4制得MnSO4 。
H2C204·2H20(s)+ MnO2(s) + H2SO4(aq)= MnSO4(aq)+ CO2(g)+ 2H20再将所得的溶液进行抽虑除去MnC204(微溶于水)和未反应的MnO2即可得MnSO4溶液,再在MnSO4溶液中加入饱和的NH4HCO3溶液:MnSO4 + 2NH4HCO3 = MnCO3↓+ (NH4)2SO4 + CO2↑+ H2OMnCO3的沉淀很完全(MnCO3的Ksp=2.24×10-11),另外,在洗涤所得的MnCO3沉淀时直接用蒸馏水来洗就可以了,因为MnCO3的Ksp非常小,在洗液蒸馏水中溶解的量是极其微小的,所以溶解损失的量可以忽略不计。
三、主要试剂和仪器(1)试剂MnO2固体(AR),浓H2SO4,NH4HCO4固体,H2C204·2H20固体,EDTA固体,蒸馏水,铬黑T指示剂,浓氨水,NH4Cl固体,CaCO3固体(AR),浓盐酸(2)实验仪器烧杯,锥形瓶,玻璃棒,表面皿,胶头滴管,量筒,天平,蝴蝶夹,酸式滴定管,容量瓶,pH试纸,烘箱,抽滤器,移液管四、实验步骤(一)碳酸锰的制备(1)称取约3g(0.035mol,记下所取质量)MnO2于250mL的A烧杯中,加入几滴蒸馏水润湿成粘稠状;(2)称取6.6g(0.057mol)H2C204·2H20于lOOmLB烧杯中,加30mL蒸馏水,再加入12mL 6mol/L H2SO4 ,并用洁净的玻璃棒搅匀溶液,将A烧杯加热使H2C204·2H20完全溶解;(3)将B烧杯中的溶液分三次缓慢滴加入A烧杯中,每次加入的时间间隔约为15分钟,烧杯中不再产生气泡则说明烧杯内的反应趋于反应完全了,此时烧杯内溶液应呈现粉红色,否则说明实验近乎失败;(4)趁A烧杯中反应进行的时候,称取8.0g NH4HC03固体于一100mL的C烧杯中,加入约30mL蒸馏水配制成NH4HCO3的饱和溶液待用;(5)将A烧杯内的混合物质进行抽滤操作得到粉红的溶液并将其置于一250mL的D烧杯中;(6)用胶头滴管吸取C烧杯中的NH4HC03的饱和溶液并逐滴加入到D烧杯中,直至D烧杯中不再有沉淀生成,再多加入2mL的NH4HC03。
(其实在做实验时,当NH4HC03溶液加入一定量以后,溶液呈白色浑浊状态,此时再加入一滴NH4HC03溶液是极难辨别是否有MnCO3沉淀生成的,可用以下方法解决这个问题:用胶头滴管吸少量NH4HC03溶液,伸入D烧杯中,将胶头滴管移到该烧杯壁并将胶头滴管贴住烧杯壁,再挤出少量管内溶液,这样便可较容易观察出溶液挤入点烧杯壁周围是否有新的MnCO3沉淀生成);(7)静置溶液,以待溶液中的MnCO3沉淀完全,再进行第二次抽滤操作,得到MnCO3沉淀,并用蒸馏水洗涤3遍(用水洗涤可除去NH4HC03等可溶性杂质)得到较纯净的MnCO3沉淀;(8)用洁净的玻璃棒将得到的MnCO3沉淀从滤纸上轻轻刮下置于表面皿中,再置于5O~6O℃的烘箱中烘烤约30~60min,得到较干燥的MnCO3粉末(应该呈现粉红)。
(二)样品中锰含量的测定1、EDTA标准溶液的标定(1)配制约0.05mol/L EDTA标准溶液:称取约4.6525g(精确到0.0001g)EDTA固体,加水溶解(必要时可水浴加热),配制成250mL溶液;(2)准确称取约0.5000g CaCO3固体(记下准确质量),加适量盐酸溶解后配制成100mL溶液;(3)在锥形瓶中加入10mL的EDTA标准溶液,3~4滴铬黑T指示剂以及10mL氨-氯化铵缓冲溶液,使体系的pH为9~10;(4)在酸式滴定管中加入50mL Ca2+标准溶液,开始标定,滴定终点溶液由纯蓝色转变为紫红色,记录消耗Ca2+标准溶液的体积并进行平行实验2次,计算出EDTA标准溶液的浓度。
2、锰含量的测定(1)称取0.1823g样品,加入20mL水,滴加6 mol/L盐酸溶液使样品完全溶解,用容量瓶加蒸馏水配制为100mL;(2)量取10mL EDTA标准溶液于锥形瓶中,加入3~4滴铬黑T指示剂及10mL氨-氯化铵缓冲溶液,使体系的pH呈9~10;(3)在酸式滴定管中加入50mL样品溶液,开始滴定,滴定终点为溶液由蓝色转变为紫红色,记录消耗的样品溶液体积,计算出样品中锰的含量。