一次函数知识点及典型例题复习
一次函数知识点经典例题讲解

一次函数的基本概念知识点1:理解一次函数、正比例函数的概念.形如y=kx +b (k ≠0)的函数,称y 是x 的一次函数;特殊地,若b=0,即y=kx(k ≠0)的函数,称y 是x 的正比例函数。
一次函数有两个基本特征:其一是自变量x 的次数是1;其二是自变量的系数 k ≠0例 1、判断哪些函数是一次函数:3y x =,2y x =+,213x y -=,92y x=+,12y x =-例2:已知y 是x 的一次函数,当3x =时,1y =,当2x =-时,14y =-,求:(1)这个一次函数的关系式和自变量的取值范围。
(2)当5x =时函数的值。
(3)当4y =时自变量的值。
例3..已知m y +与n x -成正比例(其中m ,n 是常数)(1)求证:y 是x 的一次函数;(2)如果1-=x 时,15-=y ,7=x 时,1=y ,求这个一次函数的解析式.这里,先设所求的一次函数关系式为y kx b =+,其中k ,b 是待确定的常数,然后根据已知条件列出以k ,b 为未知数的方程组,求得k ,b 的值,从而求出所求的关系式。
这种求函数关系式的方法叫做待定系数法。
待定系数法是一种重要的数学方法,有广泛的用途。
例3是例2的深化知识点2:y=kx+b(k≠0)的图象1、图象:一条直线;2、与坐标轴的交点:①y=kx+b(k≠0)交x轴于(-b/k,0),交y轴于(0,b);②y=kx(k≠0)过坐标原点(只有这一个交点),即(0,0)。
3、位置:由k、b决定①b决定图象与y轴的交点在x轴的上方还是下方(即(0,b)点的位置);②K决定直线的位置(即过一、三象限或二、四象限)。
注意看图识性,见数想形.例4.已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象与y轴的交点在x轴的上方?(4)k为何值时,它的图象平行于直线y=-x?知识点3:y=kx+b(k≠0)图象的性质k>0时,y随x的增大而增大,从左到右直线上升。
一次函数知识点复习(详解加练习)

j距离(km)时间1513121110.5O 1530一次函数复习一、 变量与函数①函数定义:在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么x 是自变量,y 是x 的函数 ②函数的三种表示法:列表法、图象法、解析法 ③会求函数自变量的取值范围。
④函数是研究运动变化的重要数学模型,它来源于实际,又服务于实际,学会利用函数图象研究函数的性质。
【例题讲解】例1、学校有一批复印任务,原来由甲复印社承接,按每100页40元计费,现乙复印社表示,若学校先按月付给200元的承包费,则可按每100页15元收费。
设复印页数为x 页。
(1)分别写出甲复印社收费y 1(元)、乙复印社收费y 2(元)与x 的函数关系式。
(2)请你选择:①复印页数是多少时,选择甲、乙复印社收费相同? ②复印页数是多少时,选择甲复印社收费较少? ③复印页数是多少时,选择乙复印社收费较少?例2、学校阅览室有能坐4 人的方桌,如果多于4 人,就把方桌拼成一行,2张方桌拼成一行能坐6 人,如图所示,请你结合这个规律,填写下表:例4、地壳的厚度约为8到40km ,在地表以下不太深的地方,温度可按y =3.5x +t 计算,其中x 是深度,t 是地球表面温度,y 是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么? (2)如果地表温度为2℃,计算当x 为5km 时地壳的温度.例5、下列各曲线中不能表示y 是x 的函数是( )。
y (千米)与所用的时间x (小时)之间关系的函数图象,小明9点离开家,15点回家。
根据这个图象,请你回答下列问题: ①小强到离家最远的地方需几小时?此时离家多远? ②何时开始第一次休息?休息时间多长? ③小强何时距家21㎞?(写出计算过程)O x(吨)y(元)856.33.6例7、某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y (元)与水量x (吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为 元/吨;若用水超过5吨,超过部分的水费为 元/吨。
(完整版)一次函数知识点及典型例题复习

一次函数知识点一次函数知识网络图考点一:变量、常量及函数定义1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为是x 的函数。
※判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应典型例题:1、下列函数关系式中不是函数关系式的是( )A. B. C. D. 21y x =+21y x =+1y x x=+22y x =2、下列各图中表示y 是x 的函数图像的是 ( )考点二、自变量取值范围:一般的,一个函数的自变量允许取值的范围。
确定函数自变量取值范围的方法: (1)必须使关系式成立。
①当关系式为整式时,自变量取值范围为全体实数;②当关系式含有分式时,自变量取值范围要使分式的分母的值不等于零;ABDo③关系式含有二次根式时,自变量取值范围必须使被开方的式子不小于零;④当关系式中含有指数为零或负数的式子时,自变量取值范围要使底数不等于零; (2)当函数关系表示实际问题时,自变量的取值范围还要符合实际情况,使之有意义。
(3)当函数关系表示一个图形的变化关系时,自变量的取值范围必须使图形存在。
典型例题:1、函数的自变量x 的取值范围是 31-=x y 2、函数的自变量x 的取值范围是3-=x y 3、函数的自变量x 的取值范围是()220xy x -=++4、小强在劳动技术课中要制作一个周长为10cm 的等腰三角形.请你写出底边长y (cm )与一腰长x (cm )的函数关系式,并写出自变量的取值范围.考点三、函数的图像与解析式的关系1、函数的表示方法(1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
(2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
八年级数学一次函数知识点+例题+随堂习题

一次函数◆教学目标:①函数正比例函数一次函数◆知识要点:知识点一:函数知识点二:正比例函数知识点三:一次函数{知识点四:一次函数与一元一次方程及一元一次不等式知识点五:一次函数与二元一次方程组◆典型例题 + 随堂演练:考点一:函数1、变量的定义:在某一变化过程中,我们称数值发生变化的量为变量。
变量还分为自变量和因变量。
2、常量的定义:在某一变化过程中,有些量的数值始终不变,我们称它们为常量。
3、函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数,y的值称为函数值。
&4、函数的三种表示法:(1)表达式法(解析式法);(2)列表法;(3)图象法。
用数学式子表示函数的方法叫做表达式法(解析式法)。
由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。
把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的方法叫做图像法。
5、求函数的自变量取值范围的方法.(1)要使函数的表达式有意义:①整式(多项式和单项式)时为全体实数;②分式时,让分母≠0;③含二次根号时,让被开方数≠0 。
(2)对实际问题中的函数关系,要使实际问题有意义。
注意可能含有隐含非负或大于0的条件。
6、求函数值方法:把所给自变量的值代入函数表达式中,就可以求出相应的函数值。
[7、描点法画函数图象的一般步骤如下:Step1:列表(表中给出一些自变量的值及其对应的函数值);Step2:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);Step3:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
典型例题:1、汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x 之间的函数关系是 。
2、圆的周长公式2C R π=中,下列说法错误的是( )。
一次函数的图象和性质知识点和典型例题讲解

一次函数的图象和性质一、知识要点:1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、性质:(1)图象的位置:(2)增减性k>0时,y随x增大而增大k<0时,y随x增大而减小4.求一次函数解析式的方法求函数解析式的方法主要有三种(1)由已知函数推导或推证(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。
(3)用待定系数法求函数解析式。
“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:①利用一次函数的定义构造方程组。
②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。
③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。
④利用题目已知条件直接构造方程。
二、例题举例:例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。
例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断=(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。
说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。
一次函数超经典知识点-例题-练习全题型

一次函数函数基础知识1、函数自变量的取值范围: 一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负数. 练习:(1)(2014•遂宁)在函数y=中,自变量x 的取值范围是( )(3)(2014济宁)函数y =中的自变量x 的取值范围是 ( ) A .x ≥0 B .1x ≠- C .0x > D .x ≥0且1x ≠-2、函数图像 练习: (1)(2014年山东烟台)如图,点P 是平行四边形ABCD 边上一动点,沿A→D→C→B 的路径移动,设P 点经过的路径长为x ,△BAP 的面积是y ,则下列能大致反映y 与x 的函数关系的图象是( )A .B .C .D .(2)(2014年广东汕尾)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s (千米)与行驶的时间t (时)的函数关系的大致图象是( )A .B .C .D . (3)(2014•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时达标检测题:1.(2014年山东烟台)在函数中,自变量x的取值范围是.2.(2014•益阳)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.一次函数【基础知识梳理】1. 一次函数及正比例函数的概念 ①下列函数:①y x =-;②3x y =;③3y x=;④21y x =-,其中一次函数个数为( )A .1;B .2;C .3;D .4. ②若 y=2x+m-2是正比例函数,m=_________ ③当k=_____时,y=kx k-2+1是一次函数。
一次函数知识点总结

一次函数知识点总结与典型例题 知识点一:变量、常量及函数定义函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值, y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为是x 的函数。
【注:判断y 是否为x 的函数,只要看x 取值确定的时候,y 是否有唯一确定的值与之对应】 例1、下列函数关系式中不是函数关系式的是( )A. 21y x =+B. 21y x =+C. 1y x x=+ D. 22y x = 例2、下列各图中表示y 是x 的函数图像的是 ( )知识点二、自变量取值范围: ①当关系式含有分式时,自变量取值范围要使分式的分母的值不等于零; ②关系式含有二次根式时,自变量取值范围必须使被开方数大于等于零;③当关系式中含有指数为零或负数的式子时,自变量取值范围要使底数不等于零; ④当函数关系表示实际问题时,自变量的取值范围一般为非负数。
例1、 函数31-=x y 的自变量x 的取值范围是 例2、函数3-=x y 的自变量x 的取值范围是 例3、函数22)x -+=(y 的自变量x 的取值范围是 知识点三、阅读函数图像例1、小强骑自行车去郊游,右图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象,小强9点离开家,15点回家,根据这个图象,回答下列问题:(1)小强到离家最远的地方需要几小时?此时离家多远?(2)若第一次只休息半小时,则第一次休息前的平均速度是多少?(3)返回时平均速度是多少?x y O A x y O B x yO D x y O1、 正比例函数定义:一般地,形如y=kx(k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数.【注:正比例函数一般形式 y=kx ① k ≠0 ② x 的指数为1】2、 一次函数定义:一般地,形如y=kx +b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.【注:一次函数一般形式 y=kx+b ① k ≠0 ②x 指数为1 ③ b 取任意实数】 例1函数2(1)1k y k x k =++-是一次函数,则k 值为 .例2函数是12()m y m m x +=-正比例函数,则m 值为 。
一次函数知识点总结及典型试题用

一次函数学问点总结与经典试题(一)函数1、变量:在一个改变过程中可以取不同数值的量。
常量:在一个改变过程中只能取同一数值的量。
2、函数:一般的,在一个改变过程中,假如有两个变量X和y,并且对于X的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把X称为自变量,把y称为因变量,y是X的函数。
*推断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际状况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,假如把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值与其对应的函数值);其次步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(依据横坐标由小到大的依次把所描出的各点用平滑曲线连接起来)O8、函数的表示方法列表法:一目了然,运用起来便利,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简洁明白,能够精确地反映整个改变过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(二)一次函数1、一次函数的定义一般地,形如尸质十力C,力是常数,且%≠0)的函数,叫做一次函数,其中X是自变量。
当人=0时,一次函数>=依,又叫做正比例函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数知识点考点一:变量、常量及函数定义1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为是x 的函数。
※判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应1、下列函数关系式中不是函数关系式的是( )A. 21y x =+B. 21y x =+C. 1y x x=+ D. 22y x = 2、下列各图中表示y 是x 的函数图像的是 ( )考点二、自变量取值围:一般的,一个函数的自变量允许取值的围。
确定函数自变量取值围的方法:(1)必须使关系式成立。
①当关系式为整式时,自变量取值围为全体实数;②当关系式含有分式时,自变量取值围要使分式的分母的值不等于零;③关系式含有二次根式时,自变量取值围必须使被开方的式子不小于零;④当关系式中含有指数为零或负数的式子时,自变量取值围要使底数不等于零;(2)当函数关系表示实际问题时,自变量的取值围还要符合实际情况,使之有意义。
(3)当函数关系表示一个图形的变化关系时,自变量的取值围必须使图形存在。
1、函数31-=x y 的自变量x 的取值围是 2、函数3-=x y 的自变量x 的取值围是3、函数()220x y x -=++的自变量x 的取值围是4、小强在劳动技术课中要制作一个周长为10cm 的等腰三角形.请你写出底边长y (cm )与一腰长x (cm )的函数关系式,并写出自变量的取值围.考点三、函数的图像与解析式的关系1、函数的表示方法(1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数ABD之间的对应规律。
(2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
(3)图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
函数的三种表示方法各有优、缺点,有时可以相互转化。
2、分段函数的解析式及图像注意把握:(1)始点、终点、拐点的坐标及实际意义(2)每条线段(射线)的解析式、取值围、实际意义(3)每个解析式中K的实际意义1、如图反映的过程是:晓明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家。
其中t表示时间(分钟),S表示晓明离家的距离(千米),那么晓明在体育馆锻炼和在新华书店买书共用去时间是_______________分钟.你还能分析出什么?2、如图,已知蚂蚁以均匀的速度沿台阶A→B→C→D→E爬行,那么蚂蚁爬行的高度h随时间t 变化的图像大致是()D ECBA thAhBhChD3、如图,平面直角坐标系中,在边长为1的正方形ABCD的边上有一动点P沿A B C D A→→→→运动一周,则P的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()1 2 3 412ysO 1 2 3 412ysO s 1 2 3 412ysO1 2 3 412yO4、小强骑自行车去郊游,右图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象,小强9点离开家,15点回家,根据这个图象,请你回答下列问题:(1)小强到离家最远的地方需要几小时?此时离家多远?(2)若第一次只休息半小时,则第一次休息前的平均速度是多少?(3)返回时平均速度是多少?考点四、一次函数和正比例函数的定义1、 正比例函数定义:一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx ① k ≠0 ② x 的指数为12、 一次函数定义:一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b ① k≠0 ②x 指数为1 ③ b 取任意实数已知关于x 的一次函数 .(1)m 为何值时,函数的图象经过原点?(2)m 为何值时,函数的图象经过点(0,-2)?(3)m 为何值时,函数的图象和直线y=-x 平行?(4)m 为何值时,y 随x 的增大而减小?考点五、待定系数法——求函数解析式基本思路(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.直线y kx b =+与x 轴的交点A 坐标为__________与y 轴交点B 坐标为_________1、已知一次函数的图象过(3,-3)点,并且与直线y x =-43相交于x 轴上一点,求此一次函数的解析式。
2、已知一个正比例函数与一个一次函数交与点P (-2, 2),一次函数与x 轴、y 轴交于A 、B 两点,且B (0,6)(1)求两个函数的解析式(2)求△AOP 的面积考点六、一次函数图像的位置⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 1、若一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那( )A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <2.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .33、若一次函数y kx b =+的图象不经过第一象限,则K_______b_______ 考点七、一次函数的增减性k>0,y 随x 的增大而增大,x 最大y 最大,x 最小y 最大;k<0,y 随x 的增大而减小,x 最大y 最小,x 最小y 最大.1、在函数 y =kx (k <0)的图象上有A (1,y 1)、B (-1,y )、C (-2,y )三个点,则下列各式中正确( )A 、y 1<y 2<y 3B 、y 1<y 3<y 2C 、y 3<y 2<y 1D 、y 2<y 3<y2、已知一次函数1y ax =-,y 随x 的增大而减小,则它的大致图像为 ( )A B C D3、若一次函数时,当62,≤≤-+=x b kx y 函数值的围为911≤≤-y ,则此一次函数的解析式为考点八、倾斜度——K 的作用|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.典型例题a b +y y =kx +b y =ax +b y =cx +d ax+b<cx+dax+b>cx+d 1、结合图像,试说明三条直线K 值之间的大小关系______________考点九、两直线的位置关系(1)相交:两直线相交,则可将解析式联立形成方程组,方程组的解就是_______________(2)平行:两直线平行,则K 值_____________1、将直线32y x =-向下平移m 个单位得到的直线是( )A. 32y x m =-+ B . 32y x m =-- C . 3()2y x m =+- D . 3()2y x m =--2、已知直线111:b x k y l +=经过点(-1,6)和(1,2),它和x 轴、y 轴分别交于B 和A ;直线212:b x k y l +=经过点(2,-4)和(0,-3),它和x 轴、y 轴的交点分别是D 和C 。
(1)求直线1l 和2l 的解析式;(2)求四边形ABCD 的面积;(3)设直线1l 与2l 交于点P ,求△PBC 的面积。
考点十、用函数的观点看方程(组)、不等式(1)一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.(2)一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值围.(3)一次函数与二元一次方程组①以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bc x b a +-的图象相同. ②二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b c x b a +-和y=2222b c x b a +-的图象交点1、如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解 集是2、直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标中图像的位置如图所示,则关于x 的不等式21k x k x b ≥+的解集为考点十一:综合性问题(调运问题) A 市和B 市分别库存某种机器12台和6台,现决定支援给C 市10台和D 市8台.•已知从A 市调运一台机器到C 市和D 市的运费分别为400元和800元;从B 市调运一台机器到C 市和D 市的运费分别为300元和500元.(1)设B 市运往C 市机器x 台,•求总运费W (元)关于x 的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?【设计方案类】(2013•)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.空调 彩电进价(元/台) 5400 3500售价(元/台) 6100 3900设商场计划购进空调x 台,空调和彩电全部销售后商场获得的利润为y 元.(1)试写出y 与x 的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?(分类讨论)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;x y3-1l 2l 1O方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.y(元)和蔬菜加工(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用1y(元)关于x(个)的函数关系式;厂自己加工制作纸箱的费用2(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.。