浙江省高等数学竞赛试题与答案
2012浙江省高等数学微积分竞赛(经管类)含答案.

2012浙江省高等数学(微积分)竞赛试题经管类一、计算题(每小题14分,满分70分)1求极限lim log ()abx x x x →+∞+。
2.设()sin ax f x e bx =(,a b R ∈为常数),求()(0)n f 。
装 订 线3.计算 0sin d n x x x π⎰(n 为正整数)。
4.求积分2241d 1x x x x+++⎰5.设函数21()2af x x x=+,0x >,常数0a >,试求最小的常数a ,使得()6f x ≥。
二、(满分20分)证明:111ln 1lnni n n n i =+<<+∑,n +∈三、(满分20分)求2211(21)2nn nn C n ∞=-∑的值。
四、(满分20分)在草地中间有一个半径为R 的圆形池塘,池塘边拴着一只山羊,拴山羊的绳子长为,(02)kR k <<,求山羊能吃到草的草地面积。
五、(满分20分)(1)求极限lim 2coscos cos 482n n n πππ→∞(2)证明2π=经管类一、计算题 1、若a b ≥l i m l o g (a b x x x x →+∞+l i m l o g(1)l i m l o g (1a b ab a x xx x x x a x a --→+∞→+∞=+=++= 同理,当a b <时,l i m l o ga b x x x x →+∞+b=,所以l i m l o g a b x x x x →+∞+m a x (a b = 2、解:()sin cos ax ax f x ae bx be bx e bx bx ⎫'=+=+⎪⎭)()cos sin sin cos sin ax e bx bx bx θθθ=+=+arcsin θ⎛⎫==⎝同理)()sin()cos()f x ea bxb bx θθ''=+++22()sin(2)ax a b e bx θ=++可得()()()()()()/2/222()22sin()0sin()n n nax n f x a b e bx n f a b n θθ=++⇒=+3、解:sin d n x x x π⎰()011sin sin nnj j j j x x dx x j xdx ππππππ-====+-∑∑⎰⎰()()201sin d 21212nj n x x x j n n n n n n πππππ==+-=++-=+∑⎰4、解:2442222121(1)(1)x x x x x x x x x ++=++-=+++-()()22242221111111d d d 121121/23/41/23/4x x x x x x x x x x x x ⎛⎫+⎛⎫∴=+=+ ⎪ ⎪ ⎪++++-+⎝⎭++-+⎝⎭⎰⎰⎰1r c t a r C =5、解:2()0a f x x x '=-=0x = 032()10a f x x ''=+> ()f x ∴f==6= 即8a =时 ()6f x ≥,且在02x =时,(2)6f = 所以min 8a =二、证明:显然11111d d j j jj x x x j x+-<<⎰⎰ 2j ≥1 1122111111d 1d 1ln nn n j n j j j j x x n j j x x -===∴=+<+=+=+∑∑∑⎰⎰另一方面111111111111d ln nn n j j j j j x n j jn x n n --+====+>+=+∑∑∑⎰三、解:[]2222221221(2)!(22)!(22)!1(21)2(21)2(!)2!(1)!22(1)!nn n n n n n n n C n n n n n nn ----===---- 而2212(21)122n n n n -=- 122222222111(21)222nn nn n n nn n C C C n ---∴=-- 而22102nn n C → ∴原级数1=四、解:以过拴羊点与池塘圆心为x 轴,拴山羊点为原点,则池塘边界圆为222()x R y R -+=而羊能跑的最大圆周为2222x y k R +=,易知在22R x k =时,两圆有两个交点2222012d 2R k S k R x π∴=+⎰222222arcsin (arcsin 22x x R R k R k R x R R k kR R π-⎛⎫=+-- ⎪⎝⎭2222arcsin 22k k R k R π=+222221arcsin 14222k k R R R π⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭2222222arcsin arcsin 12222k k k R R k R R ππ⎛⎫=+-- ⎪⎝⎭五(1)解:cos cos cos cos cos cos sin /sin 48248222n n n n n πππππππ=1121111cos cos cos sin cos sin 4822442sin 2sin 2sin 222n n n n n n nn ππππππππ----===∴原极限22lim2sin2n n nππ→∞==(2)cos4π=c o s 8π===c o s 2n π==2cos cos cos 482n ππππ==书中横卧着整个过去的灵魂——卡莱尔人的影响短暂而微弱,书的影响则广泛而深远——普希金人离开了书,如同离开空气一样不能生活——科洛廖夫书不仅是生活,而且是现在、过去和未来文化生活的源泉——库法耶夫书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者———史美尔斯书籍便是这种改造灵魂的工具。
2010年浙江省高等数学竞赛试题与答案(共4份)

试题共四套:数学类、工科类、经管类、文专类2010浙江省大学生高等数学(微积分)竞赛试题(数学类)一、计算题(每小题14分,满分70分)1.求极限1lim 2n →+∞+⎦2.计算()22222exp 21R x xy y dxdy ρρ⎡⎤-+⎢⎥--⎢⎥⎣⎦⎰⎰. 其中01ρ≤< 3.请用,a b 描述圆 222x y y +≤ 落在椭圆 22221x y a b+= 内的充分必要条件,并求此时椭圆的最小面积。
4.已知分段光滑的简单闭曲线Γ(约当曲线)落在平面π:10ax by cz +++=上,设Γ在π上围成的面积为A ,求()()()bz cy dx cx az dy ay bx dz ax by czΓ-+-+-++⎰其中n Γ与的方向成右手系。
5.设f 连续,满足()()() 22 02exp xf x x x t f t dt =--⎰且()11/f e =,求()()1n f 的值。
二、(满分20)定义数列{}n a 如下:{},,max ,211011dx x a a a n n ⎰-==,4,3,2=n ,求n n a ∞→lim 。
三、(满分20分)设函数)(2R C f ∈,且0)(lim =∞→x f x ,1)(≤''x f ,证明:0)(lim ='∞→x f x 。
四、(满分20分)设非负函数f 在[0,1]上满足)()()(,,y f x f y x f y x +≥+∀且1)1(=f ,证明:(1)]1,0[,2)(∈≤x x x f (2)21)(1≤⎰dx x f 五、(满分20分)设全体正整数集合为+N ,若集合+⊂N G 对加法封闭(即G y x G y x ∈+⇒∈∀,),且G 内所有元素的最大公约数为1,证明:存在正整数N ,当正整数n >N 时,G n ∈(工科类)一、计算题(每小题14分,满分70分)1.求极限1lim 2n →+∞+⎦2.计算()() +22 122dxx x x ∞-∞+-+⎰3.设ABC ∆为锐角三角形,求sin sin sin cos cos cos A B C A B C ++---的最大值和最小值。
2015浙江省高等数学竞赛试题(答案)

2015浙江省高等数学竞赛试题答案一、计算题:(每小题14分,满分70分)1.求极限201cos cos 2lim x x xx→-。
解: 0sin cos 22cos sin 2lim 2x x x x xx→+=20sin cos 24cos sin lim 2x x x x xx→+=20sin (cos 24cos )lim 2x x x x x →+=52=2.求不定积分221(4)x dx x x ++⎰ 解:22111()44x dx x x +=-+⎰222111)444(4)4(4)x dx x x x x =+--++⎰ 22ln 11)444(4)4(4)x x dx x x x =-+--++⎰2arctan ln 1ln(4)24488x x x C x +=---+3.设1()ln()xf x t x dt =+⎰,求(1)f '的值。
解:令u t x =+211()ln()ln()x xxf x t x dt u du +=+=⎰⎰()2ln 2ln(1)f x x x '=-+ (1)2ln 2ln 2ln 2f '=-=4.已知()y y x =由方程31xye y +=确定,求0x dy dx= 。
解:2()30xye y xy y y ''++=23xyxy ye y xe y '=-+2033xy xyx ye e y y y='=-=- 因为当0x =时0y = 所以0x y ='=-∞5.求极限 221limnn k kn k→+∞=+∑。
解:222111lim lim 1()nnn n k k kk n k n k n n→+∞→+∞===++∑∑ 由定积分定义知,极限可以变为11220011ln(1)ln 2122x dx x x =+=+⎰二、(满分20分)设数列{}n a 为单调递增的正数列,试讨论极限1/lim n a nn a →∞解:当{}n a 有界时,lim n n a →∞一定存在,设lim n n a a →∞=,则11/lim na ann a a→∞=当{}n a 无界时,lim n n a →∞=+∞,1ln 1/0lim lim lim 1n n n nn na a a a a a n n n n a eee ''→∞→∞→∞====三、(满分20分)已知面积为S 的直角三角形绕其斜边旋转一周所得的旋转体体积为V ,求V解: 213V ah π=因为211sin cos 22ah S a θθ== h ⇒== 2)32V ππθ⇒=<<所以当4πθ=时 322max 3V S π=四、求定积分220sin 1cos x xdx x π+⎰ 解: 220sin 1cos x xdx xπ+⎰ 2220sin sin 1cos 1cos x x x x dx dx x x πππ-=+++⎰⎰ 22sin 1cos x x dx x ππ-+⎰20()sin()1cos ()u x u u du u πππππ=--++−−−→++⎰ 20()sin 1cos u u du u ππ+=+⎰ 因此220sin 1cos x x dx xπ+⎰=2200sin sin 21cos 1cos x x xdx dx x x πππ+++⎰⎰ 20sin 1cos x x dx x π+⎰02()sin()1cos ()t xt t dt t πππππ=---−−−→-+-⎰20()sin 1cos t tdt tππ-=+⎰2200sin sin 1cos 21cos x x xdx dx x x πππ⇒=++⎰⎰20arctan cos 24x πππ=-=所以2220sin 1cos x x dx xππ=+⎰五、(满分20分)证明:23ln(1)(1)23x x x x x +≤-+>- 。
浙江省高中数学竞赛(a卷)参考答案

浙江省高中数学竞赛(a卷)参考答案2007年浙江省高中数学竞赛(A卷)参考答案一、选择题1.如果23()1log 2log 9log 64x x x f x =-+-,则使()0f x <的x 的取值范围为( B )A. 01x << B. 813x << C. 1x <<+∞ D. 8 3x <<+∞ 解:显然0x >,且1x ≠。
23()1log 2log 9log 64x x x f x =-+-1log 2log 3log 4x x x =-+-3log 8x x =。
要使()0f x <。
当1x >时,318x <,即813x <<;当01x <<时,318x >,此时无解。
由此可得,使()0f x <的x 的取值范围为813x <<。
2.已知集合{}c o s 22)s i n A x x x xR =++-+>∈,{}sin cos ,B x x x x R =≥∈,则A B ?=( C )A. 4xx ππ??<<B. RC. ?D. 2(21),4xk x k k πππ??+<<+∈Z解:cos 22(11)0x x ++->2sin (10x x ?-+(sin 1)0x x ?-<没有实数x 可以使上述不等式成立。
故A =?。
从而有A B ?=?。
3.以( B )A. 2B. 3C. 4D. 6解:以这些边为三角形仅有四种:(1,1,1),,,。
固定四面体的一面作为底面:当底面的三边为(1,1,1)时,另外三边的取法只有一种情况,即;当底面的三边为时,另外三边的取法有两种情形,即,。
其余情形得到的四面体均在上述情形中。
由此可知,四面体个数有3个。
4.从1至169的自然数中任意取出3个数构成以整数为公比的递增等比数列的取法有( C )种。
浙江省大学高等数学(微积分)竞赛试题及解答

20####省高等数学〔微积分〕竞赛试题与解答一.计算题1. 求()1lim 2x x x e x →∞⎡⎤-+⎢⎥⎣⎦. 解法一 令1t x =,原式011lim 2t t e t t →⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦ ()0211lim t t t e t→-+= ()0lim 211t t t e →=+=; 解法二 原式112lim 1x x x e x e x -→∞⎛⎫=-+ ⎪⎝⎭ 121lim 1xx e xx-→∞-+= 122221lim 1x x e xx x -→∞-+=-1lim 21x x e -→∞⎛⎫=-= ⎪⎝⎭. 2. 求()()2ln 2ln 132x x dx x x +-+++⎰. 解:原式()()()11ln 2ln 112x x dx x x ⎛⎫=+-+- ⎪++⎝⎭⎰ ()()()()()()ln 2ln 1ln 2ln 1x x d x x =-+-++-+⎰()()21ln 2ln 12x x C =-+-++⎡⎤⎣⎦. 3. 求曲线222,arctan ,y x t t y t e e ⎧=-⎪⎨+=⎪⎩在0t =处的切线方程.解:当0t=时,()00x =,()02y =, 由22x t t =-,22dx t dt=-, 02t dx dt ==-, 由2arctan y y t e e +=,21arctan 01y y t y e y t ''+⋅+=+, 该式中令0t=,2y =, 解出()2020t dy y dt e='==-, 因此201t dy dx e==, 所求曲线()y f x =在0t =处的切线方程为()2120y x e-=-, 即212y x e=+. 4. 设()f x =,求()()10f x .解:()()()112211f x x x -==+-+ ()()12f x f x =+,()()1121112f x x -'=+, ()()1221111122f x x -⎛⎫''=-+ ⎪⎝⎭, ,()()()1101021111191222f x x -⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,()()1122112f x x --'=-+, ()()1222111122f x x --⎛⎫''=---+ ⎪⎝⎭, ,()()()1101022111191222f x x --⎛⎫⎛⎫=-----+ ⎪ ⎪⎝⎭⎝⎭, ()()()()()()10101012f x f x f x =+()()()()()()91019212210101113171131719122x x ----=⋅+-⋅⋅+()192101317191121x x -⋅⎛⎫=-++ ⎪+⎝⎭. 二.设()36xx f x e =-,问()0f x =有几个实根?并说明理由. 解:()22xx f x e '=-, ()x f x e x ''=-,显然()0x f x e x ''=->,(),x ∈-∞+∞,()f x '在(),-∞+∞上严格递增;()11102f e '-=-<,()010f '=>, 由零点定理,存在唯一()01,0x ∈-,使得()00f x '=,即0x 为()f x 的唯一的驻点. 同时,0x 为()f x 在(),-∞+∞内唯一的极小值点,也是最小值点,又在()1,0-,()306x x f x e =->, 故方程()0f x =在(),-∞+∞内无实根.三.已知)lim x ax b →∞-=,求a ,b 的解. 解:由条件,可得)10limxax bx→∞=--limxa→∞⎫=-⎪⎭1a=-,于是1a=,从而)limxb x→∞=-lim1xx→∞⎫=-⎪⎭221332211lim1111111xxx xx x x x→∞⎛⎫+⎪⎝⎭=⎛⎫⎛⎫++++++⎪ ⎪⎝⎭⎝⎭13=.四.求由0y=,y=y=围成的平面图形D的面积与D绕x轴旋转一周所得旋转体体积.解:y=y=的交点坐标为2x e=,1y=,在()20,e内>所以D的面积2201e eA dxe=-⎰⎰()22321121ln132eex x xe=⋅--()2136e=-;或者()1222yA e e y dy=-⎰122301123y e e y ⎛⎫=- ⎪⎝⎭ ()2136e =-; D 绕x 轴旋转一周所得的旋转体体积2222011ln 4e e x V dx xdx e ππ=-⎰⎰ ()221ln ln 2224e e x x x x ππ=--+⎡⎤⎣⎦2π=;或者()122202y Vy e e y dy π=-⎰ 12202y yde e ππ=-⎰ 12201222y y e e πππ⎛⎫=--= ⎪⎝⎭. 五.设()f x 有连续的二阶导数,证明:()()()()000xf x f f x tf x t dt '''=++-⎰. 证明:因为()0x tf x t dt ''-⎰ ()()0x td f x t '=--⎰ ()()00xxf f x t dt ''=-+-⎰ ()()()00xd xf f x t dt dt'=-+--⎰ ()()()00xf f f x '=--+,所以()()()()000xf x f f x tf x t dt '''=++-⎰. 六.证明:(),x ∀∈-∞+∞,sin sin2sin a x b x x +≤的充分必要条件为21a b +≤. 证明:必要性 设sin sin2sin a x b x x +≤,两边分别约去sin 0x ≠,由此,得2cos 1a b x +≤,令0x →,取极限,得21a b +≤, 在2cos 1a b x +≤中,令x π→,取极限得21a b -+≤,当a ,b 同号时,221a b a b +=+≤,当a ,b 异号时,221a b a b +=-≤. 充分性 设21a b +≤,因为2cos 21a b x a b +≤+≤, 两边同时乘以sin x , 所以sin sin2sin a x b x x +≤.。
浙江省高等数学竞赛试题与答案

(2)式乘 2 减(1)得 4 2( y3 − 2 2x3 ) = 0 ,即 y = 2x ,因此再由(1)式,得
fx (x,
y)
= 16x(x2
−
1) 2
=
0
,即
x1
=
0,
x2
=
2 2
,
x3
=
−
2 ,解得 2
⎧ ⎨ ⎩
x1 y1
= =
0 0
,
⎧ ⎪ ⎨ ⎩⎪
x2 y2
= =
2 2 1
,
⎧ ⎪ ⎨ ⎪⎩
( ) ∑ 解
设
1− x2
−1 2
=
∞
bn x2n ,
则因
n=0
1
(1
−
t
)−
1 2
=1−
1
t
+
−
1 2
(−
1 2
−1)
t2
+ L+ (−1)m
−
1 2
(−
1 2
−1)L(−
1 2
− m +1)
tm
+L
2
2!
m!
( ) 1− x2
−1 2
=
1−
1
x2
+
−
1 2
(−
1 2
−1)
x4
+L+
(−1)m
−
− x2 2ax
−
y2
(a
>
0
)在
yoz
平面上的投影曲线为 Γ yz
,计算
∫ ⎛ 4a2 − z2
⎜ ⎝ Γ yz
2012年浙江省高等数学(微积分)竞赛试题及答案 工科类

2012年浙江省高等数学(微积分)竞赛试题 工科类 一:计算题(每小题14分,共70分)1:计算:()+lim log +a ba n x x →∞2设函数f :R R →可导,且,x y R ∀∈,满足:()()+++f x y f x y xy ≥,求()f x 的表达式。
3计算: 0sin ,n x xdx n Z π*∈⎰4计算:{}-min ,2Dx y x y dxdy ⎰⎰,其中D 是2=y x 和2=x y 所围成的封闭区域。
5求曲线{33=cos =sin x a y a θθ()0,>0a θπ≤≤的形心。
二:(本题满分20分)证明:=111+ln <<1+ln ,ni n n n Z n i *∈∑三:(本题满分20分)设2:u RR →,且u 具有二阶连续偏导,求证当u 可以表示成:()()(),=u x y f x f y 的充分必要条件是:2=u u uu x y y y∂∂∂∂∂∂∂ 。
四:(本题满分20分)在空旷的草地上有一个地面半径为3的圆柱体,在墙角栓有一头山羊,其绳长为π,求山羊能吃到草地的面积。
五:(本题满分20分)求证:()-1=1=111-1C =,k nn k nk k n Z k k*∈∑∑参考答案一、计算题1、若a b ≥ l i m l o g(a bx x x x →+∞+l i m l o g(1)l i m l o g (1a b ab ax xx x x x a x a --→+∞→+∞=+=++= 同理,当a b <时,lim log ()a b x x x x →+∞+b =, 所以lim log ()a bx x x x →+∞+max(,)a b =2、解:由假设,0y ∀>,有()()1f x y f x x y+-≥+ f 可导()1f x x +'⇒≥+同理()1()1f x x f x x -''≤+⇒=+ 2()/2f x x x c =++ 3、解:sin d n x x x π⎰()011sin sin nnj j j j x x dx x j xdx ππππππ-====+-∑∑⎰⎰()()201sin d 21212nj n x x x j n n n n n n πππππ==+-=++-=+∑⎰4、解:(){}(){}12,1,,/2,01/2D x y x y x D x y x y x x =≤≤≤≤=≤≤≤≤(){}(){}2234,,1/21,,/2,01/2D x y xy x x D x y xy x x =≤≤≤≤=≤≤≤≤原积分12()d d ()d d D D y x x x y x y x x y =-+-⎰⎰⎰⎰34()d d ()d d D D x y x x y x y y x y +-+-⎰⎰⎰⎰211102d )d d ()d xxxx y x x y x x y x y =-+-⎰⎰⎰21112221002d ()d d ()2d xx xx x y x x y x x y y y +-+-⎰⎰⎰⎰11341456142210021211111()678851232x x x x x x x =-++-++146720112()24621x x x +-+111124724532245=++⨯⨯⨯⨯112533216642117920++=⨯⨯ 5、解:/0c LLx xds ds ==⎰⎰,d /d c LLy y s s =⎰⎰而d 3sin cos d s a θθθθ== 2d 3sin cos d sin cos 3Ls a ba d a ππθθθθθθ/===⎰⎰⎰/2324206d sin 3sin cos d 6sin cos d 5Ly s a x a a a ππθθθθθθθ===⎰⎰⎰0c x ∴= 25c y a =二、证明:显然11111d d j j jj x x x jx +-<<⎰⎰ 2j ≥1 1122111111d 1d 1ln nn n j n j j j j x x n j j x x -===∴=+<+=+=+∑∑∑⎰⎰另一方面111111111111d ln nn n j j j j j x n j jn x n n --+====+>+=+∑∑∑⎰三、证明:()()u f x g y =时,显然有xy x y uu u u = 反之,若xy x y uu u u =成立,即有2()/()0xxy x y y u uu u u u u-== 1/()x u u f x ⇒= 也即1121ln ()d ()()()u f x x g y f x g y =+=+⎰ ()()u f x g y ∴=四、解:(方法一)以圆柱形旁子的圆心为原点,拴羊点在x 轴上3x =点,则羊跑最远的曲线在3x <的区域内是渐开线 即 3(cos (/3)sin )x t t t π=-- 3(sin (/3)cos )y t t t π=+- 记在3x <山羊能吃到草的草地面积为1S3/30213/2/32d 29sin d 2(3sin (3)cos )(3)cos d S y x t t t t t t t t ππππ=-=+--⎰⎰⎰/32029sin d t t π-⎰/32223(3)sin cos (3)cos d t t t t t t πππ⎡⎤=-+-⎣⎦⎰/32029sin d t t π-⎰/322013(3)sin (3)(sin 2)2t t t t t πππ⎡⎤=-+-+⎢⎥⎣⎦/32016(3)(sin 2)9sin d 2t t t t t ππ⎡⎤+-+-⎢⎥⎣⎦⎰()/3/3/322000191133cos 2sin 29cos 2d 2222t t t t t t t t ππππ⎛⎫⎛⎫⎛⎫=----+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰33/319sin 2349t t ππ⎛⎫=+-=⎪⎝⎭所以山羊能吃到草的草地面积333119218S πππ=+= (方法二) 山羊能吃到草的草地面积S 可表示为一半圆与绳子绕向房子所能到达的面积1S 和 绳子绕向房子时转过θ∆ 其扫过的面积可近似为扇形22r θ∆()2/33103/9S d ππθθπ=-=⎰所以311/18S π=五、证明:111110011111(1)(1)d (1)d nn n k k k k k k k knn n k k k C C t t C t t k t ---===--=-=-∑∑∑⎰⎰ 1100(1)11(1)d d n n t t t t t t ----==⎰⎰101d 1nx x x -=-⎰ 而11100111d d 1nnn k k k t t t t k t -==1-==-∑∑⎰⎰ ∴等式成立。
2024年全国高中数学联赛(浙江预赛)试题(含答案)

2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分一、填空题(每小题8分,共计96分)1.设集合10,21x A xx ⎧−⎫=≤⎨⎬−⎩⎭集合2{20}B x x x m =++≤。
若A B ⊆,则实数m 的取值范围为 。
2.设函数{}{}:1,2,32,3,4f → 满足 ()()1()ff x f x −=,则这样的函数有_______个。
3.函数22sin sin 1sin 1x x y x ++=+的最大值与最小值之积为 。
4.已知数列{}n x满足:11,12n x x x n +==≥,则通项n x =__________。
5 .已知四面体A BCD −的外接球半径为1,1,60BC BDC =∠=,则球心到平面BDC 的距离为______________。
6.已知复数z 满足24510(1)1zz =−=,则z =__________________。
7.已知平面上单位向量,a b 垂直,c 为任意单位向量,且存在(0,1)t ∈,使得向量(1)a t b +−与向量c a −垂直,则a b c +−的最小值为__________________________。
8. 若对所有大于2024的正整数n ,成立202420240, ii n i i na C a ==∈∑,则12024a a +=_________。
9.设实数,,(0,2]a b c ∈,且3b a ≥或43a b +≤,则max{,,42}b a c b c −−−的最小值为 ___ __ __。
10.在平面直角坐标系xOy 上,椭圆E 的方程为221124x y +=,1F 为E 的左焦点;圆C 的方程为222())x a y b r −+−=( ,A 为C 的圆心。
直线l 与椭圆E 和圆C 相切于同一点(3,1)P 。
则当1OAF ∠最大时,实数r =_____________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f y ( x, y ) = 4 y 3 − 2 2 x − 2 y = 0 (2)
(2)式乘 2 减(1)得 4 2( y − 2 2 x ) = 0 ,即 y =
3 3
2 x ,因此再由(1)式,得
1 2 2 ,解得 , x3 = − f x ( x, y ) = 16 x( x 2 − ) = 0 ,即 x1 = 0, x2 = 2 2 2
围的平面图形是 D = {( y, z ) | 2a − 2a a − y ≤ z ≤
2 2 2
2a 2 + 2a a 2 − y 2 }
由格林公式得
⎛ 4a 2 − z 2 2 ⎞ ⎛2 ⎞ y + y 2 z 2 ⎟ d y + ⎜ y 3 z + e z sin z ⎟ d z ⎜ ∫ 2a ⎝3 ⎠ ⎠ Γ yz ⎝
∞
n +1
3
三.设 sin x d x = a ,求
2 0
∫
2
∫∫ sin( x − y)
D
2ห้องสมุดไป่ตู้
d x d y ,其中 D = {( x, y ) | x ≤ 1, y ≤ 1} 。
1 dudv , 2
2
解 令 u = x − y , v = x + y ,则 d x d y =
2 ∫∫ sin( x − y) d x d y = ∫ d u
=e
x→0
lim
e x + 2 e 2 x + 3 e3 x 3cos x
= e2
2.计算
∫ cos(3 + x) sin(5 + x) d x 。
1 − cos 2 1 + cos 2 ,则因 , u2 = − sin 2 sin 2
1
解 记 u = tan( x + 4) , u1 = −
cos 2 −2 u1 − u2 1 1 −2 cot 2 sin 2 − = = = u − u1 u − u2 (u − u1 )(u − u2 ) (u − u1 )(u − u2 ) (u − u1 )(u − u2 )
⎧ 2 2 ⎧ ⎧ x1 = 0 ⎪ x2 = ⎪ x3 = − ,⎨ ⎨ 2 2 ,⎨ ⎩ y1 = 0 ⎪ y = 1 ⎪ y = −1 ⎩ 2 ⎩ 3
因此驻点为 (0, 0), (
2 2 ,1), (− , −1) 。易见 2 2
f xx ( x, y ) = 48 x 2 − 4 , f xy ( x, y ) = −2 2 , f yy ( x, y ) = 12 y 2 − 2
3.设 f ( x) = x arcsin x ,求 f
3 (2008)
(0) 。
解
设 1− x
(
1 2 −2
)
= ∑ bn x 2 n , 则因
n=0
∞
1
(1 − t )
−
1 2
1 = 1− t + 2
(1 − x )
1 2 −2
1 1 1 1 1 − (− − 1) − (− − 1) L (− − m + 1) 2 2 2 t 2 + L + (−1) m 2 2 tm +L m! 2! 1 1 1 1 1 − (− − 1) − (− − 1) L (− − m + 1) 1 2 = 1 − x2 + 2 2 x 4 + L + (−1) m 2 2 x2m + L m! 2 2!
I
∫∫∫ ρ d x d y d z + ∫∫∫ d x d y d z
I II
0 2
II
知,
∫∫∫ ρ z d x d y d z + ∫∫∫ z d x d y d z = 0 ,
I II
0
⎡ (1 + z ) 4 (1 + z )3 ⎤ + π z d x d y d z z (1 z ) d z ⎢ 4 − 3 ⎥ ∫∫∫ ∫ ⎦ −1 = 1 II −1 =− 1 =−⎣ 即ρ =− 1 2 3 2 zd xd yd z ⎡z z ⎤ ∫∫∫ π ∫ z (1 + z ) d z ⎢2 − 3⎥ I 0 ⎣ ⎦0
当 (u , v) = (0, t ) 即 ( x, y ) = (t , −t 2) 时, f (t , −t 2) = 8t > 0
2
当 (u , v) = ( , 0) 即 ( x, y ) = ( t ,
2
t 2
1 2
2 1 2 1 ) = (t 2 − 4)t 2 < 0 (0 < t < 2) t ) 时, f ( t , t 2 2 2 2
判别式为 A = f xx ( x, y ) f yy ( x, y ) − f xy ( x, y ) = (48 x − 4)(12 y − 2) − 8
2 2 2
当 ( x, y ) = (0, 0), (
2 2 ,1), (− , −1) 时,判别式分别为 A = 0, 192, 192 ,因 2 2
2 2 ⎡⎛ 2 ⎞ ⎤ ⎞ ⎛ 4a − z 2 y + y2 z2 ⎟ ⎥ d y d z = ∫∫ ⎢⎜ y 3 z + e z sin z ⎟ − ⎜ ⎠ y ⎝ 2a ⎢⎝ 3 ⎥ ⎠z ⎦ D ⎣
1 1 a = ∫∫ zy 2 d y d z = ∫ y 2 d y a D a −a
2 a2 + 2 a a2 − y2
2
f xx ( xi , yi ) = 20 > 0(i = 2,3) ,故当 ( x, y ) = (
2 2 ,1), (− , −1) 时, 2 2
f ( x, y ) 分别取极小值,且极小值都是 −2 。
下面证明当 f (0, 0) = 0 不是 f ( x, y ) 的极值。为此,令 x = u + v , y =
x 2 = a 2 ± 2a a 2 − y 2 + a 2 − y 2 ,即 x 2 = 2a 2 − y 2 ± 2a a 2 − y 2 ,
综上, 4a − z − y = 2a − y ± 2a a − y ,即 2a − z = ±2a a − y ,即
2 2 2 2 2 2 2 2 2 2 2
2(u − v) ,则
f ( x, y ) = 4(u + v)4 + 4(u − v)4 − 2(u + v)2 − 4(u 2 − v 2 ) − 2(u − v) 2
= 4(u + v) 4 + 4(u − v) 4 − 8u 2 = 8(u 4 + 6u 2 v 2 + v 4 − u 2 ) = 8(u 4 + 6u 2 v 2 + v 4 − u 2 ) = 8(u 2 − 1)u 2 + 48u 2 v 2 + 6v 4
( a > 0 )在 yoz 平面上的投影曲线为 Γ yz ,计算
⎛ 4a 2 − z 2 2 ⎛2 ⎞ 2 2⎞ + y y z ⎟ d y + ⎜ y 3 z + e z sin z ⎟ d z ⎜ ∫ 2a ⎝3 ⎠ ⎠ Γ yz ⎝
2 2 2 2 2 2 2 ⎧ ⎧ ⎧ x 2 = 4a 2 − z 2 − y 2 ⎪ ⎪ x = 4a − z − y ⎪ z = 4a − x − y 化为 L : ⎨ 即L:⎨ , 解L:⎨ 2 2 2 2 2 2 2 − + = x a y a ( ) x = a ± a − y ⎪ ⎪ ⎪ ⎩ ⎩ x + y = 2ax ⎩
2
5.假设立体 I 由 1 − z = x + y 与 z = 0 围成,密度为 ρ ;立体 II 由 1 + z =
x2 + y 2 与
z = 0 围成,密度为 1。若立体 I 和立体 II 组成的立体其重心位于原点 (0, 0, 0) ,求 ρ 的值。
解 由0 =
∫∫∫ ρ z d x d y d z + ∫∫∫ z d x d y d z
(2004)
= 2008 ⋅ 2007 ⋅ 2006
4 4
2003!! 2004! = 2008 ⋅ 2007 ⋅ 2006 ⋅ (2003!!) 2 2004!!
2 2
4.求 f ( x, y ) = 4 x + y − 2 x − 2 2 xy − y 的极值。 解 f x ( x, y ) = 16 x − 4 x − 2 2 y = 0 (1)
xπ xπ 1 − x2 ′ 记 g ( x) = sin cos , x > 1 ,则因 g ( x) = π < 0 ,故 an +1 < an ,因此 2 2 2 2 1+ x (1 + x ) 1 + x
∞ ∞ ∞ an 1 n3π (−1) an 收敛。因 lim = π ,∑ 发散,故 ∑ an 发散。因此 ∑ sin 条件收敛。 ∑ n →∞ 1 1 + n2 n =1 n =1 n =1 n n =1 n
故
∫ cos(3 + x) sin(5 + x) d x = ∫ sin 2( x + 4) + sin 2 d x
=∫
=
1
2
2 2 dt = ∫ du 2 2 2 2sin t cos t + (sin t + cos t ) sin 2 2u + (u + 1) sin 2
1 2 1 2 du = du ∫ ∫ 2 sin 2 sin 2 (u − u1 )(u − u2 ) u + u2 +1 sin 2 u − u2 1 ⎛ 1 1 ⎞ 1 ln = − +C ⎜ ⎟du = ∫ cos 2 ⎝ u − u2 u − u1 ⎠ cos 2 u − u1 1 + cos 2 1 sin 2 + C ln = cos 2 tan( x + 4) + 1 − cos 2 sin 2 tan( x + 4) +