《正弦定理2-1》(课件)
合集下载
高中数学 第二章 解三角形 2_1_1_2 正弦定理的变形及三角形面积公式课件 北师大版必修5

课堂探究 互动讲练 类型一 正弦定理的变形应用 [例 1] 在△ABC 中,B=30°,C=45°,c=1,求 b 及△ABC 外接圆的半径 R.
【解析】 已知 B=30°,C=45°,c=1,
由正弦定理,得sibnB=sincC=2R, 所以 b=cssiinnCB=1×sinsi4n53°0°= 22,
a2+b2-2abcosπ3=7, 所以a2+b2-ab=7,即(a+b)2-3ab=7, 所以(a+b)2=25,所以a+b=5.
方法归纳
(1)本题采用了整体代换的思想,把a+b,ab作为整体,求解
过程既方便又灵活.
(2)三角形面积公式有多种形式,根据题中的条件选择最合适
的面积公式.在解三角形中通常选用S=
=
40 6+
2=10(
6-
2) (km).
即 C 到灯塔 A 的距离为 10( 6- 2) km.
方法归纳
解三角形应用题常见的两种情况 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个 三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及两个(或两个 以上)三角形,这时需作出这些三角形,先解够条件的三角形,然 后逐步求出其他三角形中的解,有时需设出未知量,从几个三角 形中列出方程,解方程得出所要求的解.
(2)若 c= 7,且△ABC 的面积为323,求 a+b 的值.
【解析】
(1)因为
3a=2csinA,所以sianA=
2c 3.
由正弦定理知sianA=sincC,
所以sincC= 2c3,所以sinC=
3 2.
因为△ABC是锐角三角形,所以C=π3.
(2)因为c= 7,C=π3,
高中数学第二章解三角形2.1.1正弦定理课件北师大版必修5

中,
sin
=
sin
=
.
sin
【做一做1】
在△ABC 中,若 3a=2bsin A,则角 B 等于
.
解析:根据已知条件及正弦定理可知 3sin A=2sin Bsin A⇔
3
π
2π
3=2sin B⇔sin B= 2 ,所以角 B 为3 或 3 .
π
2π
答案:3 或 3
知识拓展1.正弦定理的证明
Bcos A,又 sin B≠0,则 sin A= 3cos A,即 tan A= 3,又△ABC 为锐角三
π
角形,所以 A= .
3
答案:(1)7∶5∶3 (2)A
探究一
探究二
探究三
探究二
探究四
思维辨析
利用正弦定理解三角形
【例2】 在△ABC中,
(1)若A=45°,B=30°,a=2,求b,c与C.
(2)若B=30°,b=5, c=5 3 ,求A,C与a.
分析:先根据三角形中解的个数的判断方法得出解的情况,再求
出各元素的值.
解:(1)由三角形内角和定理得,
C=180°-(A+B)=180°-(45°+30°)=105°.
sin
由正弦定理得,b=
sin
1
=
sin 105°=sin(60°+45°)=
(5)在△ABC中,若 cos = 1 + cos2 ,则△ABC为等腰三角形或直
角三角形. (
)
答案:(1)
(2)
(3)× (4)× (5)
探究一
探究二
探究一
探究三
探究四
思维辨析
人教版高中数学必修2《正弦定理》PPT课件

2.正弦定理的常见变形:
(1)a=2Rsin A,b=2Rsin B,c=2Rsin C(R 为△ABC 外接圆的半径).
(2)sin A=2aR,sin B=2bR,sin C=2cR(R 为△ABC 外接圆的半径).
(3)三角形的边长之比等于对应角的正弦比,即 a∶b∶c=sin A∶sin B∶sin C.
题型一 已知两角及一边解三角形
【学透用活】
[典例 1] (1)在△ABC 中,c= 3,A=75°,B=60°,则 b 等于 ( )
32 A. 2
3 B.2 2
3
6
C.2
D. 2
(2)在△ABC 中,已知 BC=12,A=60°,B=45°,则 AC=_________.
[解析] (1)因为 A=75°,B=60°,
[方法技巧] 判断三角形的形状,就是根据题目条件,分析其是不是等腰三角形、直角
三角形、等边三角形、等腰直角三角形、锐角三角形、钝角三角形等.利用正
弦定理判断三角形形状的方法如下:
(1)化边为角,走三角变形之路,常用的转化方式有:①a=2Rsin A,b=2Rsin
B,c=2Rsin
C(R
为△ABC
+ccos B=asin A,则△ABC 的形状为
()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不确定
解析:由射影定理得 bcos C+ccos B=a,则 a=asin A,于是 sin A= 1,即 A=90°,所以△ABC 的形状为直角三角形.
答案:B
[应用二] 设△ABC 的内角 A,B,C 所对应的边分别为 a,b,c.已知 bcos
形,故选 D.
答案:D
高二数学正弦定理2精选教学PPT课件

正弦定理: 在一个三角形中,各边和它所对 角的正弦的比相等,即
a b c sin A sin B sin C
思考: 正弦定理的基本作用是什么?
思考: 正弦定理的基本作用是什么? ①已知三角形的任意两角及其一边可 以求其他边,如 b sin A a sin B
思考: 正弦定理的基本作用是什么? ①已知三角形的任意两角及其一边可 以求其他边,如 b sin A a sin B ②已知三角形的任意两边与其中一边 的对角可以求其他角的正弦值,如 a sin A sin B b
湖南省长沙市一中卫星远程学校
课堂小结
2. 正弦定理的应用范围: ①已知两角和任一边,求其它两边及 一角; ②已知两边和其中一边对角,求另一 边的对角.
湖南省长沙市一中卫星远程学校
课后作业
1. 阅读必修5教材P.2到P.4; 2. 教材P.10习题1.1A组第1、2题.
湖南省长沙市一中卫星远程学校
思考:
∠C的大小与它的对边AB的长度 之间有怎样的数量关系? 显然,边AB的长度随着其对角 ∠C的大小的增大而增大. A
A C B
C
B
复习引入
如图,固定△ABC的边CB及∠B, 使边AC绕着顶点C转动.
思考:
∠C的大小与它的对边AB的长度 之间有怎样的数量关系? 显然,边AB的长度随着其对角 ∠C的大小的增大而增大. A 能否用一个等式把 这种关系精确地表示出 C 来? B
解三角求其他的边和角的过程叫作
解三角形.
讲解范例: 例1. 在△ABC中,已知A=32.0 , B=81.8 ,a=42.9cm,解三角形.
o o
练习: 在△ABC中,已知下列条件,解三角 形(角度精确到1 , 边长精确到1cm):
正弦定理课件.ppt

解三角形。
已知两边和其中一边 的对角,求其他边和角
解:由正弦定理 a b
sin A sin B
C
得sin B bsin A 16 3 sin30 3
16 3 16
16
a
16
2
A 300
所以B=60°,或B=120°
B
B 83
当B=60°时 C=90° c 32.
当B=120°时 C=30°
C ba
C ba
C
b
a
A
A B A B2 B1A
B
a<bsinA a=bsinA bsinA<a<b a≥b
无解
一解
两解
一解
2.A为钝角
C
a
b
A
B
C
a
b A
a>b 一解
a≤b 无解
A为直角时,与A为钝角相同, a>b时,一解; a≤b时,无解.
问题2 如图①所示,在Rt△ABC中,斜边AB是 △ABC外接圆的直径(设Rt△ABC外接圆的半 径为R),因此
如图:作AB上的高是CD,根
C
椐三角形的定义,得到
aE
b
CD asin B,CD bsin A
所以 a sin B bsin A B
D
A
得到 a b
c
sin A sin B
同理,作AE BC.有 b c
sin B sin C
a
b
c
sin A sin B sin C
1.1.1 正弦定理
(2)当 ABC是钝角三角形时,以上等式是否 仍然成立?
1.1 正弦定理
2.定理的推导
高中数学:11《正弦定理2》课件必修

详细描述
通过正弦定理,我们可以将三角形的面积表示为已知两边及夹角的函数,或者已 知三边的函数。这种方法在解决一些三角形面积问题时非常有效,特别是当已知 条件不足时。
解三角形
总结词
正弦定理是解三角形问题的重要工具,可以用于解决多种类 型的三角形问题,如求角度、求边长等。
详细描述
通过正弦定理,我们可以将三角形的角度或边长表示为已知 角度或边长的函数。这种方法在解决三角形问题时非常有效 ,特别是当已知条件不足时。
竞赛习题2
已知三角形ABC中,a=7, b=9, C=135°,求边b的大小 及角A的大小。
05
总结与反思
本节课的收获
掌握了正弦定理的基本概念和应用方法,能够运用正弦定理解决一些实际问题。
通过本节课的学习,对三角函数和三角形有了更深入的理解,提高了数学思维能力 。
学会了如何利用数学软件进行数值计算和图形绘制,提高了数学实验能力。
不足与反思
在解决一些复杂的实际问题时,对于 如何选择合适的角度和边长关系仍存 在困惑。
在课堂互动方面表现不够积极,需要 更加主动地参与课堂讨论和提问。
在运用正弦定理时,对于一些特殊情 况的处理不够熟练,需要加强练习。
下节课的预习建议
01
提前预习下一节内容《 余弦定理》,了解余弦 定理的基本概念和应用 方法。
实际应用
总结词
正弦定理在现实生活中有着广泛的应 用,如测量、建筑、航海等领域。
详细描述
正弦定理可以用于解决实际生活中与 角度和长度相关的问题,如测量山的 高度、建筑物的角度和长度等。此外 ,在航海和航空领域,正弦定理也常 被用于计算距离和角度。
03
正弦定理的拓展
定理的推广
推广到任意三角形
通过正弦定理,我们可以将三角形的面积表示为已知两边及夹角的函数,或者已 知三边的函数。这种方法在解决一些三角形面积问题时非常有效,特别是当已知 条件不足时。
解三角形
总结词
正弦定理是解三角形问题的重要工具,可以用于解决多种类 型的三角形问题,如求角度、求边长等。
详细描述
通过正弦定理,我们可以将三角形的角度或边长表示为已知 角度或边长的函数。这种方法在解决三角形问题时非常有效 ,特别是当已知条件不足时。
竞赛习题2
已知三角形ABC中,a=7, b=9, C=135°,求边b的大小 及角A的大小。
05
总结与反思
本节课的收获
掌握了正弦定理的基本概念和应用方法,能够运用正弦定理解决一些实际问题。
通过本节课的学习,对三角函数和三角形有了更深入的理解,提高了数学思维能力 。
学会了如何利用数学软件进行数值计算和图形绘制,提高了数学实验能力。
不足与反思
在解决一些复杂的实际问题时,对于 如何选择合适的角度和边长关系仍存 在困惑。
在课堂互动方面表现不够积极,需要 更加主动地参与课堂讨论和提问。
在运用正弦定理时,对于一些特殊情 况的处理不够熟练,需要加强练习。
下节课的预习建议
01
提前预习下一节内容《 余弦定理》,了解余弦 定理的基本概念和应用 方法。
实际应用
总结词
正弦定理在现实生活中有着广泛的应 用,如测量、建筑、航海等领域。
详细描述
正弦定理可以用于解决实际生活中与 角度和长度相关的问题,如测量山的 高度、建筑物的角度和长度等。此外 ,在航海和航空领域,正弦定理也常 被用于计算距离和角度。
03
正弦定理的拓展
定理的推广
推广到任意三角形
课件15:1.1.1 正弦定理(二)

转化为角的关系后,常利用三角变换公式进行变形、化 简,确定角的大小或关系,继而判断三角形的形状、证 明三角恒等式.
课堂小结 1.会用正弦定理的四个变形 (1)(角化边)sin A=2aR,sin B=2bR,sin C=2cR. (2)(边化角)a=2R sin A,b=2R sin B,c=2R sin C. (3)(边角互换)a∶b∶c=sin A∶sin B∶sin C.
sin
B=b
sin a
A=6sin 2
30°= 3
23,
又∵B∈(0°,180°),∴B1=60°,B2=120°.
当
B1=60°时,C1=90°,c1=a
sin sin
AC1=2
s3insi3n09°0°=4
3;
当
B2=120°时,C2=30°,c2=a
sin sin
AC2=2
s3insi3n03°0°=2
3<1,
所以当 B 为锐角时,满足 sin B=593的角有 60°<B<90°,
故对应的钝角 B 有 90°<B<120°,
也满足 A+B<180°,故三角形有两解.
3.三角形的面积公式
任意三角形的面积公式为:
(1)S△ABC=21bc sin A=
1 2ac sin B
1 = 2ab sin C
[提示] 可借助正弦定理把边化成角:2R sin A cos B= 2R sin B cos A,移项后就是一个三角恒等变换公式 sin A cos B-cos A sin B=0.
2.对三角形解的个数的判断 已知三角形的两角和任意一边,求另两边和另一角, 此时有唯一解,三角形被唯一确定.已知两边和其中 一边的对角,求其他的边和角,此时可能出现一解、 两解或无解的情况,三角形不能被唯一确定,现以 已知 a,b 和 A 解三角形为例说明.
课堂小结 1.会用正弦定理的四个变形 (1)(角化边)sin A=2aR,sin B=2bR,sin C=2cR. (2)(边化角)a=2R sin A,b=2R sin B,c=2R sin C. (3)(边角互换)a∶b∶c=sin A∶sin B∶sin C.
sin
B=b
sin a
A=6sin 2
30°= 3
23,
又∵B∈(0°,180°),∴B1=60°,B2=120°.
当
B1=60°时,C1=90°,c1=a
sin sin
AC1=2
s3insi3n09°0°=4
3;
当
B2=120°时,C2=30°,c2=a
sin sin
AC2=2
s3insi3n03°0°=2
3<1,
所以当 B 为锐角时,满足 sin B=593的角有 60°<B<90°,
故对应的钝角 B 有 90°<B<120°,
也满足 A+B<180°,故三角形有两解.
3.三角形的面积公式
任意三角形的面积公式为:
(1)S△ABC=21bc sin A=
1 2ac sin B
1 = 2ab sin C
[提示] 可借助正弦定理把边化成角:2R sin A cos B= 2R sin B cos A,移项后就是一个三角恒等变换公式 sin A cos B-cos A sin B=0.
2.对三角形解的个数的判断 已知三角形的两角和任意一边,求另两边和另一角, 此时有唯一解,三角形被唯一确定.已知两边和其中 一边的对角,求其他的边和角,此时可能出现一解、 两解或无解的情况,三角形不能被唯一确定,现以 已知 a,b 和 A 解三角形为例说明.
正弦定理和余弦定理ppt课件

总结词
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 4. 非等边三角形ABC的外 接圆的半径为2,最长边BC 2 3, 求sinB sinC的取值范围 .
例 5. 在ABC中,若 B 30,AB 2 3,AC 2,求ABC的面积 .
归纳:在△ABC中,已知a, b
和A时解三角形的各种情况:
归纳:在△ABC中,已知a, b
和A时解三角形的各种情况: 1. 当A为锐角时:
归纳:在△ABC中,已知a, b
和A时解三角形的各种情况:
1. 当A为锐角时:
C a
b
A
B
a<bsinA 无解
归纳:在△ABC中,已知a, b
和A时解三角形的各种情况:
Ca
b A
C
ba
B
AB
a≤b 无解
a > b 一解
练习:
在ABC中,a 2,b 2, 则A的取值范围是 ______ .
判断下列三角形有几解: (1) a 5,b 4, A 120; (2) a 7,b 14, A 150; (3) a 9,b 10, A 60; (4) a 50, b 72, A 135
正弦定理
一、复习旧知,以旧悟新:
正弦定理
a b c 2R sin A sin B sin C
正弦定理及正弦定理能够解决
的两类问题:
1. 两角和任意一边,求其它两边 和一角;
2. 两角和其中一边对角,求另一 边的对角,进而可求其它的边 和角 .
二、提出问题,自我练习:
二、提出问题,自我练习:
例 1. 判断下列三角形有几解: (1) a 10,b 20, A 30; (2) a 18,b 20, A 30; (3) a 24,b 20, A 30; (4) a 8, b 20, A 30
二、提出问题,自我练习:
例 1. 判断下列三角形有几解: (1) a 10,b 20, A 30; (2) a 18,b 20, A 30; (3) a 24,b 20, A 30; (4) a 8, b 20, A 30 若A 150呢?
1. 当A为锐角时:
C a
b
C ba
A
B
A
B
a<bsinA 无解 a=bsinA 一解
C ba a
A B2
B1
ห้องสมุดไป่ตู้
bsinA<a<b 两解
C ba a
A B2
B1
C
b
a
A
B
bsinA<a<b 两解 a ≥ b 一解
2. 当A为直角或钝角时:
2. 当A为直角或钝角时:
Ca
b
A
B
a≤b 无解
2. 当A为直角或钝角时: