最新第三章 二元合金的相结构与结晶 - 答案
第三章 合金的相结构和结晶

3.2 合金的相结构
固态合金中的相结构可分为固溶体和金属化 合物两大类。
3.2.1固溶体
合金的组元之间以不同比例相互混合后形 成的固相,其晶体结构与组成合金的某一组元 的相同,这种相称为固溶体。与固溶体结构相 同的组元为溶剂,另一组元为溶质。碳钢和合 金钢,均以固溶体为基体相。
一、固溶体的分类
1、按溶质原子在溶剂晶格中所占位置分类 置换固溶体和间隙固溶体
相图是表示在平衡条件下合金系中合金的状态与温 度、成分间关系的图解,也称为平衡图或状态图。 平衡是指在一定条件下合金系中参与相变过程的各 相的成分和质量分数不再变化所达到的一种状态。
一、二元相图的表示方法
合金存在的状态通常 由合金的成分、温度 和压力三个因素确定。 常压 表象点
二、二元合金相图的测定方法
第三章 二元合金的相结构与结晶
合金:指两种或两种以上的金属,或金属与非金属,经熔 炼或烧结,或用其他方法组合而成的具有金属特性的物质。 纯金属和合金的比较: 纯金属强度一般较低,不适合做结构材料 因此目前应用的金属材料绝大多数是合金,如应用最广泛的 碳钢和铸铁就是铁和碳的合金,黄铜就是铜和锌的合金。 合金性能优良的原因: 合金的相结构 合金的组织状态:合金相图
2、固溶体合金的结晶需要一定的温 度范围
固溶体合金的结晶需要在一定的温度范围内进行, 在此温度范围内的每一温度下,只能结晶出一定数 量的固相。随着温度的降低,固相的数量增加,同 时固相和液相的成分分别沿着固相线和液相线而连 续地改变,直至固相的成分与原合金的成分相同时, 才结晶完毕。这就意味着,固溶体合金在结晶时, 始终进行着溶质和溶剂原子的扩散过程,其中不但 包括液相和固相内部原子的扩散,而且包括固相与 液相通过界面进行原子的互扩散,这就需要足够长 的时间,才得以保证平衡结晶过程的进行。
第3章-二元合金的相结构与结晶

相:凡成分均一、晶体结构相同并与其它部分有界面分开的物质 均匀组成部分,称之为相。在合金中,按其晶格结构的基本 属性来分,可分为固溶体和金属化合物两大类。
组织:人们用肉眼或借助某种工具(放大镜、光学显微镜、电子 显微镜等)所观察到的材料形貌。它决定于组成相的类型、 形状、大小、数量、分布等。相是组织的基本组成部分。 同样的相,当它们的形态和分布不同时,就会有不同的组织. 组织组成物:组织中形貌相同的组成部分。
影响固溶体溶解度的因素
2.晶体结构因素
组元间晶体结构相同时,固溶度一般都较大,而且才有可能 形成无限固溶体。若组元间的晶体结构不同,便只能生成有限 固溶体。
3.电负性差
电负性为这些元素的原子自其它原子夺取电子而变为负离子 的能力。反映两元素的化学性能差别。 两元素间电负性差越小,则越容易形成固溶体,且所形成的 固溶体的溶解度也就越大;随两元素间电负性差增大,溶解度 减小,当其差别很大时,往往形成较稳定的化合物。
固溶体比纯金属和金属化合物具有更 为优越的综合力学性能
二、金属化合物
化合物(中间相)概念
当溶质的含量超过了其溶解度,在材料中将出现新相。其 晶体结构与组元都不相同,表明生成了新的物质。所以,化合 物是构成的组元相互作用,生成不同与任何组元晶体结构的新 物质。 化合物结构的特点,一是有基本固定的原子数目比,可用 化学分子式表示,二是晶体结构不同于其任何组元。在以下将 学习的相图中,它们的位置都在相图的中间,所以也称为中间
金属化合物的类型
3.间隙相和间隙化合物
尺寸因素化合物(间隙相与间隙化合物)
主要受组元的原子尺寸因素控制,通常是由过渡族金属原子与 原子半径小于0.1nm的非金属元素碳、氮、氢、氧、硼所组成。 由于非金属元素(X)与金属元素(M)原子半径比不同,结构也有所 不同。 当rX/rM<0.59时,形成具有简单晶体结构的化合物,如fcc、bcc、 hcp或简单立方,通常称它们为间隙相,相应的分子式也较简单, 如M4X、M2X、MX、MX2等。 当rX/rM>0.59时,形成的化合物的晶体结构也较复杂,通常称 它们为间隙化合物,相应的分子式也较复杂,如钢中常见的Fe3C、 Cr7C3、Cr23C6等。
金属学与热处理第三章二元合金的相结构与结晶

下逐渐减小;而同周期元素的负电性则由左向右逐渐
增大。元素之间在周期表中相距越远,越不利于形成固 溶体,但有利于形成化合物。对给定的溶剂组元来说, 溶质组元越靠近周期表的右边,则其固溶度可能越小。
(五)间隙固溶体
一些原子半径很小的溶质原子溶入到溶剂中时, 不是占据溶剂晶格的正常结点位置,而是填入到溶剂 晶格的间隙中,形成间隙固溶体。
现一个以其为中心的应力场。
显然,原子尺寸相差越大,畸变能也越大,应力也越大,点阵也
就越不稳定,这样直到溶剂点阵不能再进一步维持时,便达到固溶度 极限。 通常情况下,溶质原子的尺寸大多比溶剂点阵的空隙尺寸要大, 所以间隙溶质原子体结构
溶质溶剂具有相同的晶体结构时才可能形成溶解 度较大的置换固溶体。
α
自 由 能 β1 β2
A Cα1 Cα2 Cα1 <Cα2
Cβ
B
化学亲和力越强自由能越低,曲线越往下。
由此可见:当进行合金化时,如果组元之间负电性相差 较大,那么就有利于形成化合物,而不利于形成固溶体, 而且所形成的化合物越稳定,则固溶体的固溶度必然越 小;反之,则越有利于形成固溶体。
元素的负电性随其原子序数的增加显示一定的周期
既可以是代位式的有序,也可以是间隙式的有序。但有 的固溶体由于有序化的结果,会引起结构类型的变化,所以 有的书中将有序固溶体列入中间相。
(四) 影响固溶度的因素
1. 原子尺寸因素 原子尺寸因素通常由各组元原子半径相对差表示,即
r=
rB -rA rA
式中rA为主组元A 的原子半径,rB为组元B 的原子半径。 在合金两组元的负电性相差较小而有利于形成固溶体 的情况下,当Δ<15% 时,有利于形成具有较大固溶度的 置换固溶体,要能达到无限互溶,Δr的值还要小一些,如 ∆rFe/其他溶质元素<8%且两者的晶体结构相同时,才能形成无 限固溶体。 当Δ>41% 时,有利于形成间隙固溶体。
金属学与热处理课后答案(崔忠圻版)

第二章纯金属的结晶2-3 为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么?答:(1)因为金属结晶时存在过冷现象,是为了满足结晶的热力学条件,过冷度越大,固、液两项的自由能差越大,相变驱动力越大。
(2)过冷度随金属的纯度不同和本性不同,以及冷却速度的差异可以再很大范围内变化。
金属不同,过冷度也不同;金属的纯度越高,则过冷度越大;冷却速度越大,过冷度越大,反之,越小。
(3)会,当液态金属的自由能低于固态时,这时实际结晶温度高于理论结晶温度T m,此时,固态金属才能自发的转变为液态金属,称为过热。
2-4试比较均匀形核与非均匀形核的异同点。
答;均匀形核是指:若液相中各区域出现新相晶核的几率是相同的;非均匀形核:液态金属中存在微小的固相杂质质点,液态金属与型壁相接触,晶核可以优先依附现成的固体表面形核。
在实际的中,非均匀形核比均匀形核要容易发生。
二者形核皆需要结构起伏,能量起伏,过冷度必须大于临界过冷度,晶胚的尺寸必须大于临界晶核半径。
2-5说明晶体成长形状与温度梯度的关系?答;正温度梯度下以平面状态的长大形态,服温度梯度下以树枝状长大。
2-6简述铸锭三晶区形成的原因及每个晶区的性能特点?(1)表层细晶区形成原因:①型壁临近的金属液体产生极大过冷度满足形核的热力学条件;②型壁可以作为非均匀形核的基地。
该晶区特点:组织细密,力学性能较好,但该晶区较薄,一般没有多大的实际意义。
(2)柱状晶区的形成原因:①液态金属结晶前沿有适当的过冷度,满足形核要求;②垂直于型壁方向散热最快,晶体向相反的方向生长;③外因是散热的方向性;④内因是晶体晶体生长的各向异性。
该晶区的特点:相互平行的柱状晶接触面及相邻垂直的柱状晶区的交界面较为脆弱,并常聚集着易熔杂质和非金属夹杂物,使铸锭在热压力加工时,容易沿着这些脆弱面开裂,组织比较致密。
(3)中心等轴晶区形成特定:①中心液体达到过冷,加上杂质元素的作用,满足形核的要求;②散热失去方向性,晶核自由生长,长大速度差不多,长成等轴区。
金属学与热处理 3.3

还有少量液相残留,最后这些液相转变为共晶体,形成不平衡共晶组织。
共晶系合金的不平衡凝固
思考题
1. 在共晶合金系中,只有共晶成分的合金才能发生共晶转变。
A是 B否
答案:B 成分在共晶线宽度范围内的合金冷却到共晶温度时,未凝固的液相成分沿 液相线变化到共晶点,而进行共晶转变。因此,并不是只有共晶合金才发 生共晶反应。
思考题
4. 二元相图中的共晶线 A 是一条水平线直线; B 是一个三相区(L, α, β); C 一般是一条斜线,水平线是特殊情况。
答案:AB 因为共晶反应是恒温转变,反映在相图上只能是一条水平线;共晶反应时三相 共存,所以共晶线也是一个三相区。
思考题
5. 根据Pb-Sn相图,应用杠杆定律计算40%Sn合金的共晶组织中的α相占全 部合金的相对量。
思考题
6、简单总结伪共晶、不平衡共晶和离异共晶的特点。 伪共晶——靠近共晶点附近的合金得到了全部共晶组织; 离异共晶——共晶组织没有显示出共晶的特征; 不平衡共晶——在不应该出现共晶的合金里出现了共晶组织。
相图计算
1. 固溶体合金的相图如图所示,试根据相图确定:
(a) 成分为40%B的合金首先凝固出来的固
前沿液相中原子扩散示意图
共晶生长的搭桥机制
当两个固相都是金属性较强相时,共晶体一般生长成层片状。当两相的
相对数量比相差悬殊时,在界面能的作用下,数量较小的相将收缩为条、
棒状,更少时为纤维状,甚至为点(球)状。
当有一相或两相都具有较强的非金属性时,它们表现出较强的各向异性,
不同方向的生长速度不同,并且有特定的角度关系,同时生长过程要求
共晶体的形成
成分互惠-交替形核
片间搭桥-共同生长
二元合金的相结构与结晶

第三章二元合金的相结构与结晶第一节合金中的相1、组成合金最基本、独立的物质叫组元。
一般来说组元是组成合金的元素,也可以是稳定的化合物。
2、组元间物理和化学的相互作用形成相。
3、相是合金中晶体结构相同、成分和性能均一,并以界面相互分开的组成部分。
4、相可以分为固溶体和金属化合物。
5、相不同、相的数量、大小及分布状态不同即成为不同的组织。
所以相是组织的基本组成物。
6、形成不同组织的原因是形成的条件不同。
7、组织是决定材料性能的一个极为重要的因素。
第二节合金的相结构1、相的具体分类和影响形成相种类的因素见课本。
2、固溶体分为置换固溶体和间隙固溶体。
(还有其他分类方法)形成间隙固溶体的溶质元素都是原子半径小于0.1nm的非金属元素。
3、溶质原子在溶剂原子间的分布没什么规律的固溶体称为无序固溶体。
溶质原子按一定的顺序和方向分布的固容体称为有序固溶体。
无序固溶体和有序固溶体都可以是置换固溶体也可以是间隙固溶体。
4、有序固溶体是介于固溶体和金属化合物之间的相,更接近与金属化合物。
5、当有序固溶体加热到一定温度时,将转变为无序固溶体。
缓慢冷却至这一温度时,又将转变为有序古溶体。
发生转变时性能也将突变,有序固溶体硬度及脆性显著提高,而塑形明显下降。
有序转变——无序转变是一种相变。
6、固溶体具有优越的综合力学性能。
大部分金属合金都是以固溶体为基体的。
7、金属化合物一般具有较高的熔点、硬度和脆性。
8、当合金中出现金属化合物时,将使合金的强度、硬度、耐磨性及耐热性提高,但塑性、韧性降低。
第三节二元合金相图的建立1、二元合金相图的建立方法和相律了解即可。
2、杠杆定律的使用3、杠杆定律适用于两相区。
无法确定三相区的成分。
不管怎么样的系统,当系统处于平衡状态时,都可以使用杠杆定律确定两相的含量。
4、无论是组织组成物还是相组成物,它们的相对含量都可以用杠杆定律计算。
只是杠杆的两个端点位置不同。
相组成物的端点在相图中平衡线与单相区的交点处。
二元合金的相结构与结晶相图建立与匀晶相图2258103

9
在杠杆定律中,杠杆的支点是合金的成分,杠杆的端
点是所求的两个平衡相的成分。
例(如图)
0.53 0.45 Q 100% 61.5% 0.58 0.45 0.58 0.53 QL 100% 38.5% 0.58 0.45
3
4
三、相律及杠杆定律
(一) 相律及其应用
相律:表示平衡条件下,系统的组元数、相数和自由度数之间的关系。 表达式:
F=C-P+2 (压力:不等) F=C-P+1 (压力:常数) C-组元数(component); P-相数(phase); F-自由度数(free) 平衡系统的自由度数:平衡系统的独立、可变的因素数。 (在保持合金系的相数不变的条件下,合金系中可改变的、影 响合金状态的内部因素和外部因素的数目) (成分、温度、压力)
如 Cu-Ni,Fe-Cr, Au-Ag Cu-Ni合金相图
15
一、相图分析
两个点——Cu和Ni的熔点
两条线——上面是液相线,
下面是固相线。
L
三个区——液相区L ,
固相区 ,
+
L
固液共存的两相区(L+ )。
16
二、固溶体合金的平衡结晶过程
平衡结晶——极缓慢的冷却条件下进行的结晶过程
§3-3 二元合金相图的建立
相图 (phase diagram) :表示在平衡条件下合金的状态与温度、 成分之间关系的图解,又称为平衡图或状态图。(工具)
第三章 金属的结晶与二元合金相图

液相区L 双相区L+α 固相区α 液相线 固相线
固相区
匀 晶 相 图 合 金 的 结 晶 过 程 (P33)
☆在不同温度下刚刚结晶出来的固相的化学成分是 不相同的,其变化规律是沿着固相线变化.与此同 时剩余液相的化学成分也相应地沿着液相线变化.
2,晶内偏析——枝晶偏析 (P33)
晶内偏析: 晶内偏析: 在一个晶粒内,各处 成分的不均匀现象. 因为金属通常以枝晶 方式结晶,先形成的 主干和后形成的支干 就会有化学成分之差, 枝晶偏析. 所以也称枝晶偏析 枝晶偏析
第一节 金属结晶的基础知识
一,金属结晶的温度与过冷现象(P26) 金属结晶的温度与过冷现象 3,过冷度(△T):理论结晶温度与实际结 过冷度( 晶温度之差.对于纯金属: △T= T0- Tn 4,金属的结晶都 是在一定的过冷 度下进行的,这 种现象称过冷现 过冷现 象.
第一节 金属结晶的基础知识
(二)共晶相图 1,相图分析 (P35)
7)α固溶体溶解度变化曲线——cf 8) β固溶体溶解度变化曲线——eg 9)三个单相区:L,α,β
10)液相线——adb 11)固相线——acdeb 12)共晶线——cde
(二)共晶相图 1,相图分析 (P35)
13)三个两相区:L+α,L+β,α+β 14)一个三相区:L+α+β,在共晶转变过程中三相同时存在.
第一节 金属结晶的基础知识
一,金属结晶的温度与过冷现象(P26) 金属结晶的温度与过冷现象 1,理论结晶温度 0: 又称平衡结晶温度. 理论结晶温度T 理论结晶温度 (冷速极慢)也就是金属的熔点Tm. 2,实际结晶温度 n:在某一实际冷却速度下 实际结晶温度T 实际结晶温度 的结晶温度.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。
2.合金中的组元是指 组成合金最基本的、独立的物质 。
3.固溶体的定义是 在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体
4.Cr 、V 在γ-Fe 中将形成 置换 固溶体。
C 、N 则形成 间隙 固溶体。
5.和间隙原子相比,置换原子的固溶强化效果要 差 些。
6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。
7.共晶反应的特征是 由一定成分的恶液相同时结晶出成分一定的两个固相 ,其反应式为 L →a+β 8.匀晶反应的特征是 ,其反应式为
9.共析反应的特征是 ,其反应式为
10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为 有限固溶体 和 无限固溶体
11.合金的相结构有 固溶体 和 金属化合物 两种,前者具有较高的 塑性变形 性能,适合于做 基体 相;后者有较高的 高硬度 性能,适合于做 增强 相
12.看图4—1,请写出反应式和相区:
ABC 包晶反应 B A C L γα⇔+ ;DEF 共晶反应 F D C L βγ+⇔ ;GHI 共析反应 I G H βαγ+⇔ ;
① L +α ;② γα+ ;③βα+ ;④ βγ+ ;⑤ L +γ ;⑥ β+L ;
13.相的定义是 ,组织的定义是
14.间隙固溶体的晶体结构与溶剂的晶格类型 相同,而间隙相的晶体结构与 溶剂组元晶体结构 不同。
15.根据图4—2填出:
水平线反应式 E C D βαγ+⇔ ;有限固溶体 βα、 、 无限固溶体 γ 。
液相线 ,固相线 , 固溶线 CF 、 EG
16.接近共晶成分的合金,其铸造性能较好;但要进行压力加工的合金常选用匀晶成分的合金。
17.共晶组织的一般形态是片状。
(二)判断题
1.共晶反应和共析反应的反应相和产物都是相同的。
( N )
2.铸造合金常选用共晶或接近共晶成分的合金,要进行塑性变形的合金常选用具有单相固溶体成分的合金。
( Y)
3.合金的强度与硬度不仅取决于相图类型,还与组织的细密程度有较密切的关系。
( Y) 4.置换固溶体可能形成无限固溶体,间隙固溶体只可能是有限固溶体。
( Y) 5.合金中的固溶体一般说塑性较好,而金属化合物的硬度较高。
( Y )
6.共晶反应和共析反应都是在一定浓度和温度下进行的。
( Y)
7.共晶点成分的合金冷却到室温下为单相组织。
( N)
8.初生晶和次生晶的晶体结构是相同的。
( Y )
9.根据相图,我们不仅能够了解各种合金成分的合金在不同温度下所处的状态及相的相对量,而且还能知道相的大小及其相互配置的情况。
( Y )
10.亚共晶合金的共晶转变温度与共晶合金的共晶转变温度相同。
( Y )
11.过共晶合金发生共晶转变的液相成分与共晶合金成分是一致的。
( Y)
(三)选择题
1.固溶体的晶体结构是A
A.溶剂的晶型B.溶质的晶型 C 复杂晶型D.其他晶型
2 金属化合物的特点是C
A.高塑性B.高韧性 C 高硬度D.高强度
3.当匀晶合金在较快的冷却条件下结晶时将产生 D
A.匀晶偏析 B 比重偏析C.枝晶偏析D.区域偏析
4.当二元合金进行共晶反应时,其相组成是C
A.由单相组成 B 两相共存 C 三相共存D.四相组成
5.当共晶成分的合金在刚完成共晶反应后的组织组成物为C
A. α+βB.(α+L) C.(α+β) D.L+α+β
6.具有匀晶型相图的单相固溶体合金B
A.铸造性能好B.锻压性能好 C 热处理性能好D.切削性能好
7.二元合金中,共晶成分的合金A
A.铸造性能好 B 锻造性能好 C 焊接性能好D.热处理性能好
8.共析反应是指 B
A.液相→固相Ⅰ+固相Ⅱ B 固相→固相Ⅰ+固相Ⅱ
C.从一个固相内析出另一个固相 D 从一个液相中析出另一个固相
9.共晶反应是指 A
A.液相→固相Ⅰ+固相Ⅱ B 固相→固相Ⅰ+固相Ⅱ
C.从一个固相内析出另一个固相 D 从一个液相中析出另一个固相
10.固溶体和它的纯金属组元相比D
A.强度高,塑性也高些 B 强度低,但塑性高些
C 强度低,塑性也低些
D 强度高,但塑性低些
(四)计算题
1.一个二元共晶反应如下:L(W(B)=75%)→α(W(B)=15%)+β(W(B)=95%)
(1)求w(B)=50%的合金完全凝固时初晶α与共晶(α十β)的重量百分数,以及共晶体中
α相与β相的重量百分数;
(2)若已知显微组织中β初晶与(α+β)共晶各占一半,求该合金成分。
2.若要配制四个不同成分的Pb—Sn合金30g,其组织要求为(参阅Pb—Sn合金相图);
(1)α相92%和β相8%;
(2)亚共晶合金中,要求共晶体占30%;
(3)过共晶合金中,要求共晶体占70%;
(4)共晶合金。
问分别计算出需要Pb和Sn各多少克?
复习要点
1、名词
相
固溶体
置换固溶体
间隙固溶体
金属间化合物
异分结晶/选择结晶
晶内偏析76
枝晶偏析77
区域偏析78
成分过冷
固溶强化
伪共晶组织91
离异共晶92
比重偏析92
包晶偏析
96
影响置换固溶体中溶质固溶度的主要因素
固溶体结晶过程76
固溶强化的机理
消除晶内偏析、离异共晶、包晶偏析的方法---均匀化退火
锡青铜产生锡汗的原因
锡青铜结晶温度范围宽,易产生枝晶偏析和反偏析。
当锡青铜铸件浇注后尚未全部凝固时,在枝晶骨架间还有低熔点相,青铜液温度降低时氢在铜液中溶解度降低,它析出形成小气泡,在气体压力作用和铸件收缩力的作用下含气泡的液相被挤出铸件表面皮下,造成“锡汗”。
已知A及B液态时无限互溶,固态时A在B中的最大溶解度为30%,室温时为10%,但B
在固态和室温均不容与A,300度时含40%Bde液态合金发生共晶反映,画出AB合金相图,计算含20、45、80合金结晶后在室温下的组织组成无和相的相对含量
何为匀晶转变,使划出简单的相图示意图,并结合杠杆定律分析整个过程中两项的相对含量。