圆周运动的临界问题

合集下载

高中物理圆周运动的临界问题(含答案)

高中物理圆周运动的临界问题(含答案)

1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。

二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。

【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。

若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。

它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。

圆周运动中的临界问题

圆周运动中的临界问题

圆周运动的临界问题【例1】如图所示,半径为0.5 m 的光滑细圆管轨道固定在底座上,底座放在水平地面上两地桩之间,不能左右移动,圆管轨道和底座的总质量为5 kg 。

在圆管最低点静置一个质量为1 kg 的小球(直径略小于圆管内径),给小球一个水平方向的初速度v 0,小球能在圆管内做完整的圆周运动,整个过程中底座不会脱离地面,重力加速度g 取10 m/s 2。

(1)若小球运动到圆管最高点时,对圆管恰好无作用力,则初速度v 0多大?(2)若小球运动到圆管最高点时,底座对地面的压力不超过55 N ,求初速度v 0应满足的条件。

【例2】一个质量为m 的小物块(可视为质点)放在一水平圆盘上,圆盘可绕过圆 心O 的竖直轴转动,物块到转轴的距离为r ,物块与圆盘间的动摩擦因数为μ, 设最大静摩擦力等于滑动摩擦力。

当圆盘以角速度ω0匀速转动时,物块与圆盘保持相对静止,则此时物块受到的摩擦力大小为_____________;要使物块与圆 盘始终保持相对静止,圆盘转动的角速度应满足的条件是_____________。

【例3】用一根长为L 的不可伸长的轻绳一端固定在悬点O ,另一端拴住一个质量为m 的小球(可视为质点),开始时用外力使小球静止在最低点,然后释放小球,同时给小球一个水平方向的初速度v 0,使小球在竖直平面内运动,空气阻力不计,重力加速度为g 。

(1)若小球能做完整的圆周运动,则初速度v 0至少为多少?(2)若在空间加上场强大小为E 、方向向下的匀强电场,同时让小球带上q (q >0)的电荷,轻绳绝缘,则(1)的结果又为多少?O练习1:A 、B 、C 三个质量分别为m 、3m 、m 的小物块(均可视为质点)放在一水平圆盘上,圆盘可绕过圆心O 的竖直轴转动。

已知物块A 和B 到转轴的距离均为r ,物块C 到转轴的距离为2r ,如图所示。

三物块与圆盘间的动摩擦因数均相同,设最大静摩擦力等于滑动摩擦力。

当圆盘以角速度ω0匀速转动时,三物块与圆盘均保持相对静止,则物块________受到的静摩擦力最大;若逐渐增大圆盘转动的角速度,则物块________最先开始相对圆盘滑动。

圆周运动的临界问题

圆周运动的临界问题

圆周运动的临界问题【例1】如图所示,水平转盘的中心有个竖直小圆筒,质量为m的物体A放在转盘上,A到竖直筒中心的距离为r.物体A通过轻绳、无摩擦的滑轮与物体B相连,B与A质量相同.物体A与转盘间的最大静摩擦力是正压力的μ倍,则转盘转动的角速度在什么范围内,物体A才能随盘转动.【正解】由于A在圆盘上随盘做匀速圆周运动,所以它所受的合外力必然指向圆心,而其中重力、支持力平衡,绳的拉力指向圆心,所以A所受的摩擦力的方向一定沿着半径或指向圆心,或背离圆心.当A将要沿盘向外滑时,A所受的最大静摩擦力指向圆心,A的向心力为绳的拉力与最大静摩擦力的合力.即F+F m′=m21ωr ①由于B静止,故F=mg ②由于最大静摩擦力是压力的μ倍,即F m′=μF N=μmg ③由①②③式解得ω1=rg/)1(μ+当A将要沿盘向圆心滑时,A所受的最大静摩擦力沿半径向外,这时向心力为F-F m′=m22ωr ④由②③④式解得ω2=rg/)1(μ-要使A随盘一起转动,其角速度ω应满足rg/)1(μ-≤ω≤rg/)1(μ+【思维提升】根据向心力公式解题的关键是分析做匀速圆周运动物体的受力情况,明确哪些力提供了它所需要的向心力.【例2】如图所示是电动打夯机的示意图,电动机带动质量为m的重锤(重锤可视为质点)绕转轴O匀速转动,重锤转动半径为R。

电动机连同打夯机底座的质量为M,重锤和转轴O之间连接杆的质量可以忽略不计,重力加速度为g(1)重锤转动的角速度为多大时,才能使打夯机底座刚好离开地面?(2)若重锤以上述的角速度转动,当打夯机的重锤通过最低位置时,打夯机对地面的压力为多大?【答案】(1)()mRgM m+【例3】如图所示,小球质量m =0.8kg,用两根长L =0.5m的细绳拴住并系在竖直杆上的A、B两点,AB=0.8m.当直杆转动带动小球在水平面内绕杆以ω=40rad/s的角速度匀速转动时,求上、下两根绳上的张力.【例4】如图所示,在匀速转动的水平圆盘上,沿半径方向放置用长L =0.1m 的细线相连接的A 、B 两小物块.已知A 距轴心O 的距离r l =0.2m ,A 、B 的质量均为m =1kg ,它们与盘面间相互作用的摩擦力最大值为其重力的0.3倍( g 取 10m/s 2).试求:(1)当细线刚要出现拉力时,圆盘转动的角速度0ω为多大?(2)当 A 、B 与盘面间刚要发生相对滑动时,细线受到的拉力为多大?【例5】如图所示,一光滑圆锥体固定在水平面上,OC ⊥AB ,θ=30°,一条不计质量、长L 且平行于圆锥体的绳一端固定在顶点O 点,另一端拴一质量为m 的物体,物体以速度v 绕圆锥体的轴线OC 在水平面内做匀速圆周运动.当 6gl v =和32gl v =时,分别求出绳对物体的拉力答案:(1)T 1=1.03mg (2)T 2=2mg【例6】如图所示,在水平固定的光滑平板上,有一质量为M 的质点P ,与穿过中央小孔H 的轻绳一端连着。

圆周运动的临界问题

圆周运动的临界问题
√D.汽车能安全转弯的向心加速度不超过7.0 m/s2
汽车转弯时所受的力有重力、弹力、摩擦力,向
心力是由摩擦力提供的,A错误; 汽车转弯的速度为 20 m/s 时,根据 Fn=mvR2,得所需的向心力为 1.0×104 N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C 错误; 汽车安全转弯时的最大向心加速度为 am=Fmf=7.0 m/s2,D 正确.
ω越大时,小物体在最高点处受到的摩擦力一定越大
√B.小物体受到的摩擦力可能背离圆心 √C.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 1.0 rad/s
D.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 3 rad/s
当物体在最高点时,也可能受到重力、支持力与 摩擦力三个力的作用,摩擦力的方向可能沿斜面 向上(即背离圆心),也可能沿斜面向下(即指向圆 心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受 到的摩擦力越小,故A错误,B正确; 当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时 小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向 圆心的摩擦力,由沿斜面的合力提供向心力,支持力FN=mgcos 30°, 摩擦力Ff=μFN=μmgcos 30°,又μmgcos 30°-mgsin 30°=mω2R,解 得ω=1.0 rad/s,故C正确,D错误.
例2 (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在 水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘 间的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从 静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大 静摩擦力等于滑动摩擦力,下列说法正确的是
竖直面内圆周运动的临界问题

圆周运动中的临界问题专题(最新整理)

圆周运动中的临界问题专题(最新整理)

课题28圆周运动中的临界问题一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:特点:绳对小球,轨道对小球只能产生指向圆心的弹力①临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界= (可理解为恰好转过Rg 或恰好转不过的速度)即此时小球所受重力全部提供向心力注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力提供向心力,此时临界速度V 临≠Rg ②能过最高点的条件:v ≥,当v >时,绳对球产生拉力,轨道对球产生压力.Rg Rg ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动)【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤,则有关小球能够上升到最大高gR 310度(距离底部)的说法中正确的是( )A 、一定可以表示为B 、可能为 g v 2203R C 、可能为R D 、可能为R 35【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动,因为桥gr v 面不能对汽车产生拉力.(2)如右图所示,小球过最高点时,轻质杆(管)对球产生的弹力情况:特点:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.①当v =0时,F N =mg (N 为支持力)②当 0<v <时, F N 随v 增大而减小,且mg >F N >0,Rg F N 为支持力.③当v =时,F N =0Rg ④当v >时,F N 为拉力,F N随v 的增大而增大(此时F N 为拉力,方向指向圆心)Rg典例讨论1.圃周运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点.结合圆周运动的知识,列出相应的动力学方程【例题2】在图中,一粗糙水平圆盘可绕过中心轴OO /旋转,现将轻质弹簧的一端固定在圆盘中心,另一端系住一个质量为m 的物块A ,设弹簧劲度系数为k ,弹簧原长为L 。

圆周运动中的临界问题

圆周运动中的临界问题

3 rad/s 1.0 rad/s
0.5 rad/s
• 在质量为M的电动机的飞轮上,固定 着一个质量为m的重物,重物到转轴 的距离为r,如图所示,为了使放在地 面上的电动机不会跳起,电动机飞轮 的角速度不能超过( )
A. C.
M m g mr M m g mr
B. D. Mg
mr
M m g mr
m R O
v0 N
M
如图所示,质量为m的物体随水平传送带 一起匀速运动,A为传送带的终端皮带轮, 皮带轮半径为r,要使物体通过终端时, 能水平抛出,皮带轮的转速至少为:( )
A
如图所示,一倾斜的匀质圆盘绕垂直于盘面的固 定对称轴以恒定的角速度ω转动,盘面上离转轴 距离2.5m处有一小物体与圆盘始终保持相对静 止。物体与盘面间的动摩擦因数为 /2(设最 大静摩擦力等于滑动摩擦力),盘面与水平面的 夹角为30°,g取10m/s2。则ω的最大值是 A 5 rad/s B C D
gr
N=0
v2 mg m r
v gr
在最高点时速 度应不小于
gr
V>=0 F向>=0 F向=FT+mg 或F向=mg-Fn V>=0 F向>=0 F向=FT+mg 或F向=mg-Fn
在最高点速度 应大于等于0 在最高点速度 应大于等于0
临界问题:由于物体在竖直平面内做圆周运动 的依托物(绳、轨道、轻杆、管道等)不同, 所以物体恰好能通过最高点的临界条件也不同。
3.如图所示,竖直圆筒内壁光滑,半径 为R,顶部有一个入口,在的正下方 处 有一个出口,一质量为 m的小球沿切线 方向的水平槽射入圆筒内,要使小球从 B处飞出,小球射入入口的速度 满足什 么条件? 在运动过程中球对筒的压力 多大?

圆周运动临界问题

圆周运动临界问题

圆周运动的临界问题通常涉及到物体在竖直平面内做变速圆周运动的情况,如轻绳模型过最高点或最低点的情况,以及物体通过其他特殊点的情况。

在这些情况下,临界状态通常是由于圆周运动的向心力和离心力的平衡状态被打破所导致的。

以轻绳模型过最高点为例,当物体通过最高点时,轻绳对物体的拉力与物体的重力相等,即T = mg。

当拉力大于或小于重力时,物体将处于超重或失重状态,并可能出现临界情况。

在这种情况下,可以通过牛顿第二定律和向心力公式来求解物体的运动状态。

在求解时,首先根据题意确定物体通过最高点时的受力情况,然后根据牛顿第二定律列式,最后根据向心力公式求解出物体在最高点时的速度。

根据速度的大小,可以判断出物体是否处于临界状态,并求出相应的临界条件。

需要注意的是,在圆周运动的临界问题中,物体的运动状态可能会发生突变,因此需要特别注意物体的加速度和速度的变化情况。

此外,在求解临界条件时,需要将物体的运动状态与受力情况结合起来考虑,并灵活运用向心力和牛顿第二定律进行求解。

圆周运动中的临界问题

圆周运动中的临界问题

圆周运动中的临界问题第 2 页圆周运动中的临界问题1、在竖直平面内作圆周运动的临界问题 ⑴如图1、图2所示,没有物体支承的小球,在竖直平面作圆周运动过最高点的情况 ①临界条件:绳子或轨道对小球没有力的作用v 临界=Rg②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力。

③不能过最高点的条件:v <v 临界(实际上球没到最高点时就脱离了轨道)。

⑵如图3所示情形,小球与轻质杆相连。

杆与绳不同,它既能产生拉力,也能产生压力 ①能过最高点v 临界=0,此时支持力N=图 1v图2图 3第 3 页mg②当0<v <Rg 时,N 为支持力,有0<N <mg ,且N 随v 的增大而减小 ③当v =Rg 时,N =0④当v >Rg ,N 为拉力,有N >0,N 随v 的增大而增大例1 (99年高考题)如图4所示,细杆的一端与一小球相连,可绕过O 的水平轴自由转动。

现给小球一初速度,使它做圆周运动。

图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球作用力可能是 ( )A 、a 处为拉力,b 处为拉力B 、a 处为拉力,b 处为推力C 、a 处为推力,b 处为拉力D 、a 处为推力,b 处为推力 例2 长度为L =0.5m 的轻质a图4图 5细杆OA,A端有一质量为m=3.0kg的小球,如图5所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m /s,g取10m/s2,则此时细杆OA受到()A、6.0N的拉力B、6.0N的压力C、24N的拉力D、24N的压力例3长L=0.5m,质量可以忽略的的杆,其下端固定于O点,上端连接着一个质量m=2kg的小球A,A绕O点做圆周运动(同图5),在A通过最高点,试讨论在下列两种情况下杆的受力:①当A的速率v1=1m/s时②当A的速率v2=4m/s时第 4 页第 5 页2、在水平面内作圆周运动的临界问题 在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动的临界问题 【例1】如图所示,质量为0.1kg 的木桶内盛水0.4kg ,用50cm 的绳子系桶,使它在竖直面内做圆周运动。

如图通过最高点为9m/s ,求绳子的拉力和水对桶底的压力。

(g 取10N/kg )【答案】拉力105N 方向向下 压力84N ,方向向下【练习1】如图甲所示,一长为l 的轻绳,一端穿在过O 点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O 点在竖直面内转动.小球通过最高点时,绳对小球的拉力F 与其速度平方v 2的关系如图乙所示,重力加速度为g ,下列判断正确的是A .图象函数表达式为mg lv m F +=2B .重力加速度lb g = C .绳长不变,用质量较小的球做实验,得到的图线斜率更大D .绳长不变,用质量较小的球做实验,图线B 点的位置不变答案:BD【例2】如图所示,水平转盘的中心有个竖直小圆筒,质量为m 的物体A 放在转盘上,A 到竖直筒中心的距离为r .物体A 通过轻绳、无摩擦的滑轮与物体B 相连,B 与A 质量相同.物体A 与转盘间的最大静摩擦力是正压力的μ倍,则转盘转动的角速度在什么范围内,物体A 才能随盘转动.【正解】由于A 在圆盘上随盘做匀速圆周运动,所以它所受的合外力必然指向圆心,而其中重力、支持力平衡,绳的拉力指向圆心,所以A 所受的摩擦力的方向一定沿着半径或指向圆心,或背离圆心.当A将要沿盘向外滑时,A所受的最大静摩擦力指向圆心,A的向心力为绳的拉力与最大静摩擦力的合力.即F+F m′=m21ωr ①由于B静止,故F=mg ②由于最大静摩擦力是压力的μ倍,即F m′=μF N=μmg ③由①②③式解得ω1=r(μ+1g/)当A将要沿盘向圆心滑时,A所受的最大静摩擦力沿半径向外,这时向心力为F-F m′=m22ωr ④由②③④式解得ω2=r(μ-要使A随盘一起转动,其角速度ω应满足1g/)g/)1(μ+-≤ω≤rrg/)1(μ【思维提升】根据向心力公式解题的关键是分析做匀速圆周运动物体的受力情况,明确哪些力提供了它所需要的向心力.【例3】如图所示,在匀速转动的水平圆盘上,沿半径方向放置用长L=0.1m 的细线相连接的A、B两小物块.已知A距轴心O的距离r l =0.2m,A、B的质量均为m =1kg,它们与盘面间相互作用的摩擦力最大值为其重力的0.3倍(g 取10m/s2).试求:ω为多大?(1)当细线刚要出现拉力时,圆盘转动的角速度(2)当A、B与盘面间刚要发生相对滑动时,细线受到的拉力为多大?【练习2】如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO'转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块A到OO'轴的距离为物块B到OO'轴距离的两倍。

现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是()A.B受到的静摩擦力一直增大B.B受到的静摩擦力是先增大后减小C.A受到的静摩擦力是先增大后减小D.A受到的合外力一直在增大答案:D【练习3】(2014·安徽高考)如图10所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止。

物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2。

则ω的最大值是( )图10A . 5 rad/sB . 3 rad/sC .1.0 rad/sD .5 rad/s选C 物体随圆盘做圆周运动,运动到最低点时最容易滑动,因此物体在最低点且刚好要滑动时的转动角速度为最大值,这时,根据牛顿第二定律可知,μmg cos 30°-mg sin 30°=mrω2,求得ω=1.0 rad/s ,C 项正确,A 、B 、D 项错误。

【例4】如图所示,小球质量 m =0.8kg ,用两根长L =0.5m 的细绳拴住并系在竖直杆上的A 、B 两点,AB =0.8m .当直杆转动带动小球在水平面内绕杆以ω=40rad /s 的角速度匀速转动时,求上、下两根绳上的张力.【例5】如图所示,一光滑圆锥体固定在水平面上,OC ⊥AB ,θ=30°,一条不计质量、长L 且平行于圆锥体的绳一端固定在顶点O 点,另一端拴一质量为m 的物体,物体以速度v 绕圆锥体的轴线OC 在水平面内做匀速圆周运动.当 6gl v =和32gl v =时,分别求出绳对物体的拉力答案:(1)T 1=1.03mg (2)T 2=2mg【练习4】用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示。

设小球在水平面内做匀速圆周运动的角速度为ω,线的张力为,则随的变化的图象是()答案:C【练习5】(2016•兰州模拟)如图所示,转动轴垂直与光滑水平面,交点O的上方h处固定细绳的一端,细绳的另一端栓接一质量为m的小球B,绳长l>h,转动轴带动小球在光滑水平面上做圆周运动,当转动的角速度ω逐渐增大时,下列说法正确的是()A.小球始终受三个力的作用B.细绳上的拉力始终保持不变gC.要使球不离开水平面角速度的最大值为hgD.若小球飞离了水平面则角速度为l答案:C【例6】(2015·德州联考)如图12所示,水平放置的圆盘上,在其边缘C点固定一个小桶,桶的高度不计,圆盘半径为R=1 m,在圆盘直径CD的正上方,与CD平行放置一条水平滑道AB,滑道右端B与圆盘圆心O在同一竖直线上,且B点距离圆盘圆心的竖直高度h=1.25 m,在滑道左端静止放置质量为m=0.4 kg的物块(可视为质点),物块与滑道的动摩擦因数为μ=0.2,现用力F=4 N的水平作用力拉动物块,同时圆盘从图示位置,以角速度ω=2πrad/s,绕通过圆心O的竖直轴匀速转动,拉力作用在物块一段时间后撤掉,最终物块由B点水平抛出,恰好落入圆盘边缘的小桶内。

重力加速度取10 m/s2。

图12(1)若拉力作用时间为0.5 s,求所需滑道的长度;(2)求拉力作用的最短时间。

解析:(1)物块平抛:h =12gt 2; t = 2h g=0.5 s 物块离开滑道时的速度:v =R t=2 m/s 拉动物块的加速度,由牛顿第二定律:F -μmg =ma 1;得:a 1=8 m/s 2撤去外力后,由牛顿第二定律:-μmg =ma 2;得:a 2=-2 m/s 2物块加速获得速度:v 1=a 1t 1=4 m/s则所需滑道的长度L =x 1+x 2=12a 1t 12+v 2-v 122a 2=4 m (2)盘转过一圈时落入,拉力时间最短;盘转过一圈时间:T =2πω=1 s ; 物块在滑道上先加速后减速,最终获得:v =a 1t 1+a 2t 2物块滑行时间、抛出在空中时间与圆盘周期关系:t 1+t 2+t =T由上两式得:t 1=0.3 s 。

答案:(1)4 m (2)0.3 s课后作业1、如图所示,圆盘上叠放着两个物块A 和B ,当圆盘和物块绕竖直轴匀速转动时,物块与圆盘始终保持相对静止,则( )A .物块A 不受摩擦力作用B .物块B 受5个力作用C .当转速增大时,A 受摩擦力增大,B 受摩擦力减小D .A 对B 的摩擦力方向沿半径指向转轴答案:B解析:物块A 受到的摩擦力充当其向心力;物决B 受到重力、支持力、A 对物块B 的压力、A对物块B的沿半径向外的摩擦力和圆盘对物块B的沿半径向里的静摩擦力,共5个力的作用;当转速增大时,A、B所受摩擦力都增大;A对B的摩擦力方向沿半径向外。

2、如图所示,质量相等的A、B两物体紧贴在匀速转动的圆筒的竖直内壁上,随圆筒一起做匀速圆周运动,则下列关系中正确的有()A.线速度v A>v BB.运动周期T A>T BC.它们受到的摩擦力F fA>F fBD.筒壁对它们的弹力F N A>F N B答案:AD解析:由于两物体角速度相等,而r A>r B,所以v A=r Aω>v B=r Bω,A项对;由于ω相等,则T相等,B项错;因竖直方向受力平衡,F f=mg,所以F fA=F fB,C项错;弹力等于向心力,所以F N A=mr Aω2>F N B =mr Bω2。

D项对。

3、球A和球B可在光滑杆上无摩擦滑动,两球用一根细绳连接如右图所示,球A的质量是球B的两倍,当杆以角速度ω匀速转动时,两球刚好保持与杆无相对滑动,那么() A.球A受到的向心力大于球B受到的向心力B.球A转动的半径是球B转动半径的一半C.当A球质量增大时,球A向外运动D.当ω增大时,球B向外运动答案:BC解析:因为杆光滑,两球的相互拉力提供向心力,所以F A=F B,A错误;由F=mω2r,m A=2m B,得r B=2r A,B正确;当A球质量增大时,球A向外运动,C正确;当ω增大时,球B不动,D错误。

4、(2015·忻州一中检测)如图所示,两段长均为L的轻质线共同系住一个质量为m的小球,另一端分别固定在等高的A、B两点,A、B两点间距也为L,今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v,两段线中张力恰好均为零,若小球到达最高点时速率为2v,则此时每段线中张力大小为()A.3mg B.2mgC.3mg D.4mg选A当小球到达最高点时速率为v,两段线中张力恰好均为零,有mg=m v2r;当小球到达最高点时速率为2v,设每段线中张力大小为F,应有2F cos 30°+mg=m(2v)2r;解得F=3mg,选项A正确。

5.(2015·山东省桓台模拟)如图,质量为M的物体内有光滑圆形轨道,现有一质量为m 的小滑块沿该圆形轨道在竖直面内作圆周运动。

A、C点为圆周的最高点和最低点,B、D 点是与圆心O同一水平线上的点。

小滑块运动时,物体M在地面上静止不动,则物体M对地面的压力N和地面对M的摩擦力有关说法正确的是()A.小滑块在A点时,N>Mg,摩擦力方向向左B.小滑块在B点时,N=Mg,摩擦力方向向右C.小滑块在C点时,N=(M+m)g,M与地面无摩擦D.小滑块在D点时,N=(M+m)g,摩擦力方向向左选B因为轨道光滑,所以小滑块与轨道之间没有摩擦力。

小滑块在A点时,与轨道的作用力在竖直方向上,水平方向对轨道无作用力,所以轨道相对于地面没有相对运动趋势,即摩擦力为零;当小滑块的速度v=gR时,对轨道的压力为零,轨道对地面的压力N=Mg,当小滑块的速度v>gR时,对轨道的压力向上,轨道对地面的压力N<Mg,故选项A错误;小滑块在B点时,对轨道的作用力沿水平方向向左,所以轨道对地有向左运动的趋势,地面给轨道向右的摩擦力;竖直方向上对轨道无作用力,所以轨道对地面的压力N=Mg,故选项B正确;小滑块在C点时,在水平方向对轨道无作用力,所以地面对轨道没有摩擦力;小滑块做圆周运动,轨道对小滑块的支持力大于其重力,其合力提供向上的向心力,所以滑块对轨道的压力大于其重力,所以轨道对地面的压力N>(M+m)g,故选项C错误;小滑块在D点时,对轨道的作用力沿水平方向向右,所以轨道对地有向右运动的趋势,地面给轨道向左的摩擦力;竖直上方向对轨道无作用力,所以轨道对地面的压力N=Mg,故选项D 错误。

相关文档
最新文档