《常微分方程》答案 习题4.1

合集下载

高等数学常微分方程讲义,试题,答案

高等数学常微分方程讲义,试题,答案

高等数学常微分方程讲义,试题,答案常微分方程§4.1 基本概念和一阶微分方程(甲)内容要点一、基本概念1、常微分方程和阶2、解、通解和特解3、初始条件4、齐次线性方程和非齐次线性方程二、变量可分离方程及其推广1、dyp(x)Q(y)dx(Q(y) 0) 2、齐次方程:dy dxy f x三、一阶线性方程及其推广1、dydyP(x)y Q(x) 2、P(x)y Q(x)y dxdx( 0,1)四、全微分方程及其推广(数学一)1、P(x,y)dx Q(x,y)dy 0,满足Q P2、P(x,y)dx Q(x,y)dy 0,五、差分方程(数学三)(乙)典型例题例1、求y x22Q p (RQ) (RP)但存在R(x,y),使x y x ydydyxy的通解。

dxdx解:y (x xy)22dy0dxydyy2 x d__y x2 y1 x2yduu2令u,则u x udx x(1 u)du 0xdxu 11 udxdu u x C1 ln|xu| u C1例2C1 uce, y cedyy的通解d__ y4uyx求微分方程d__ y4dx1解:此题不是一阶线性方程,但把x看作未知函数,y看作自变量,所得微分方程即x y3是一阶dyydyy11dy 14 dy 133yydy C y Cy 线性方程P(y) ,Q(y) y x e yey 3例3设y e是xy p(x)y x的一个解,求此微分方程满足yx ln2 0的特解xx解:将y e代入微分方程求出P(x) xe先求出对应齐次方程x,方程化为dy(e x 1)y 1 dxx xdy(e x 1)y 0的通解y cex e根据解的结构立刻可得非齐次方程通解y ex cex e dx再由yx ln2 0得2 2ec 0,c e例4设1212故所求解y e exx e x12满足以下件F(x) f(x)g(x),其中f(x),g(x)在( , )内f (x) g(x),g (x) f(x),且f(0) 0,f(x) g(x) 2ex(1)求F(x)所满足的一阶微分方程(2)求出F(x)的表达式解:(1)由F (x) f (x)g(x) f(x)g (x) g2(x) f2(x) [f(x) g(x)]2 2f(x)g(x) (2ex)2 2F(x) 可知F(x)所满足的一阶微分方程为F (x) 2F(x) 4e2x (2)F(x) e2dx4e2xe 2dxdx c e 2x 4e4xdx c e2x ce 2x将F(0) f(0)g(0) 0代入,可知c 1 于是例52F(x) e2x e 2xdy2(1 y)的通解求微分方程(y x) xdxsec2udusec3u 解:令y tanu,x tanv, 原方程化为(tanu tanv)secv2secvdv化简为sin(u v)dudzdudz 1 再令z u v,则1,方程化为sinz 1 sinz dvdvdvdv sinz(sinz 1) 1dz dv c, 1 sinz 1 sinzdz v c,1 sinzv c21 sinz1 sinz z v c 2coszz tanz secz v c z最后Z再返回x,y,v也返回x,即可。

常微分方程第三版课后答案(00001)

常微分方程第三版课后答案(00001)

常微分方程第三版课后答案常微分方程 2.11.xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分课后答案第四章

常微分课后答案第四章

第四章 高阶微分方程§4.1 线性微分方程的一般理论习题4.11.设)(t x 和)(t y 是区间[]b a ,上的连续函数,证明:若在区间[]b a ,上有≠)()(t y t x 常数或≠)()(t x t y 常数,则)(t x 和)(t y 在区间[]b a ,上线性无关.(提示:用反证法) 证明 )(t x 和)(t y 是区间[]b a ,上线性相关,则存在不全为0的常数21,c c 使得0)()(21≡+t y c t x c ,[]b a t ,∈,若)0(,021≠≠c c 或得12)()(c c t y t x -≡(或21)()(c c t x t y -≡)[]b a t ,∈∀成立。

与假设矛盾,故)(t x 和)(t y 在区间[]b a ,上线性无关.2.证明非齐次线性方程的叠加原理:设)(1t x ,)(2t x 分别是非齐次线性方程)()()(1111t f x t a dt xd t a dt x d n n n n n =+++-- (1) )()()(2111t f x t a dtxd t a dt x d n n n nn =+++-- (2) 的解,则)()(21t x t x +是方程)()()()(21111t f t f x t a dtxd t a dt x d n n n n n +=+++-- (3) 的解.证明 因为)(1t x ,)(2t x 分别是方程(1)、(2)的解,所以)()()(1111111t f x t a dt x d t a dt x d n n n n n =+++-- , )()()(2212112t f x t a dtx d t a dt x d n n n nn =+++-- , 二式相加得,)()())(()()()(21211211121t f t f x x t a dt x x d t a dt x x d n n n n n +=++++++-- ,即)()(21t x t x +是方程(3)的解.3.(1).试验证022=-x dt x d 的基本解组为tt e e -,,并求方程t x dtx d cos 22=-的通解。

王高雄版《常微分方程》习题解答4.1

王高雄版《常微分方程》习题解答4.1

习题4.11.设和是区间上的连续函数,证明:如果在区间上有()t x ()t y b t a ≤≤b t a ≤≤常数或常数,则和在区间上线形无关。

()()≠t y t x ()()t x t y ()t x ()t y b t a ≤≤证明:假设在,在区间上线形相关()t x ()t y b t a ≤≤则存在不全为零的常数,,使得αβ()()0=+t y t x βα那么不妨设不为零,则有()t x ()()βα-=t x t y 显然为常数,与题矛盾,即假设不成立,在区间上线形无关βα-()t x ()t y b t a ≤≤2.证明非齐线形方程的叠加原理:设,分别是非齐线形方程()t x 1()t x 2(1)()()=+++--x t a dtxd t a dt x d n n n n n 111()t f 1(2)()()=+++--x t a dtxd t a dt x d n n n nn 111()t f 2的解,则+是方程 +的解。

()t x 1()t x 2()()=+++--x t a dtxd t a dt x d n n n n n 111()t f 1()t f 2证明:由题可知,分别是方程(1),(2)的解()t x 1()t x 2则: (3)()()()()()()t f t x t a dtt x d t a dt t x d n n n n n 1111111=+++--(4)()()()()()()t f t x t a dtt x d t a dt t x d n n n n n 2212112=+++-- 那么由(3)+(4)得:+()()()()()()()()()()()=++++++--t x t x t a dt t x t x d t a dt t x t x d n n n n n 211211121 ()t f 1()t f 2即+是方程是+的解。

《常微分方程》答案_习题4.2

《常微分方程》答案_习题4.2

习题4.21. 解下列方程(1)045)4(=+''-x x x 解:特征方程1122045432124-==-===+-λλλλλλ,,,有根故通解为x=tt t t e c e c e c e c --+++432221 (2)03332=-'+''-'''x a x a x a x 解:特征方程0333223=-+-a a a λλλ有三重根a =λ故通解为x=at at at e t c te c e c 2321++ (3)04)5(=''-x x解:特征方程0435=-λλ有三重根0=λ,=4λ2,=5λ-2 故通解为54232221c t c t c e c e c x t t ++++=-(4)0102=+'+''x x x解:特征方程01022=++λλ有复数根=1λ-1+3i,=2λ-1-3i故通解为t e c t e c x t t 3sin 3cos 21--+= (5) 0=+'+'x x x解:特征方程012=++λλ有复数根=1λ,231i +-=2λ,231i-- 故通解为t ec t ec x t t 23sin 23cos 212211--+=(6) 12+=-''t s a s 解:特征方程022=-a λ有根=1λa,=2λ-a当0≠a 时,齐线性方程的通解为s=at at e c e c -+21Bt A s +=~代入原方程解得21aB A -== 故通解为s=at at e c e c -+21-)1(12-t a当a=0时,)(~212γγ+=t t s 代入原方程解得21,6121==γγ 故通解为s=t c c 21+-)3(612+t t(7) 32254+=-'+''-'''t x x x x解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ 1 齐线性方程的通解为x=t t t te c e c e c 3221++又因为=λ0不是特征根,故可以取特解行如Bt A x +=~代入原方程解得A=-4,B=-1故通解为x=t t t te c e c e c 3221++-4-t (8) 322)4(-=+''-t x x x解:特征方程121201224-===+-λλλλ重根,重根有 故齐线性方程的通解为x=t t t t te c e c te c e c --+++4321取特解行如c Bt At x ++=2~代入原方程解得A=1,B=0,C=1 故通解为x=t t t t te c e c te c e c --+++4321+12+t (9)t x x cos =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=--取特解行如t B t A x sin cos ~+=代入原方程解得A=21,21-=B 故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--)sin (cos 21t t +-(10) t x x x 2sin 82=-'+''解:特征方程022=-+λλ有根=1λ-2,=2λ 1 故齐线性方程的通解为x=t t e c e c 221-+ 因为+-2i 不是特征根取特解行如t B t A x 2sin 2cos ~+=代入原方程解得A=56,52-=-B 故通解为x=t t e c e c 221-+t t 2sin 562cos 52-- (11)t e x x =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=-- =λ1是特征方程的根,故t Ate x =~代入原方程解得A=31故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--+t te 31(12)t e s a s a s =+'+''22解:特征方程0222=++a a λλ有2重根=λ-a 当a=-1时,齐线性方程的通解为s=t tte c e c 21+,=λ1是特征方程的2重根,故t e At x 2~=代入原方程解得A=21通解为s=22121t te c e c t t ++,当a ≠-1时,齐线性方程的通解为s=at atte c e c --+21,=λ1不是特征方程的根,故t Ae x =~代入原方程解得A=2)1(1+a故通解为s=at at te c e c --+21+te a 2)1(1+ (13)t e x x x 256=+'+''解:特征方程0562=++λλ有根=1λ-1,=2λ-5 故齐线性方程的通解为x=tte c e c 521--+=λ2不是特征方程的根,故t Ae x 2~=代入原方程解得A=211 故通解为x=t t e c e c 521--++t e 2211 (14)t e x x x t cos 32-=+'-''解:特征方程0322=+-λλ有根=1λ-1+2i,=2λ-1-2i故齐线性方程的通解为t e c t e c x t t 2sin 2cos21+=i ±-1不是特征方程的根, 取特解行如t e t B t A x -+=)sin cos (~代入原方程解得A=414,415-=B 故通解为t e c t e c x t t 2sin 2cos21+=+t e t t --)sin 414cos 415((15) t t x x 2cos sin -=+''解:特征方程012=+λ有根=1λi,=2λ- i 故齐线性方程的通解为t c t c x sin cos 21+=t x x sin =+'',=1λi,是方程的解 )sin cos (~t B t A t x +=代入原方程解得 A=21- B=0 故t t x cos 21~-=t x x 2cos -=+'' t B t A x 2sin 2cos ~+=代入原方程解得 A=31B=0 故t x 2cos 31~= 故通解为t c t c x sin cos 21+=t t cos 21-t 2cos 31+习 题 6-11. 求出齐次线性微分方程组y t A dtdy)(=的通解,其中A (t )分别为:(1)⎪⎪⎭⎫ ⎝⎛=1011)(t A ;(2)⎪⎪⎭⎫⎝⎛-=0110)(t A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000010100)(t A 。

常微分方程答案4.1

常微分方程答案4.1

习题3.已知齐次线性微分方程的基本解组12,x x ,求下列方程对应的非齐次线性微分方程的通解:(2)1211,,11tt x x xt x t x et t解:令所求通解为12tx tc t t c t e则12111222120111ttttc t t c t e c tc t t c ttec ttec t tc tet 所以,所求通解为2121tx tte tt (5)2212634,,ln t xtx x t t x t x t t解:222663434x x t xtx x t tx t t t令所求通解为12ln x tc t t c t t t则121122211226ln 0ln 346ln 34634341ln 3ln 346ln c t t c t t t c t ttc t tc tt tc t tt c t t t tc ttt所以,所求通解为2212ln 343ln x ttt ttt t4.已知方程220d x xdt有基本解组为tte e ,,试求此方程适合初值条件1,00x x 及0,01x x的基本解组(称为标准基本解组,即有01W ),并由此求出方程的适合初值条件00,0x x x x 的解。

解:因为tte e ,是方程220d x xdt的基本解组,故220d x xdt的通解为1212,,ttx tc ec e c c 由01,00x x 可得,121212111ch 022ttc c c c x teetc c 由00,01x x 可得,1212120111,sh 1222ttc c c c x teetc c 又cht 和sht 线性无关,所以220d x xdt适合初值条件01,00x x 及00,01x x 的基本解组为cht ,sht ,从而220d x xdt的通解又可表示为1212ch sh ,,x tc tc t c c 故由000,0x x x x 可得1020,c x c x ,于是适合初值条件000,0x x x x 的解为00ch sh x tx tx t。

第四章常微分方程参考答案(1)

爱启航在线考研第四章常微分方程4.1答案:应选(C )解析:原方程写成23e 0+'+=yxyy ,分离变量有23e d =e d y x y y x --,积分得232e 3e --=x y C ,其中C 为任意常数.4.2答案:应填sin e=C xy ,其中C 为任意常数.解析:原方程分离变量,有d cos d ln sin =y xx y y x,积分得1ln |ln |ln |sin |ln =+y x C ,通解为ln sin =y C x 或sin e=C x y ,其中C 为任意常数.4.3答案:应填()2112e-=x y x 解析:原方程化为d 1d ⎛⎫=- ⎪⎝⎭y x x y x .积分得通解211ln ||ln ||2y C x x =-,即122ex y Cx -=.由初值(1)1=y 解出12e C =得特解.故答案为:()2112e-=x y x .4.4答案:应选(B )解析:原方程求导得()2()'=f x f x ,即()2()'=f x f x ,积分得2()e =x f x C ,又(0)ln 2=f ,故ln 2=C ,从而2()e ln 2=x f x .故应选(B ).4.5解:曲线()=y f x 在点(,)x y 处的切线方程为()'-=-Y y y X x ,令0=X ,得到切线在y 轴截距为'=-xy y xy ,即(1)'=-xy y x .此为一阶可分离变量的方程,于是d 11d ⎛⎫=- ⎪⎝⎭y x y x ,两边积分有1ln ||ln =-y C x x ,得爱启航线考研到e =x Cx y .又()11e y -=,故1=C ,于是曲线方程为e =xx y .4.6解:22d d 11+y y y x x x x =∆=+,得2d d 1=+y y x x ,变量分离2d 1d 1=+y x y x.两边积分得1ln arctan y x C =+.可得arctan exy C =又()0y =π,则C =π.所以arctan πexy =,()πarctan141πeπe y ==.4.7解:令=yu x,即=y ux ,则y u x u ''=+,又由题给表达式可得2y u u '=,即有u x u '+2u u =-d 1d 22=-x xu u ,两边积分得1ln 1ln ln u x C -=+,即ln(1ln ln 1=-+⇒-=⇒-=y Cu x C x xy C x x.4.8答案:应填2(ln ||)=+x y y C 解析:将x 看成未知函数,原方程改写为2d 1d 222+==+x x y x y xy y x这是一个伯努利方程,令2=z x ,有d 1d -=z z y y ,得11d d 2e ed (ln ||)-⎛⎫⎰⎰==+=+ ⎪ ⎪⎝⎭⎰y y y y x z y C y y C .故答案为:2(ln ||)=+x y y C ,其中C 为任意常数.4.9答案:应填()cos +x C x解析:属于一阶非齐次线性方程,直接根据一阶非齐次线性微分方程的通解公式即可得出答案.故答案为:()cos +x C x ,其中C 为任意常数.4.10答案:应填1爱启航在线考研解析:()2d 2d 22e 4e d e4ed x x xxy x x C x x C--⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰222e (21)e (21)e x x xx C x C --⎡⎤=-+=-+⎣⎦.当0=x 时,1=-y ,则0=C .可得21=-y x ,则()11=y .故答案为1.4.11答案:应填1解析:由11()()'+=y P x y Q x 及22()()'+=y P x y Q x 得()()1212()()()αββαβ'+++=+y y P x ay y Q x .又因12αβ+y y 满足原方程,故应有()()()β+=a Q x Q x ,即1αβ+=.故答案为1.4.12解:()sin d sin d e cos e d -⎛⎫⎰⎰=+ ⎪⎝⎭⎰x xx x gx x x C ()cos cos e cos ed -=+⎰xxx x C又()00g =,故()()cos cos cos 0e cos ed cos ed limlime lim xxxx x x x x Cx x Cg x xxx--→→→++==⋅=⎰⎰cos 0e lim cos e 1x x x -→⋅=.4.13解:2d 1d 2y x x y =-,则2d 2d x x y y =-,即2d 2d x x yy-=-()()2d 2d 222222111e e d e e d e 224yy y y y x y y C y y C y y C --⎛⎫⎰⎰⎡⎤=-+=-+=+++ ⎪⎣⎦⎝⎭⎰⎰.4.14解:令=tx u ,则u t x d d =,则代入到题给表达式101()d ()d xf tx t f u u x =⎰⎰,可得20()d 2()xf u u xf x x =+⎰.两边求导得()2()2()2f x f x xf x x '=++,则()2()2f x xf x x '+=-.从而11131d d 2222222()e (1)ed 33x x x x f x x C x x C x Cx ---⎛⎫⎛⎫⎰⎰=-+-+=-+ ⎪⎝ ⎝⎭=⎪⎭⎰.爱启航在线考研4.15解:将原方程改写成211cos sin y x x yy '+=-,并令1z y =,则21z y y ''=-,且原方程化为sin cos z z x x '-=-.d de (sin cos )e d x x z x x x C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰e (sin cos )e d x x x x x C -⎡⎤=-+⎣⎦⎰()e sin ed cose d xxx x x x x C --=-+⎰⎰,其中()sin e d sin d e sin e e cos d x x x x x x x x x x ----=-=-+⎰⎰⎰,故()e sin e e sin x x x z x C C x -=-+=-,即1e sin x C x y=-为所求通解.4.16答案:应选(C )解析:因原方程阶数为2,通解中应包含两个任意常数(可求出通解为3126++x C C x );特解中不含有任意常数(3*6=x y 为特解);36+x Cx 满足原方程,为原方程的解,故选项(A ),(B ),(C )都不对,应选(C ).4.17解:(1)令y p '=,则d d p y x ''=,从而2d 1d pp x=+,则2d d 1p x p =+积分得p arctan 1arctan p x C =+,故()1d tan d yp x C x=+=,则两边对x 积分1d tan()d y x C x =+⎰⎰,得()1121sin()d ln cos cos()x C y x x C C x C +==-+++⎰.(2)()10xy xy C '''=⇒=,即1y xC '=,故12ln y C x C =+.4.18解:由21e x y =,得212e x y x '=,()22124e x y x ''=+;由22e x y x =,得222(12)e x y x '=+,()22364e x y x x ''=+.因爱启航在线考研()()()22222211144224e 42e 42e 0x x x y xy x y x x x x '''-+-=+-⋅+-=.()()()()222232222244264e 412e 42e 0x x x y xy x y x x x x x x '''-+-=+-++-=.故1y 与2y 都是方程的解.又因21y x y =不等于常数,故1y 与2y 线性无关.于是方程的通解为()2112212e x y C y C y C C x =+=+.4.19答案:应选(A )解析:根据高阶线性微分方程根的形式可知,选(A ).4.20答案:应选(B )解析:由题意可知,-1是特征方程二重特征根,1是特征方程的特征根,故特征方程为()()2110+-=r r ,即3210+--=r r r .故三阶常系数齐次线性方程为0y y y y ''''''+--=.故选(B ).4.21答案:应选(C )解析::特征方程为2220++=r r 即2(1)1+=-r ,解得特征根为1,21i r =-±.而()e sin x f x x -=,i 1i w ±=-±λ是特征根,故特解的形式为*e (cos sin )x y x a x b x -=+.4.22答案:应填()*22e xy x ax bx c dx =+++解析:特征方程为220-=r r ,特征根10r =,22r =.对21()1=+f x x ,10λ=是特征根,所以()*21y x ax bx c =++.对22()exf x =,22λ=也是特征根,故有*22e =x y dx .从而***12=+y y y 就是特解.故答案为()*22e x y x ax bx c dx =+++.4.23解:所给微分方程的特征方程为256(2)(3)0++=++=r r r r ,特征根为12=-r ,23=-r .于是,对应齐次微分方程的通解为2312)e e xx y x C C --=+.爱启航在线考研设所给非齐次方程的特解为*e xy A -=.将*()y x 代入原方程,可得1A =.由此得所给非齐次方程得特解*e xy -=.从而,所给微分方程得通解为2312()e e e xx x y x C C ---=++,其中1C ,2C 为任意常数.4.24答案:应选(C )解析:将()()000y y '==代入3e xy py qy '''++=,得()01''=y .()()()()()22000ln 122limlimlimlim 2x x x x x x x y x y x y x y x →→→→+===='''.故选C.4.25答案:应填12e(cos sin )e xxC x C x ++解析:所给微分方程的特征方程为22201i -+=⇒=±r r r ,从而齐次通解为12e (cos sin )x C x C x +,设特解为e x A ,代入方程得e 2e 2e e 1x x x x A A A A -+=⇒=,即得特解为e x .非齐次通解为12e(cos sin )e xx C x C x ++.。

《常微分方程》东师大第二版习题答案

《常微分方程》习题解答东北师范大学微分方程教研室(第二版)高等教育出版社习题 1.21求下列可分离变量微分方程的通解:(1)xdx ydy =解:积分,得1222121c x y +=即cy x =−22(2)y y dxdyln =解:1,0==y y 为特解,当1,0≠≠y y 时,dx yy dy=ln ,积分,得0ln ,ln ln 11≠=±=+=c ce e e y c x y xx c ,即xcee y =(3)y x e dxdy−=解:变形得dx e dy e xy=积分,得c e e xy =−(4)0cot tan =−xdy ydx 解:变形得x y dx dy cot tan =,0=y 为特解,当0≠y 时,dx xxdy y y cos sin sin cos =.积分,得11cos sin ln ,cos ln sin ln c x y c x y =+−=,即0,cos sin 1≠=±=c c ex y c 2.求下列方程满足给定初值条件的解:(1)1)0(),1(=−=y y y dxdy解:1,0==y y 为特解,当1,0≠≠y y 时,dx dy yy =−−111(,积分,得0,1,1ln11≠=±=−+=−c ce e e yy c x yy x x c 将1)0(=y 代入,得0=c ,即1=y 为所求的解。

(2)1)0(,02)1(22==+′−y xy y x 解:0,1222=−−=y x xy dx dy 为特解,当0≠y 时,dx x xy dy 1222−−=,积分,得c x y+−−=−1ln 12将1)0(=y 代入,得1−=c ,即11ln 12+−=x y 为所求的解。

(3)0)2(,332==′y y y 解:0=y 为特解,当0≠y 时,dx ydy =323,积分,得331)(,c x y c x y +=+=将0)2(=y 代入,得2−=c ,即3)2(−=x y 和0=y 均为所求的解。

丁同仁常微分方程第一版习题参考解答

丁同仁常微分方程第一版习题参考解答丁同仁常微分方程第一版习题参考解答1.1微分方程及其解的定义习题参考解答1.2微分方程及其解的几何解释习题参考解答2.1恰当方程习题参考解答2.2变量分离的方程习题参考解答2.3一阶线性方程习题参考解答2.4初等变换法习题参考解答2.5积分因子法习题参考解答2.6应用举例习题参考解答3.1Picard 存在和唯一性定理习题参考解答3.2Peano 存在性定理习题参考解答3.3解的延拓习题参考解答3.4比较定理及其应用习题参考解答4.1一阶隐式微分方程习题参考解答4.2奇解习题参考解答4.3包络习题参考解答5.1几个例子习题参考解答5.2n维线性空间的微分方程习题参考解答5.3解对初值和参数的连续依赖性习题参考解答5.4解对初值和参数的连续可微性习题参考解答6.1一般理论习题参考解答6.2常系数线性微分方程组习题参考解答6.3高阶线性微分方程习题参考解答6.4算子法和 Laplace 变换法简介习题参考解答7.1Cauchy 定理习题参考解答7.2幂级数解法习题参考解答7.3Legendre 多项式习题参考解答7.4广义幂级数解法习题参考解答7.5Bessel 函数习题参考解答8.2解的稳定性习题参考解答8.3平面上的动力系统, 奇点与极限环习题参考解答9.1Sturm 比较定理习题参考解答9.2Sturm--Liouville 边值问题的特征值习题参考解答9.3特征函数系的正交性习题参考解答9.4一个非齐次边值问题的例子习题参考解答9.5周期边值问题习题参考解答10.2首次积分的性质习题参考解答10.4大范围的首次积分习题参考解答11.1一阶齐次线性偏微分方程习题参考解答11.2一阶拟线性偏微分方程习题参考解答11.3几何解释习题参考解答。

常微分方程(第三版)课后答案

常微分方程 2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123 yxy dx dyx y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题4.11. 设()t x 和()t y 是区间b t a ≤≤上的连续函数,证明:如果在区间b t a ≤≤上有()()≠t y t x 常数或()()t x t y 常数,则()t x 和()t y 在区间b t a ≤≤上线形无关。

证明:假设在()t x ,()t y 在区间b t a ≤≤上线形相关则存在不全为零的常数α,β,使得()()0=+t y t x βα 那么不妨设()t x 不为零,则有()()βα-=t x t y 显然βα-为常数,与题矛盾,即假设不成立()t x ,()t y 在区间b t a ≤≤上线形无关 2. 证明非齐线形方程的叠加原理:设()t x 1,()t x 2分别是非齐线形方程()()=+++--x t a dtxd t a dt x d n n n n n 111()t f 1 (1) ()()=+++--x t a dtxd t a dt x d n n n nn 111()t f 2 (2) 的解,则()t x 1+()t x 2是方程 ()()=+++--x t a dtxd t a dt x d n n n n n 111()t f 1+()t f 2的解。

证明:由题可知()t x 1,()t x 2分别是方程(1),(2)的解则:()()()()()()t f t x t a dt t x d t a dt t x d n n n n n 1111111=+++-- (3) ()()()()()()t f t x t a dtt x d t a dt t x d n n n n n 2212112=+++-- (4) 那么由(3)+(4)得:()()()()()()()()()()()=++++++--t x t x t a dt t x t x d t a dt t x t x d n n n n n 211211121 ()t f 1+()t f 2即()t x 1+()t x 2是方程是()()=+++--x t a dt xd t a dt x d n n n n n 111()t f 1+()t f 2的解。

3. 试验证=-x dt x d 220的基本解组为tt e e -,,并求方程=-x dt x d 22t cos 的通解。

证明:由题将te 代入方程=-x dtx d 220得:t e -t e =0,即te 是该方程的解,同理求得te -也是该方程的解 又显然ttee -,线形无关,故tt ee -,是=-x dtxd 220的基本解组。

由题可设所求通解为:()=t x ()()t t e t c e t c -+21,则有:解之得:()()()()2211sin cos 41;sin cos 41c t t e t c c t t e t c t t ++-=+--=- 故所求通解为:()t e c e c t x tt cos 2121-+=-4. 试验证=---+x t dt dx t t dtx d 111220有基本解组t ,t e ,并求方程 =---+x t dt dx t t dtx d 11122t-1的通解。

解:由题将t 代入方程=---+x t dt dx t t dtx d 111220得: 01111122=-+-=---+t tt t t t dt dt t t dtt d ,即t 为该方程的解 同理te 也是该方程的解,又显然t ,te 线形无关,故t ,te 是方程=---+x t dt dx t t dtx d 111220的基本解组 由题可设所求通解为()()()te t c t t c t x 21+=,则有:()()()()⎪⎩⎪⎨⎧='-'='+'--t e t c e t c e t c e t c t t t t cos 02121()()()()⎪⎩⎪⎨⎧-='+'='+'102121t e t c t c e t c t t c t t 解之得:()()()2211,c e te t c c t t c t t ++-=+-=-- 故所求通解为()()2211+-+=t e c t c t x t5. 以知方程=-x dtxd 220的基本解组为t t e e -,,求此方程适合初始条件()()()()10,0000,10='=='=x x x x 及的基本解组(称为标准基本解组,即有()10=w )并求出方程的适合初始条件()()'='=000,0x x x x 的解。

解:tte e -,时间方程=-x dtxd 220的基本解组,故存在常数21,c c 使得:()t te c e c t x -+=21于是:()t t e c e c t x --='21令t=0,则有方程适合初始条件()()00,10='=x x ,于是有:⎪⎩⎪⎨⎧=-=+012010201e c e c e c e c 解得:1c 21,212==c 故()t t e e t x -+=2121 又该方程适合初始条件()()10,00='=x x ,于是:⎪⎩⎪⎨⎧=-=+12010201e c e c e c e c 解得:21,2121-==c c 故()t t e e t x --=2121 显然()t x 1,()t x 2线形无关,所以此方程适合初始条件的基本解组为:()t t e e t x -+=2121, ()t t e e t x --=2121 而此方程同时满足初始条件()()'='=000,0x x x x ,于是:⎪⎩⎪⎨⎧'=-=+0020100201x e c e c x e c e c 解得:2,2002001'-='+=x x c x x c 故()tt e x x e x x t x -'-+'+=220000满足要求的解。

6. 设()t x i ()n i ,,2,1 =是齐线形方程(4.2)的任意n 个解。

它们所构成的伏朗斯行列式记为()t w ,试证明()t w 满足一阶线形方程()01=+'w t a w ,因而有:()()()⎰=-tt dss a et w t w 010()b a t ,∈解:()()()()()()()()()n nn n n nn n n nn nn n n n n n x x x x x x x x x x x x x x x x x x x x t w12211111111111----''=''++''''=' 又()t x i ()n i ,,2,1 =满足()()0111=+++--i n n i n ni n x t a dtx d t a dtx d即()()⎪⎪⎭⎫ ⎝⎛++-=--x t a dt x d t a dt x d n n in ni n 111 ()()()121-'n k t a k t w k ,,,为,加到最后一行行都乘以中第则:()()()()()()()()()t w t a t a x x x x x x x x t w n nn n n nn n 1111122111-=-''='----即()01=+'w t a w 则有:()()()dt t a t w t w 1-=' ()()()()()⎰-=--=t t dss a t w n t w ds s a t t t w t t 010100ln ,ln 则积分:到两边从即:()()()⎰=-tt dss a e t w t w 010 ()b a t ,∈7. 假设()01≠t x 是二阶齐线形方程()()021=+'+''x t a x t a x (*)的解,这里()()t a t a 21和在区间[]b a ,上连续,试证:(1)()t x 2是方程的解的充要条件为:[][]0,,21121=+'x x w a x x w ;(2)方程的通解可以表示为:()⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-=⎰⎰2121110exp 1c dt ds s a x c x x t t ,其中21,c c 为常数,[]b a t t ,,0∈证:(1)[][]0,,21121=+'x x w a x x w()的解。

为即(*)0,00002121212212121211211211211212112112121x x x a x a x x a x a x x x x a x x a x x a x x a x x x x a x x a x x x x ≠=+'+"⇔=⎪⎭⎫ ⎝⎛+'+"⇔='-'++'+"⇔='-'+'"-"⇔(2)因为21,x x 为方程的解,则由刘维尔公式()()()()⎰='-'⎰=''--tt tt dss a ds s a et w x x x x e t w x x x x 01010212102121:,即两边都乘以211x 则有:()()⎰=⎪⎪⎭⎫⎝⎛-tt dss a ex t w dtx x d 0121012,于是:()()122112221112010111x c dt e x c x c dt e x c x x tt tt ds s a dss a ⎪⎪⎭⎫ ⎝⎛+⎰=+⎰=--⎰⎰即:()()()0,1,0,101012121211221≠⎰=''=⎰===--⎰tt tt ds s a dss a e x x x x t w dt ex x x c c 又:得:取从而方程的通解可表示为:()⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-=⎰⎰2121110exp 1c dt ds s a x c x x t t ,其中21,c c 为常数,[]b a t t ,,0∈。

8. 试证n 阶非齐线形微分方程(4.1)存在且最多存在n+1个线形无关解。

证:设()()()t x t x t x n ,,,21 为(4.1)对应的齐线形方程的一个基本解组,()t x 是(4.1)的一个解,则:()()()()()()(),,,,,21t x t x t x t x t x t x t x n +++ (1),均为(4.1)的解。

相关文档
最新文档