多重共线性考试考试与答案
多重共线性习题及答案

多重共线性一、单项选择题1、当模型存在严重的多重共线性时,OLS估计量将不具备()A、线性B、无偏性C、有效性D、一致性2、经验认为某个解释与其他解释变量间多重共线性严重的情况是这个解释变量的VIF()A、大于B、小于C、大于5D、小于53、模型中引入实际上与解释变量有关的变量,会导致参数的OLS估计量方差()A、增大B、减小C、有偏D、非有效4、对于模型y t=b0+b1x1t+b2x2t+u t,与r12=0相比,r12=0.5时,估计量的方差将是原来的()A、1倍B、1.33倍C、1.8倍D、2倍5、如果方差膨胀因子VIF=10,则什么问题是严重的()A、异方差问题B、序列相关问题C、多重共线性问题D、解释变量与随机项的相关性6、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( )A 异方差B 序列相关C 多重共线性D 高拟合优度7、存在严重的多重共线性时,参数估计的标准差()A、变大B、变小C、无法估计D、无穷大8、完全多重共线性时,下列判断不正确的是()A、参数无法估计B、只能估计参数的线性组合C、模型的拟合程度不能判断D、可以计算模型的拟合程度二、多项选择题1、下列哪些回归分析中很可能出现多重共线性问题()A、资本投入与劳动投入两个变量同时作为生产函数的解释变量B、消费作被解释变量,收入作解释变量的消费函数C、本期收入和前期收入同时作为消费的解释变量的消费函数D、商品价格、地区、消费风俗同时作为解释变量的需求函数E、每亩施肥量、每亩施肥量的平方同时作为小麦亩产的解释变量的模型2、当模型中解释变量间存在高度的多重共线性时()A、各个解释变量对被解释变量的影响将难以精确鉴别B、部分解释变量与随机误差项之间将高度相关C、估计量的精度将大幅度下降D、估计对于样本容量的变动将十分敏感E、模型的随机误差项也将序列相关3、下述统计量可以用来检验多重共线性的严重性()A、相关系数B、DW值C、方差膨胀因子D、特征值E、自相关系数4、多重共线性产生的原因主要有()A、经济变量之间往往存在同方向的变化趋势B、经济变量之间往往存在着密切的关联C、在模型中采用滞后变量也容易产生多重共线性D、在建模过程中由于解释变量选择不当,引起了变量之间的多重共线性E、以上都正确5、多重共线性的解决方法主要有()A、保留重要的解释变量,去掉次要的或替代的解释变量B、利用先验信息改变参数的约束形式C、变换模型的形式D、综合使用时序数据与截面数据E、逐步回归法以及增加样本容量6、关于多重共线性,判断错误的有()A、解释变量两两不相关,则不存在多重共线性B、所有的t检验都不显著,则说明模型总体是不显著的C、有多重共线性的计量经济模型没有应用的意义D、存在严重的多重共线性的模型不能用于结构分析7、模型存在完全多重共线性时,下列判断正确的是()A、参数无法估计B、只能估计参数的线性组合C、模型的判定系数为0D、模型的判定系数为1三、简述1、什么是多重共线性?产生多重共线性的原因是什么?2、什么是完全多重共线性?什么是不完全多重共线性?3、完全多重共线性对OLS估计量的影响有哪些?4、不完全多重共线性对OLS估计量的影响有哪些?5、从哪些症状中可以判断可能存在多重共线性?6、什么是方差膨胀因子检验法?四、判断(1)如果简单相关系数检测法证明多元回归模型的解释变量两两不相关,则可以判断解释变量间不存在多重共线性。
多重共线性-例题

2.多重共线性的经济解释(1)经济变量在时间上有共同变化的趋势。
如在经济上升时期,收入、消费、就业率等都增长,当经济收缩期,收入、消费、就业率等又都下降。
当这些变量同时进入模型后就会带来多重共线性问题。
0.E+001.E+112.E+113.E+114.E+11808284868890929496980002GDPCONS0.E+001.E+112.E+113.E+114.E+110.0E+005.0E+101.0E+111.5E+112.0E+112.5E+11CONSGDP of HongKong(2)解释变量与其滞后变量同作解释变量。
0.E+001.E+112.E+113.E+114.E+11808284868890929496980002GDP0.E+001.E+112.E+113.E+114.E+110.E+001.E+112.E+113.E+114.E+11GDP(-1)GDP3.多重共线性的后果(1)当 | r x i x j | = 1,X 为降秩矩阵,则 (X 'X ) -1不存在,βˆ= (X 'X )-1 X 'Y 不可计算。
(2)若 | r x i x j | ≠1,即使 | r x i x j | →1,βˆ仍具有无偏性。
E(βˆ) = E[(X 'X )-1 X 'Y ] = E[(X 'X ) -1X '(X β + u )] = β + (X 'X )-1X ' E(u ) = β. (3)当 | r x i x j | →1时,X 'X 接近降秩矩阵,即 | X 'X | →0,V ar(βˆ) = σ 2 (X 'X )-1变得很大。
所以βˆ丧失有效性。
以二解释变量线性模型为例,当r x i x j = 0.8时,Var(βˆ)为r x i x j = 0时的Var(βˆ)的2.78倍。
《计量经济学》第四章精选题及答案

《计量经济学》第四章精选题及答案第四章:多重共线性二、简答题1、导致多重共线性的原因有哪些?2、多重共线性为什么会使得模型的预测功能失效?3、如何利用辅回归模型来检验多重共线性?4、判断以下说法正确、错误,还是不确定?并简要陈述你的理由。
(1)尽管存在完全的多重共线性,OLS估计量还是最优线性无偏估计量(BLUE)。
(2)在高度多重共线性的情况下,要评价一个或者多个偏回归系数的个别显著性是不可能的。
(3)如果某一辅回归显示出较高的2R值,则必然会i存在高度的多重共线性。
(4)变量之间的相关系数较高是存在多重共线性的充分必要条件。
(5)如果回归的目的仅仅是为了预测,则变量之间存在多重共线性是无害的。
5、考虑下面的一组数据:Y -10 -8 -6 -4 -2 0 2 4 6 8 10X 1 2 3 4 5 6 7 8 9 10 11 2X 1 3 5 7 9 11 13 15 17 19 21 3如果我们用模型:12233i i i Y X X βββ=++来对以上数据进行拟合回归。
(1) 我们能得到这3个估计量吗?并说明理由。
(2) 如果不能,那么我们能否估计得到这些参数的线性组合?可以的话,写出必要的计算过程。
6、考虑以下模型:231234i i i i i Y X X X ββββμ=++++ 由于2X 和3X 是X 的函数,那么它们之间存在多重共线性。
这种说法对吗?为什么?7、在涉及时间序列数据的回归分析中,如果回归模型不仅含有解释变量的当前值,同时还含有它们的滞后值,我们把这类模型称为分布滞后模型(distributed-lag model )。
我们考虑以下模型:12313233i t t t t tY X X X X βββββμ---=+++++ 其中Y ——消费,X ——收入,t ——时间。
该模型表示当期的消费是其现期的收入及其滞后三期的收入的线性函数。
(1) 在这一类模型中是否会存在多重共线性?为什么?(2) 如果存在多重共线性的话,应该如何解决这个问题?8、设想在模型12233i i i i Y X X βββμ=+++ 中,2X 和3X 之间的相关系数23r 为零。
计量经济学教材P115:多重共线性练习题1

教材P115(1):影响中国电信业务总量Y变换的主要因素:邮政业务总量(X1,百亿元),中国人口数X2(亿人),市镇人口比重X3(%),人均GDPX4(千元),人均消费水平X5(千并进行检验(R2,t检验和F检验);(2)采用相关系数法、辅助回归判定系数法和方差膨胀因子法检验模型是否存在多重共线性;(3)若存在多重共线性,对模型进行修正,给出一个比较合理的模型。
(1)Y=781.5127+85.43091X1-74.95793X2+190.0814X3+1.105414X4-10.25376X51.2812272.834714 -1.202676 0.473005 0.133324 -0.643591R2检验:R-squared 0.992785由可决系数可知,模型对观测数据的拟合度良好。
T检验:自由度为n-k-1,9-5-1=3,显著性水平为5%的情况下的临界值为3.182,我们可以看到参数都是不显著的。
F检验:F-statistic55.04055通过查表可得:临界值为9.01,由此可知,模型在总体上是显著的。
(2)相关系数法检验:Y X1 X2 X3 X4 X5Y 1 0.95803622967 0.9374632689630.8971049058990.9092721687180.916461592287X1 0.95803622967 1 0.9968424596020.9700228717170.9883125918740.989432148651X2 0.937463268963 0.9968424596021 0.9839266333170.9914441435140.989685126413X3 0.897104905899 0.9700228717170.9839266333171 0.9647023284620.957769394639X4 0.909272168718 0.9883125918740.9914441435140.9647023284621 0.998809926768X5 0.916461592287 0.9894321486510.9896851264130.9577693946390.9988099267681由表我们可以看出解释变量之间两两高度相关。
第5章习题(共线性)

第5章 多重共线性1、所谓不完全多重共线性是指存在不全为零的数kλλλ,,,21 ,有( )是随机误差项式中v e v x x x .D e v x x x .C x x x .B v x x x .A k x x k k xk k k k k k ⎰∑=++++=++++=+++=++++ 122112212211221100λλλλλλλλλλλλ2、设21,x x 为解释变量,则完全多重共线性是( ).(021.0.021.22121121=+=++==+x x ex D v v x x C ex B x x A 为随机误差项)3.设线性回归模型为ii i i u x x y +++=33221βββ,下列表明变量之间具有完全多重共线性的是( )(其中v 为随机误差项)000.0000.0020.0020.321321321321=+*+*+*=*+*+*=+*++*=*++*v x x x D x x x C v x x x B x x x A4.设线性回归模型为ii i i u x x y +++=33221βββ,下列表明变量之间具有不完全多重共线性的是( )(其中v 为随机误差项)000.0000.0020.0020.321321321321=+*+*+*=*+*+*=+*++*=*++*v x x x D x x x C v x x x B x x x A5.如果模型中的解释变量存在完全的多重共线性,参数的最小二乘估计量是( )A .无偏的 B. 有偏的 C. 不确定 D. 确定的 6.下列说法不正确的是( )A.多重共线性产生的原因有模型中大量采用滞后变量B.多重共线性是样本现象C.检验多重共线性的方法有DW 检验法D.修正多重共线性的方法有增加样本容量7.在线性回归模型中,若解释变量1x 和2x 的观测值成比例,即有i2i 1kxx =,其中k 为非零常数,则表明模型中存在( )A. 异方差B. 多重共线性C. 序列自相关D. 设定误差 8.多重共线性是一种( )A .样本现象 B.随机误差现象 C .被解释变量现象 D.总体现象 9.逐步回归法既检验又修正了( )A .异方差性 B.自相关性 C .随机解释变量 D.多重共线性 二、多项选择1、设线性回归模型为ii i i u x x y +++=33221βββ,下列表明变量之间具有多重共线性的是( )(其中v 为随机误差项)31.031.0000.0000.0020.0020.3232321321321321=++=+=+*+*+*=*+*+*=+*++*=*++*v x x F x x E v x x x D x x x C v x x x B x x x A2.下列说法正确的是( )A. 多重共线性分为完全和不完全B. 多重共线性是一种样本现象C. 在共线性程度不严重的时候可进行预测分析D. 多重共线性的存在是难以避免的 3.能够检验多重共线性的方法有( )A.简单相关系数矩阵法B. DW 检验法C. 逐步回归法D.ARCH 检验法E.辅助回归法(又待定系数法)F. t 检验与F 检验综合判断法 4.能够修正多重共线性的方法有( )A.增加样本容量B. 数据的结合C.变换模型的函数形式D.逐步回归法E.差分模型 三、判断(见习题集)四、计算分析:在研究生产函数时,得到如下两个模型估计式:(1)LnL LnK Q Ln 893.0887.004.5ˆ++-=se=(1.40)(0.087)(0.137)21,878.02==n R(2)LnL LnK t QLn 285.1460.00272.057.8ˆ+++-=se=(2.99)(0.0204)(0.333)(0.324)21,889.02==n R其中,Q=产量,K=资本,L=劳动时间(技术指标),n=样本容量。
多重共线性(练习题参考解答)

第四章练习题参考解答练习题4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,于是有人建议你进行如下回归:ii i i i i u X Y u X Y 23311221++=++=γγαα(1)是否存在3322ˆˆˆˆβγβα==且?为什么? (2)吗?或两者的某个线性组合或会等于111ˆˆˆγαβ (3)是否有()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且? 4.2在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。
不我待在逐步回归中既可采取每次引进一个解释变量的程序(逐步向前回归),也可以先把所有可能的解释变量都放在一个多元回归中,然后逐一地将它们剔除(逐步向后回归)。
加进或剔除一个变量,通常是根据F 检验看其对ESS 的贡献而作出决定的。
根据你现在对多重共线性的认识,你赞成任何一种逐步回归的程序吗?为什么?4.3资料来源:《中国统计年鉴》,中国统计出版社2008年。
请考虑下列模型:i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
(2)你认为数据中有多重共线性吗? (3)进行以下回归:it t i t t i t t v CPI C C GDP v CPI B B Y v GDP A A Y 321221121ln ln ln ln ln ln ++=+=+=++根据这些回归你能对数据中多重共线性的性质说些什么?(4)假设数据有多重共线性,但32ˆˆββ和在5%水平上个别地显著,并且总的F 检验也是显著的。
对这样的情形,我们是否应考虑共线性的问题?4.4 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造解释变量数据矩阵X 才可能避免多重共线性的出现?4.5 克莱因与戈德伯格曾用1921-1950年(1942-1944年战争期间略去)美国国内消费Y 和工资收入X1、非工资—非农业收入X2、农业收入X3的时间序列资料,利用OLSE 估计得出了下列回归方程:37.107 95.0 (1.09) (0.66) (0.17) (8.92) 3121.02452.01059.1133.8ˆ2==+++=F R X X X Y (括号中的数据为相应参数估计量的标准误)。
第四章 多重共线性练习

练 习
基本概念
(1)多重共线性(2)完全多重共线性(3)不完全多重共线性; 练习题1、什么是变量之间的多重共线性?举例说明。
2、判断题:(1)存在完全多重共线性时,模型参数无法估计;(2)存在多重共线性时,一定会使参数估计值的方差增大,从而造成估计效率的损失;
3、完全多重共线性和不完全多重共线性之间的区别是什么?
4、产生多重共线性的经济背景是什么?
5、多重共线性的危害是什么?为什么会造成这些危害?检验多重共线性的方法思路是什么?有哪些克服方法?
6、考虑下列一组数据
Y
-10 -8 -6 -4 -2 0 2 4 6 8 10 2X 1 2 3 4 5 6 7 8 9 10 11 3X
1
3
5
7
9
11
13
15
17
19
21
现在我们进行如下的回归分析:
12233i i Y X X u βββ=+++
请回答如下问题:
你能估计出该模型的参数吗?为什么? 7、将下列函数用适当的方法消除多重共线性: (1)消费函数为
012C W P u
βββ=+++
其中C 、W 、P 分别表示消费、工资收入和非工资收入,W 和P 可能高度相关,但研究表明1
2
2ββ=。
(2)需求函数为
0123s Q Y P P u
ββββ=++++
其中Q 、Y 、P 和s
P 分别为需求量、收入水平、该商品价格水平及其替代品价格水平,P 和s
P 可能高度相关。
计量经济学题库第7章多重共线性

第7章 多重共线性习 题一、单项选择题1.如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量( )A.不确定,方差无限大B.确定,方差无限大C.不确定,方差最小D.确定,方差最小2.多元线性回归模型中,发现各参数估计量的t 值都不显著,但模型的F 值确很显著,这说明模型存在( )A .多重共线性B .异方差C .自相关D .设定偏误 3.逐步回归法既检验又修正了( )A .异方差性 B.自相关性 C .随机解释变量 D.多重共线性4.如果模型中的解释变量存在完全的多重共线性,参数的最小二乘估计量是( )A .无偏的 B. 有偏的 C. 不确定 D. 确定的 5.设线性回归模型为,下列表明变量之间具有完全多重共线性的是( )A .B .C .D .其中v 为随机误差项6.简单相关系数矩阵方法主要用于检验( )A .异方差性 B.自相关性 C .随机解释变量 D.多重共线性 7.设为解释变量,则完全多重共线性是( )8.下列说法不正确的是( )A. 多重共线性产生的原因有模型中大量采用滞后变量,)(22很大或R R 01122i i i iY X X u βββ=+++1202*0*0i i X X ++=1202*0*0i i X X v +++=1200*0*0i i X X ++=1200*0*0i i X X v +++=21,x x 221211211.0.021.0(.02x x A x x B x e C x x v v D x e +==++=+=为随机误差项)B. 多重共线性是样本现象C. 检验多重共线性的方法有DW检验法D. 修正多重共线性的方法有增加样本容量二、多项选择题1.能够检验多重共线性的方法有()A. 简单相关系数矩阵法B. t检验与F检验综合判断法C. DW检验法D. ARCH检验法E. White 检验2.如果模型中解释变量之间存在共线性,则会引起如下后果()A. 参数估计值确定B. 参数估计值不确定C. 参数估计值的方差趋于无限大D. 参数的经济意义不正确E. DW统计量落在了不能判定的区域3.能够检验多重共线性的方法有()A. 简单相关系数矩阵法B. DW检验法C. t检验与F检验综合判断法D. ARCH检验法E. 辅助回归法(又待定系数法)三、判断题1.多重共线性问题是随机扰动项违背古典假定引起的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 多重共线性习题与答案
1、多重共线性产生的原因是什么?
2、检验多重共线性的方法思路是什么?有哪些克服方法?
3、考虑一下模型:
Y t =β1+β2X t +β3X 1-t +4βX 2-t +5βX 3-t +6βX 4-t +u t
其中Y =消费,X =收入,t =时间。
上述模型假定了时间t 的消费支出不仅是时间t 的收入,而且是以前多期的收入的函数。
例如,1976年第一季度的消费支出是同季度收入合1975年的四个季度收入的函数。
这类模型叫做分布滞后模型(distributed lag models )。
我们将在以后的一掌中加以讨论。
(1) 你预期在这类模型中有多重共线性吗?为什么?
(2)如果预期有多重共线性,你会怎么样解决这个问题?
4、已知回归模型μβα++=N E ,式中E 为某类公司一名新员工的起始薪金(元),N 为所受教育水平(年)。
随机扰动项μ的分布未知,其他所有假设都满足。
(1)从直观及经济角度解释α和β。
(2)OLS 估计量α
ˆ和βˆ满足线性性、无偏性及有效性吗?简单陈述理由。
(3)对参数的假设检验还能进行吗?简单陈述理由。
5、根据1899—1922年在美国制造业部门的年度数据,多尔蒂(Dougherty )获得如下回归结果:
LogY=2.81 - 0.53logK+ 0.91logL + 0.047t
Se =(1.38)(0.34) (0.14) (0.021)
R 2=0.97 F=189.8
其中Y =实际产生指数,K=实际资本投入指数,L=实际劳力投入指数,t =时间或趋势。
利用同样数据,他又获得一下回归:
(1)回归中有没有多重共线性?你怎么知道?
(2)在回归(1)中,logK 的先验符号是什么?结果是否与预期的一致?为什么或为什么不?
(3)你怎样替回归的函数形式(1)做辩护:(提示:柯柏—道格拉斯生产函数。
)
(4)解释回归(1)在此回归中趋势变量的作用为何?
(5)估计回归(2)的道理何在?
(6)如果原先的回归(1)有多重共线性,是否已被回归(2)减弱?你怎样知道?
(7)如果回归(2)被别看作回归(1)的一个受约束形式,作者施加的约束是什么呢?(提示:规模报酬)你怎样知道这个约束是否正确?你在哪一种检验?说明你的计算。
两个回归的R 2值是可比的么?为什么或为什么不?如果它们现在的形式不可比,你会怎样使得它们可比?
答案:1、(1)样本的原因,比如样本中的解释变量个数大于观测次数。
(2)经济变量变化的相同趋向。
(3)模型中引入滞后变量。
(4)经济变量的本质特征。
2、检验多重共线性的方法思路:用统计上求相关系数的原理,如果变量之间的相关系数较大则认为它们之间存在多重共线性。
克服多重共线性的方法主要有:排除引起共线性的变量,差分法,减少参数估计量的方差,利用先验信息改变参数的约束形式,增加样本容量,岭回归法等。
3、(1) 不能。
因为变量X i 2与成线性关系X i 3,X i 3=X i
2+1
(2)X i 3=X i 2+1带入模型,Y i =β1+(β2+2β3) X i 2+u i 我们发现模型中有三个参数,不能估计出β2,β3的值。
4、(1)N βα+为接受过N 年教育的员工的总体平均起始薪金。
当N 为零时,平均薪金为α,因此α表示没有接受过教育员工的平均起始薪金。
β是每单位N 变化所引起的E 的变化,即表示每多接受一年学校教育所对应的薪金增加值。
(2)
OLS 估计量α
ˆ和仍βˆ满足线性性、无偏性及有效性,因为这些性质的的成立无需随机扰动项μ的正态分布假设。
(3)如果t μ的分布未知,则所有的假设检验都是无效的。
因为t 检验与F 检验是建立在μ的正态分布假设之上的。
5、(1)由于2
R 很高,F 显著,可以知道可能有多重共线性的存在。
(2)logK 的先验符号应该为正,但是却不是,可能与共线性有关。
(3)方程1的模型是:
3241t Y K L e ββββ=;因此,函数的形式应该就像所述的一样。
(4)平均来说,真实劳动的1%的增长会带来真实产出的0.91%的增长。
产出每年增长0.047,模型揭示了真实产出的97%的变异。
(5)方程2就是方程1的的基础上作了修改。
假设有一个固定的回报比例,(231ββ+=)。
模型应该是212411()t
Y K L e L L βββββ+-=。
(6)题目给出资本-劳动比率是统计上不显著,这表示问题没有得到解决。
(6)题意假设固定的回报比例,由(c )可知。
可以用8.7.10F 来检验这个约束。
尽管如此,因变量不同,必须首先使2R 相一致。
读者需要一列数据来完成检验。
(7)不是.给出数据,读者可以用7.8和8.7所提到的方法。