EViews计量经济学实验报告-多重共线性的诊断与修正
多重共线性的识别与补救

3.215617
Akaike info criterion
5.417240
Sum squared resid
72.38134
Schwarz criterion
5.508016
Log likelihood
-24.08620
F-statistic
801.6108
Durbin-Watson stat
Log likelihood
-34.22191
F-statistic
234.3827
Durbin-Watson stat
0.468380
Prob(F-statistic)
0.000000
结合经济意义和统计检验选出拟合效果最好的一元线性回归方程。经分析在四个一元线性回归模型中食品需求量Y对可支配收入x1的线性关系强,拟合程度好,即
-24.29012
F-statistic
1758.713
Durbin-Watson stat
2.627059
Prob(F-statistic)
0.000000
Ls y c x2
Dependent Variable: Y
Method: Least Squares
Date: 12/06/10 Time: 09:34
收集到1995——2004年食品需求函数有关统计资料。
针对该问题,检验模型是否存在多重共线性。若存在,给出消除多重共线性的方法并重新对模型进行估计。
实验
步骤
1、启动Eviews3.1
2、建立新工作文档,输入时间范围数据1995——2004
3、单击file→import调入数据
多重共线性的检验与修正

多重共线性的检验与修正【实验目的】掌握多重共线性的检验方法和补救措施。
【实验要求】选择习题4.7,运用EViews 软件进行解答。
【实验内容】一、 利用EViews 软件,输入654321,X X X X X X Y ,,,,, 等数据,采用这些数据对模型进行OLS 回归,结果如下表所示由此可见,该模型2R =0.9810,2R =0.9677可决系数很高,F 检验值73.8081,明显显著,但是当228.2)818()(025.02/=-=-t k n t α,不仅所有解释变量系数t 检验不显著,而且654321X X X X X X ,,,,,系数符号与预期相反,这表明它们之间很可能存在严重多重共线性;二、计算各解释变量的相关系数,的相关系数矩阵如下由相关系数矩阵可以看出,各解释变量相互之间相关系数较高,证实确实存在严重的多重共线性。
三、修正多重共线性采用逐步回归的办法,去检验和解决多重共线性问题。
分别做lny对lnxi(i=1……7)的一元回归,结果如下表:其中,加入lnx1的方程修正拟合度最大,以lnx1为基础,顺次加入其它变量逐步回归,结果如下表:这里说明:对于两个解释变量标准T 分布为:1312318302502.)(t )(n t .α/=-=-,加入各解释变量后,要么2R 下降,要么ln i X (i=1……7)参数的T 检验不显著,这说明765432,X X X X X X ,,,,引起严重多重共线性,应予以剔除。
最后,修正后的回归结果为:1ln 2359.01631.9ˆln X Y t+= T= (73.1914) (19.7895)2R =0.9607 2R =0.9583 F=391.6234 DW=0.5038 这说明,在其他因素不变的情况下,当国民总收入增加e 单位,能源消费标准煤总量增加2359.0e单位。
此案例存在问题是样本容量过小,其可靠性受到影响,如果增大样本容量,效果会好一些; 【练习解答】1) 所建立的对数线性多元回归模型为1ln 2359.01631.9ˆln X Y t+= 2) 会,从表中的解释变量比如“国民总收入”与“GDP ”的本身意义,我们知道这两个变量之间存在很大的联系;3)存在多重共线性,通过逐步回归方法:①简单线性回归分析,找出基本解释变量②逐步进行二次,三次回归分析,直到出现回归系数不显著或者变量系数符号与预期不相符,以及修正拟合度不高的情况,即可认为该解释变量会引起严重多重共线性,应予以剔除,最后得出所需要的回归模型。
计量经济学实验五 多重共线性的检验与修正 完成版

习题1.下表给出了中国商品进口额Y 、国内生产总值GDP 、消费者价格指数CPI 。
年份 商品进口额 (亿元)国内生产总值(亿元)居民消费价格指数(1985=100)1985 1257.8 8964.4 1001986 1498.3 10202.2 106.5 1987 1614.2 11962.5 114.3 1988 2055.1 14928.3 135.8 1989 2199.9 16909.2 160.2 1990 2574.3 18547.9 165.2 1991 3398.7 21617.8 170.8 1992 4443.3 26638.1 181.7 1993 5986.2 34634.4 208.4 1994 9960.1 46759.4 258.6 1995 11048.1 58478.1 302.8 1996 11557.4 67884.6 327.9 1997 11806.5 74462.6 337.1 1998 11626.1 78345.2 334.4 1999 13736.4 82067.5 329.7 2000 18638.8 89468.1 331.0 2001 20159.2 97314.8 333.3 2002 24430.3 105172.3 330.6 200334195.6117251.9334.6资料来源:《中国统计年鉴》,中国统计出版社2000年、2004年。
请考虑下列模型:i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
解:ln 3.6489 1.796ln 1.2075ln t t t Y GDP CPI =--+t= (-11.32) (9.93) (-3.415)20.988770.6.0.1124R F S E ===(2)你认为数据中有多重共线性吗?多重共线性的检验 1)综合统计检验法若 在OLS 法下:R 2与F 值较大,但t 检验值较小,则可能存在多重共线性。
Eviews多重共线性实验报告

实验三 多重共线性【实验目的】掌握多重共线性问题出现的来源、后果、检验及修正的原理,以及相关的Eviews 操作方法. 【实验内容】以《计量经济学学习指南与练习》补充习题4-18为数据,练习检查和克服模型的多重共线性的操作方法。
【4—18】表4-3列出了被解释变量Y 及解释变量1X ,2X ,3X ,4X 的时间序列观察值。
(1) 用OLS 估计线性回归模型,并采用适当的方法检验多重共线性; (2) 用逐步回归法确定一个较好的回归模型.【实验步骤】(1) 建立线性回归模型并检验多重共线性1、 建立模型利用表4-3数据分别建立Y 关于1X 、2X 、3X 、4X 的散点图(SCAT i X Y ).可以看到Y 与1X 、2X 、4X 都呈现正的线性相关,与3X 关系不明显。
首先建立一个多元线性回归模型(LS Y C 1X 2X 3X 4X ).输出结果中,C 、1X 、3X 、4X 的系数都通不过显著性检验。
2、 检验多重共线性进一步选择Covariance Analysis 的Correlation,得到变量之间的偏相关系数矩阵,观察偏相关系数。
可以发现,Y 与1X 、2X 、4X 的相关系数都在0.9以上,但输出结果中,解释变量1X 、4X 的回归系数却无法通过显著性检验。
认为解释变量之间存在多重共线性。
(2) 用逐步回归法克服多重共线性1、 找出最简单的回归形式分别作Y 与1X 、2X 、3X 、4X 间的回归(LS Y C i X )。
即:(1)1122.0942.0X Y +=∧(1。
64) (11。
7)9383.02=RD.W.=1。
6837(2)2205.0497.5X Y +=∧(17。
9) (7。
63)8640.02=RD.W.=0。
6130(3)3095.0090.17X Y -=∧(2。
14) (-1.19)0450.02=RD.W.=0。
6471(4)4055.0018.2X Y +=∧(2.25) (6。
计量经济学实验报告四---多重共线性

计量经济学实验报告四
[实验名称] 多重共线性
[实验目的] 用Eviews 软件检验模型的多重共线性.
[实验内容] (1)根据表列出的家庭消费支出Y与可支配收入X1和个人财富X2的统计数据,在Eviews软件下,OLS的估计结果为
所以模型为Yˆ=245.52+0.57X1-0.0058X2
(3.53)(0.79)(-0.08)
R2=0.962 F=88.845 D.W.=2.708
由拟合优度知,收入和财富一起解释了消费支出的96%.然而两者的t检验都在5%的显著性水平下是不显著的.不仅如此,财富变量的符号也与经济理论不相符合.但从F的检验值看,对收入与财富的参数同时为零的假设显然是拒绝的.因此,显著的F检验值与不显著t检验值,说明了收入与财富存在较高的相关性,使得无法分辨二者各自对消费的影响.只作消费支出关于收入的一元回归模型.如下
所以模型为Yˆ=244.55+0.509X1
(3.813)(14.24)
R2=0.962 F=202.87 D.W.=2.68
我们将上面模型与之相比,新引入的变量并没有带来拟合优度的显著变化,所以该引入的变量不是一个独立的解释变量.因此应该只作消费支出关于收入或财富的一元回归模型来对二元模型进行修正.。
多重共线性的判断与修正

多重共线性的判断与修正一、多重共线性的判断1. 综合统计检验法LS Y C X1 X2 对模型进行OLS, 得到参数估计表(1) 当2,R F 很大,而回归系数的t 检验值小于临界值时,可判定该模型存在多重共线性。
(2) 当完全共线性存在时,模型的OLS 无法进行,Eviews 会提示:矩阵的逆(1()T X X -)不存在。
2. 简单相关系数检验法LS Y C X1 X2 对模型进行OLS, 得到参数估计表中的2R .点击:Quick/Group Statistics/Correlation在对话框中输入:X1 X2 , 点击OK, 即可得到简单相关系数矩阵检验:若存在 i j x x r 接近于1, 或 22,i j x x r R >,则说明,i j x x 之间存在着严重的相关性。
3. 辅助回归法(方差扩大因子法)设 121112...(1)(1)...j j k Xj X X X j X j Xk V ααααα-+=+++-+++++ (j ) LS Xj X1 X2…Xk 对(j) 进行OLS, 得到参数估计表检验:若表中 (2,1)F F k n k α>--+, 则可确定存在多重共线性。
或者(方差扩大因子法):计算211j jVIF R =-, (2j R 为以上方程的可决系数), 若10j VIF ≥, 则可确定存在多重共线性。
4. 逐步回归法1) 首先计算被解释变量对每个解释变量的回归方程,得到基本回归方程:LS Y C Xi OLS ,得到基本回归方程(i), i = 1,2,…,k2) 从这些基本回归方程中选出最合理的方程, 即,2R 取值最大,且t 检验显著。
比方说,0j Y Xj ββ=+3) 在这个选出的方程中增加新的解释变量, 再进行OLS 分析:LS Y C Xj Xi ( i= 1,2,…,j-1, j+1,…k)判断: 如果新加入的解释变量对2R 改进最大, 且每个系数又是t 统计显著,则保留这个新的解释变量。
计量经济学Eviews多重共线性实验报告记录

计量经济学Eviews多重共线性实验报告记录————————————————————————————————作者:————————————————————————————————日期:实验报告课程名称计量经济学实验项目名称多重共线性班级与班级代码专业任课教师学号:姓名:实验日期:2014 年05 月11日广东商学院教务处制姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。
计量经济学实验报告一、实验目的:掌握多元线性回归模型的估计方法、掌握多重共线性模型的识别和修正。
二、实验要求:应用教材第127页案例做多元线性回归模型,并识别和修正多重共线性。
三、实验原理:普通最小二乘法、简单相关系数检验法、综合判断法、逐步回归法。
四、预备知识:最小二乘法估计的原理、t检验、F检验、2R值。
五、实验步骤1、选择数据理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。
为此,收集了中国能源消费标准煤总量、国民总收入、国内生产总值GDP、工业增加值、建筑业增加值、交通运输邮电业增加值、人均生活电力消费、能源加工转换效率等1985——2007年的统计数据。
本题旨在通过建立这些经济变量的线性模型来说明影响能源消费需求总量的原因。
主要数据如下:1985~2007年统计数据年份能源消费国民总收入国内生产总值工业增加值建筑业增加值交通运输邮电增加值人均生活电力消费能源加工转换效率y X1 X2 X3 X4 X5 X6 X7 1985766829040.7 9016 3448.7 417.9 406.9 21.3 68.29 198680850 10274.4 10275.2 3967 525.7 475.6 23.2 68.32 198786632 12050.6 12058.6 4585.8 665.8 544.9 26.4 67.48 198892997 15036.8 15042.8 5777.2 810 661 31.2 66.54 198996934 17000.9 16992.3 6484 794 786 35.3 66.51 199098703 18718.3 18667.8 6858 859.4 1147.5 42.4 67.2 1991103783 21826.2 21781.5 8087.1 1015.1 1409.7 46.9 65.9 1992109170 26937.3 26923.5 10284.5 1415 1681.8 54.6 66.00 1993115993 35260 35333.9 14188 2266.5 2205.6 61.2 67.32 1994122737 48108.5 48197.9 19480.7 2964.7 2898.3 72.7 65.2 1995131176 59810.5 60793.7 24950.6 3728.8 3424.1 83.5 71.05 1996138948 70142.5 71176.6 29447.6 4387.4 4068.5 93.1 71.5 1997137798 77653.1 78973 32921.4 4621.6 4593 101.8 69.23 1998132214 83024.3 84402.3 34018.4 4985.8 5178.4 106.6 69.44 1999133831 88189 89677.1 35861.5 5172.1 5821.8 118.2 69.19 2000138553 98000.5 99214.6 40033.6 5522.3 7333.4 132.4 69.04 2001143199 108068.2 109655.2 43580.6 5931.7 8406.1 144.6 69.03 2002151797 119095.7 120332.7 47431.3 6465.5 9393.4 156.3 69.04 2003174990 135174 135822.8 54945.5 7490.8 10098.4 173.7 69.4 2004203227 159586.7 159878.3 65210 8694.3 12147.6 190.2 70.71 2005223319 183956.1 183084.8 76912.9 10133.8 10526.1 216.7 71.08 2006 246270 213131.7 211923.5 91310.9 11851.1 12481.1 249.4 71.242007 265583 251483.2 249529.9 107367.2 14014.1 14604.1 274.9 71.25资料来源:《中国统计年鉴》,中国统计出版社2000、2008年版。
EViews计量经济学实验报告-多重共线性的诊断与修正

时间 地点 实验题目 多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。
二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV 软件,做回归分析,判断是否存在多重共线性,以及修正。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。
研究“农业的发展反而会减少财政收入”这个问题。
设定如下形式的计量经济模型:i Y =1β+2β2X +3β3X +4β4X +5β5X +6β6X +7β7X +i μ其中,i Y 为财政收入CS/亿元;2X 为农业增加值NZ/亿元;3X 为工业增加值GZ/亿元;4X 为建筑业增加值JZZ/亿元;5X 为总人口TPOP/万人;6X 为最终消费CUM/亿元;7X 为受灾面积SZM/千公顷。
图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元 农业增加值NZ/亿元 工业增加值GZ/亿元 建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷 1978 1132.3 1027.5 1607 138.2 96259 2239.1 50790 1979 1146.4 1270.2 1769.7 143.8 97542 2633.7 39370 1980 1159.9 1371.6 1996.5 195.5 98705 3007.9 44526 1981 1175.8 1559.5 2048.4 207.1 100072 3361.5 39790 1982 1212.3 1777.4 2162.3 220.7 101654 3714.8 33130 1983 1367 1978.4 2375.6 270.6 103008 4126.4 34710 1984 1642.9 2316.1 2789 316.7 104357 4846.3 31890 1985 2004.8 2564.4 3448.7 417.9 105851 5986.3 44365 1986 2122 2788.7 3967 525.7 107507 6821.8 47140 1987 2199.4 3233 4585.8 665.8 109300 7804.6 42090 1988 2357.2 3865.4 5777.2 810 111026 9839.5 50870 1989 2664.9 4265.9 6484 794 112704 11164.2 46991 1990 2937.1 5062 6858 859.4 114333 12090.5 38474 1991 3149.48 5342.2 8087.1 1015.1 115823 14091.9 55472 1992 3483.37 5866.6 10284.5 1415 117171 17203.3 51333 1993 4348.95 6963.8 14188 2266.5 118517 21899.9 48829 19945218.1 9572.7 19480.7 2964.7 11985029242.2550431995 6242.2 12135.8 24950.6 3728.8 121121 36748.2 45821 1996 7407.99 14015.4 29447.6 4387.4 122389 43919.5 46989 1997 8651.14 14441.9 32921.4 4621.6 123626 48140.6 53429 1998 9875.95 14817.6 34018.4 4985.8 124761 51588.2 50145 1999 11444.08 14770 35861.5 5172.1 125786 55636.9 49981 2000 13395.23 14944.7 40036 5522.3 126743 61516 54688 2001 16386.04 15781.3 43580.6 5931.7 127627 66878.3 52215 2002 18903.64 16537 47431.3 6465.5 128453 71691.2 47119 2003 21715.25 17381.7 54945.5 7490.8 129227 77449.5 54506 2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV 软件,生成i Y 、2X 、3X 、4X 、5X 、6X 、7X 等数据,采用这些数据对模型进行OLS 回归。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间 地点 实验题目 多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。
二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV 软件,做回归分析,判断是否存在多重共线性,以及修正。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。
研究“农业的发展反而会减少财政收入”这个问题。
设定如下形式的计量经济模型:i Y =1β+2β2X +3β3X +4β4X +5β5X +6β6X +7β7X +i μ其中,i Y 为财政收入CS/亿元;2X 为农业增加值NZ/亿元;3X 为工业增加值GZ/亿元;4X 为建筑业增加值JZZ/亿元;5X 为总人口TPOP/万人;6X 为最终消费CUM/亿元;7X 为受灾面积SZM/千公顷。
图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元 农业增加值NZ/亿元 工业增加值GZ/亿元 建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷 1978 1132.3 1027.5 1607 138.2 96259 2239.1 50790 1979 1146.4 1270.2 1769.7 143.8 97542 2633.7 39370 1980 1159.9 1371.6 1996.5 195.5 98705 3007.9 44526 1981 1175.8 1559.5 2048.4 207.1 100072 3361.5 39790 1982 1212.3 1777.4 2162.3 220.7 101654 3714.8 33130 1983 1367 1978.4 2375.6 270.6 103008 4126.4 34710 1984 1642.9 2316.1 2789 316.7 104357 4846.3 31890 1985 2004.8 2564.4 3448.7 417.9 105851 5986.3 44365 1986 2122 2788.7 3967 525.7 107507 6821.8 47140 1987 2199.4 3233 4585.8 665.8 109300 7804.6 42090 1988 2357.2 3865.4 5777.2 810 111026 9839.5 50870 1989 2664.9 4265.9 6484 794 112704 11164.2 46991 1990 2937.1 5062 6858 859.4 114333 12090.5 38474 1991 3149.48 5342.2 8087.1 1015.1 115823 14091.9 55472 1992 3483.37 5866.6 10284.5 1415 117171 17203.3 51333 1993 4348.95 6963.8 14188 2266.5 118517 21899.9 48829 19945218.1 9572.7 19480.7 2964.7 11985029242.2550431995 6242.2 12135.8 24950.6 3728.8 121121 36748.2 45821 1996 7407.99 14015.4 29447.6 4387.4 122389 43919.5 46989 1997 8651.14 14441.9 32921.4 4621.6 123626 48140.6 53429 1998 9875.95 14817.6 34018.4 4985.8 124761 51588.2 50145 1999 11444.08 14770 35861.5 5172.1 125786 55636.9 49981 2000 13395.23 14944.7 40036 5522.3 126743 61516 54688 2001 16386.04 15781.3 43580.6 5931.7 127627 66878.3 52215 2002 18903.64 16537 47431.3 6465.5 128453 71691.2 47119 2003 21715.25 17381.7 54945.5 7490.8 129227 77449.5 54506 2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV 软件,生成i Y 、2X 、3X 、4X 、5X 、6X 、7X 等数据,采用这些数据对模型进行OLS 回归。
(二)诊断多重共线性1、双击“Eviews ”,进入主页。
输入数据:点击主菜单中的File/Open /EV Workfile —Excel —多重共线性的数据.xls ;2、在EV 主页界面的窗口,输入“ls y c x2 x3 x4 x5 x6 x7”,按“Enter ”.出现OLS 回归结果,图2: 图2: OLS 回归结果Dependent Variable: Y Method: Least Squares Date: 10/12/10 Time: 17:07 Sample: 1978 2007 Included observations: 30Variable Coefficient Std. Error t-Statistic Prob. C -6646.694 6454.156 -1.029832 0.3138 X2 -0.970688 0.330409 -2.937841 0.0074 X3 1.084654 0.228521 4.746397 0.0001 X4 -2.763928 2.076994 -1.330735 0.1963 X5 0.077613 0.067974 1.141808 0.2653 X6 -0.047119 0.081509 -0.578084 0.5688 X70.0075800.0350390.2163290.8306R-squared 0.994565 Mean dependent var 10049.04 Adjusted R-squared 0.993147 S.D. dependent var 12585.51 S.E. of regression 1041.849 Akaike info criterion 16.93634 Sum squared resid 24965329 Schwarz criterion 17.26329 Log likelihood -247.0452 F-statistic 701.4747 Durbin-Watson stat 2.167410 Prob(F-statistic)0.000000由此可见,该模型的可决系数为0.995,修正的可决系数为0.993,模型拟和很好,F 统计量为701.47,模型拟和很好,回归方程整体上显著。
但是当α=0.05时,)(2/k n t -α=)23(025.0t =2.069,不仅X4、X5、X6、X7的系数t 检验不显著,而且X2、X4、X6系数的符号与预期相反,这表明很可能存在严重的多重共线性。
(即除了农业增加值2X 、工业增加值3X 外,其他因素对财政收入的影响都不显著,且农业增加值2X 、建筑业增加值4X 、最终消费6X 的回归系数还是负数,这说明很可能存在严重的多重共线性。
)3、计算各解释变量的相关系数:在Workfile 窗口,选择X2、X3、X4、X5、X6、X7数据,点击“Quick ”—Group Statistics —Correlations —OK,出现相关系数矩阵,如图3:图3: 相关系数矩阵X2 X3 X4 X5 X6 X7 X2 1 0.972980614561470.982660623499789 0.927978429406745 0.988962619724667 0.226199965872465 X3 0.97298061456147 1 0.9985218083931880.843900206568758 0.992641236711784 0.129443710336215 X4 0.982660623499789 0.998521808393188 1 0.8641521359280510.996056843441596 0.154645718404353 X5 0.927978429406745 0.843900206568758 0.864152135928051 1 0.8888480555469790.387767264808787 X6 0.988962619724667 0.992641236711784 0.996056843441596 0.888848055546979 1 0.185172880851582X70.2261999658724650.1294437103362150.1546457184043530.3877672648087870.1851728808515821由相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,特别是农业增加值2X 、工业增加值3X 、建筑业增加值4X 、最终消费之间6X ,相关系数都在0.8以上。
这表明模型存在着多重共线性。
(三)修正多重共线性1、采用逐步回归法,去检验和解决多重共线性问题。
分别作Y 对X2、X3、X4、X5、X6、X7的一元回归,结果如下图4:在EV 主页界面的窗口,输入“ls y c x2”,“回车键”。
Dependent Variable: Y Method: Least Squares Date: 10/12/10 Time: 17:49 Sample: 1978 2007 Included observations: 30Variable Coefficient Std. Error t-Statistic Prob. C -4086.544 1463.091 -2.793090 0.0093 X21.4541860.11723512.403980.0000R-squared 0.846034 Mean dependent var 10049.04 Adjusted R-squared 0.840536 S.D. dependent var 12585.51 S.E. of regression 5025.770 Akaike info criterion 19.94689 Sum squared resid 7.07E+08 Schwarz criterion 20.04030 Log likelihood -297.2033 F-statistic 153.8588 Durbin-Watson stat0.166951 Prob(F-statistic)0.000000依次如上推出X3、X4、X5、X6、X7的一元回归。