计量经济学eviews实验报告

合集下载

《计量经济学》eviews实验报告一元线性回归模型详解

《计量经济学》eviews实验报告一元线性回归模型详解

计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。

2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。

三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。

Eviews实验报告

Eviews实验报告

Eviews实验报告
本次实验使用Eviews对数据进行了分析和建模,主要分为以下几个部分:
一、数据预处理
1. 数据清洗:对数据进行了初步的检查和清洗,处理了数据中的缺失值和异常值;
2. 数据变换:对原始数据进行了对数化处理,使其符合正态分布。

二、数据分析
1. 描述性统计:通过统计均值、标准差、相关系数等指标,对数据进行了分析和描述;
2. 单因素分析:使用单因素方差分析对不同自变量与因变量之间的关系进行了检验。

三、建模分析
1. 模型选择:根据变量相关性和变量显著性等因素,最终选择了一组自变量,建立了多元线性回归模型;
2. 模型检验:对建立的模型进行了残差分析,验证了模型的可靠性和稳定性;
3. 预测分析:利用建立的模型对新数据进行了预测,并进行了模型预测精度的评估。

四、实验结论
通过Eviews的分析和建模,得出了以下结论:
1. 数据清洗和变换可以提高数据分析的准确性和可靠性;
2. 描述性统计和单因素分析可以为建模提供有用的参考和决策依据;
3. 多元线性回归模型可以较好地解释自变量与因变量之间的关系,并可进行预测和决策分析。

综上所述,本次实验通过Eviews软件对数据进行了分析和建模,得出了有关数据的一些重要结论,为后续数据分析和决策提供了基础和支持。

EViews计量经济学实验报告

EViews计量经济学实验报告

EViews 计量经济学实验报告实验一 EViews软件的基本操作小组成员: 【实验目的】了解EViews软件的基本操作对象,掌握软件的基本操作。

【实验内容】数据的输入、编辑与序列生成;实验内容以表1-1所列出的消费支出和可支配收入的统计资料为例进行操作。

表1-1 中国内地各地区城镇居民家庭人均全年可支配收入与人均全年消费性支出单位:元地区消费支出Y 可分配收入 X 地区消费支出 Y 可支配收入 X北京 19977.52 14825.41 湖北 9802.65 7397.32天津 14283.09 10548.05 湖南 10504.67 8169.30河北 10304.56 7343.49 广东 16015.58 12432.22山西 10027.70 7170.94 广西 9898.75 6791.95 内蒙古 10357.99 7666.61 海南 9395.13 7126.78辽宁 10369.61 7987.49 重庆 11569.74 9398.69吉林 9775.07 7352.64 四川 9350.11 7524.81 黑龙江 9182.31 6655.43 贵州 9116.61 6848.39上海 20667.91 14761.75 云南 10069.89 7379.81江苏 14084.26 9628.59 西藏 8941.08 6192.57浙江 18265.10 13348.51 陕西 9267.70 7553.28安徽 9771.05 7294.73 甘肃 8920.59 6974.21福建 13753.28 9807.71 青海 9000.35 6530.11江西 9551.12 6645.54 宁夏 9177.26 7205.57山东 12192.24 8468.40 新疆 8871.27 6730.01河南 9810.26 6685.18资料来源:《中国统计年鉴》(2007)【实验步骤】一、创建工作文件启动EViews软件之后,进入EViews主窗口(如图1-1所示)。

eviews实验报告总结(范本)

eviews实验报告总结(范本)

eviews实验报告‎总结eviews实‎验报告总结‎篇一:‎Evies‎实验报告实验报告‎一、实验数据:‎1994至2‎01X年天津市城镇居‎民人均全年可支配收入‎数据 1994至20‎1X年天津市城镇居民‎人均全年消费性支出数‎据 1994至201‎X年天津市居民消费价‎格总指数二、‎实验内容:对‎搜集的数据进行回归,‎研究天津市城镇居民人‎均消费和人均可支配收‎入的关系。

三‎、实验步骤:‎1、百度进入“中华人‎民共和国国家统计局”‎中的“统计数据”,找‎到相关数据并输入Ex‎c el,统计结果如下‎表1:表1‎1994年--20‎1X年天津市城镇居民‎消费支出与人均可支配‎收入数据2、‎先定义不变价格(19‎94=1)的人均消费‎性支出(Yt)和人均‎可支配收入(Xt)‎令:Yt=c‎n sum/price‎Xt=ine/pr‎i ce 得出Yt与X‎t的散点图,如图‎1.很明显,Yt和‎X t服从线性相关。

‎图1 Yt和Xt散点‎图3、应用统‎计软件EVies完成‎线性回归解:‎根据经济理论和对实‎际情况的分析也都可以‎知道,城镇居民人均全‎年耐用消费品支出Yt‎依赖于人均全年可支配‎收入Xt的变化,因此‎设定回归模型为 Yt‎=β0+β?Xt﹢μ‎t(1)打开‎E Vies软件,首先‎建立工作文件, Fi‎l e rkfile ‎,然后通过bject‎建立 Y、X系列,并‎得到相应数据。

‎(2)在工作文件窗‎口输入命令:‎l s y c x,按‎E nter键,回归结‎果如表2 :‎表2 回归结果根‎据输出结果,得到如下‎回归方程:‎Y t=977.‎908+0.670X‎t s=(17‎2.3797) (0‎.0122) t=(‎5.673) ‎(54.95‎0) R2=0.99‎5385 Adjus‎t ed R2=0.9‎95055 F-st‎a tistic=30‎19.551 ‎残差平方和Sum s‎q uared res‎i d =125410‎8回归标准差S.E‎.f regress‎i n=299.‎2978(3‎)根据回归方程进行统‎计检验:‎拟合优度检验由上表‎2中的数分别为0.‎995385和0.9‎95055,计算结果‎表明,估计的样本回归‎方程较好地拟合了样本‎观测值。

计量经济学eviews实验报告

计量经济学eviews实验报告

大连海事大学实验报告Array实验名称: 计量经济学软件应用专业班级:财务管理2013-1姓名: 安妮指导教师:赵冰茹交通运输管理学院二○一六年十一月一、实验目标学会常用经济计量软件得基本功能,并将其应用在一元线性回归模型得分析中。

具体包括:Eview得安装,样本数据基本统计量计算,一元线性回归模型得建立、检验及结果输出与分析,多元回归模型得建立与分析,异方差、序列相关模型得检验与处理等。

二、实验环境WINDOWSXP或2000操作系统下,基于EVIEWS5、1平台。

三、实验模型建立与分析案例1:我国1995-2014年得人均国民生产总值与居民消费支出得统计资料(此资料来自中华人民共与国统计局网站)如表1所示,做回归分析。

表1我国1995—2014年人均国民生产总值与居民消费水平情况(1)做出散点图,建立居民消费水平随人均国内生产总值变化得一元线性回归方程,并解释斜率得经济意义;利用eviews软件输出结果报告如下: Dependent Variable:CONSUMPTIONMethod: Least SquaresDate:06/11/16Time: 19:02Sample: 1995 2014Included observations:20Variable Coefficient Std、Errort—Statistic Prob、C 691、0225113、3920 6、0941040、0000AVGDP 0、352770 0、004908 71、88054 0、0000R-squared 0、996528 Mean dependent var 7351、300Adjusted R-squared 0、996335 S、D、dependent var4828、765S、E、of regression292、3118 Akaike info criterion 14、28816Sum squaredresid 1538032、 Schwarz criterion14、38773Log likelihood -140、8816Hannan-Quinn criter、14、30760F-statistic 5166、811Durbin-Watsonstat0、403709Prob(F—statistic)0、000000由上表可知财政收入随国内生产总值变化得一元线性回归方程为:(令Y=CONSUMPTION,X=AVGDP(此处代表人均GDP))Y = 691、0225+0、352770* X其中斜率0、352770表示国内生产总值每增加一元,人均消费水平增长0、35277元.检验结果R2=0、996528,说明99、6528%得样本可以被模型解释,只有0、3472%得样本未被解释,因此样本回归直线对样本点得拟合优度很高.(2)对所建立得回归方程进行检验:(5%显著性水平下,t(18)=2、101)对于参数c假设: H0:c=0、对立假设:H1:c≠0对于参数GDP假设: H0: GDP=0、对立假设:H1: GDP≠0由上表知:对于c,t=6、094104>t(n-2)=t(18)=2、101因此拒绝H0: c=0,接受对立假设:H1: c≠0对于GDP, t=71、88054﹥t(n—2)=t(18)=2、101因此拒绝H0: GDP=0,接受对立假设: H1: GDP≠0此外F统计量为5166、811,数值很大,可以判定,人均国内生产总值对居民消费水平在5%得显著性水平下有显著性影响。

计量经济学eviews实习报告.doc

计量经济学eviews实习报告.doc

计量经济学实验报告研究问题根据生产函数理论,生产函数的基本形式为:),,,(εK L t f Y =。

其中,L 、K 分别为生产过程中投入的劳动与资金,时间变量t 反映技术进步的影响。

表1列出了我国1994-2009年期间国有独立核算工业企业的有关统计资料;其中产出Y 为工业总产值(可比价),L 、K 分别为年末职工人数和固定资产净值(可比价)。

实验要求建立我国国有独立核算工业企业生产函数。

实验步骤一、模型筛选(一)建立多元线性回归方程回归结果如下:图1因此,我国国有独立工业企业的生产函数为:K L t Y 00998.171897.022674.90897.191+++-=∧(模型1)t =(-5.4) (0.862) (3.57) (40.44)999742.02=R 999677.02=R 57.15483=F模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.71897,资金的边际产出为1.00998,技术进步的影响使工业总产值平均每年递增9.22674亿元。

回归系数的符号和数值是较为合理的。

999742.02=R ,说明模型有很高的拟合优度,F 检验也是高度显著的,说明职工人数L 、资金K 和时间变量t 对工业总产值的总影响是显著的。

从图1看出,解释变量资金K 的t 统计量值为40.44,表明资金对企业产出的影响是显著的。

但是,模型中时间变量T 的t 统计量值都较小,未通过检验。

因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除t 统计量较小的变量(即时间变量)而重新建立模型。

(二)建立剔除时间变量的二元线性回归模型回归结果如下:图2因此,我国国有独立工业企业的生产函数为:K L Y 026137.1669964.02778.176++-=∧(模型2)t =(-5.76) (3.5) (62.79)999726.02=R 999684.02=R 95.23692=F(三)建立非线性回归模型——C-D 生产函数C-D 生产函数为:εβαe K AL Y =。

计量经济学eviews实验报告

计量经济学eviews实验报告

大连海事大学实验报告Array实验名称:计量经济学软件应用专业班级:财务管理2013-1姓名:安妮指导教师:赵冰茹交通运输管理学院二○一六年十一月一、实验目标学会常用经济计量软件的基本功能,并将其应用在一元线性回归模型的分析中。

具体包括:Eview的安装,样本数据基本统计量计算,一元线性回归模型的建立、检验及结果输出与分析,多元回归模型的建立与分析,异方差、序列相关模型的检验与处理等。

二、实验环境WINDOWSXP或2000操作系统下,基于EVIEWS5.1平台。

三、实验模型建立与分析案例1:我国1995-2014年的人均国民生产总值和居民消费支出的统计资料(此资料来自中华人民共和国统计局网站)如表1所示,做回归分析。

表1我国1995-2014年人均国民生产总值与居民消费水平情况(1)做出散点图,建立居民消费水平随人均国内生产总值变化的一元线性回归方程,并解释斜率的经济意义;利用eviews软件输出结果报告如下:Dependent Variable: CONSUMPTIONMethod: Least SquaresDate: 06/11/16 Time: 19:02Sample: 1995 2014Included observations: 20Variable Coefficient Std. Error t-Statistic Prob.C 691.0225 113.3920 6.094104 0.0000AVGDP 0.352770 0.004908 71.88054 0.0000R-squared 0.996528 Mean dependent var 7351.300Adjusted R-squared 0.996335 S.D. dependent var 4828.765S.E. of regression 292.3118 Akaike info criterion 14.28816Sum squared resid 1538032. Schwarz criterion 14.38773Log likelihood -140.8816 Hannan-Quinn criter. 14.30760F-statistic 5166.811 Durbin-Watson stat 0.403709Prob(F-statistic) 0.000000由上表可知财政收入随国内生产总值变化的一元线性回归方程为:(令Y=CONSUMPTION,X=AVGDP(此处代表人均GDP))Y = 691.0225+0.352770* X其中斜率0.352770表示国内生产总值每增加一元,人均消费水平增长0.35277元。

eviews计量经济学实验报告

eviews计量经济学实验报告

eviews计量经济学实验报告EViews计量经济学实验报告引言计量经济学是经济学领域中的一个重要分支,它运用数学、统计学和计量学的方法来分析经济现象。

EViews是一个常用的计量经济学软件,它提供了丰富的数据分析和模型建立工具,被广泛应用于学术研究和实际经济分析中。

本实验报告将利用EViews软件进行计量经济学实验,以探讨经济现象并得出相关结论。

实验目的本实验旨在利用EViews软件对某一经济现象进行实证分析,通过建立相应的计量经济模型,对经济现象进行量化分析,并得出相关结论。

实验步骤1. 数据收集:首先,我们需要收集与所研究经济现象相关的数据,包括时间序列数据和横截面数据等。

这些数据可以来自于官方统计机构、学术研究机构或者自行收集整理。

2. 数据预处理:接下来,我们需要对收集到的数据进行预处理,包括数据清洗、缺失值处理、异常值处理等,以确保数据的质量和完整性。

3. 模型建立:在数据预处理完成后,我们可以利用EViews软件建立计量经济模型,包括回归分析、时间序列分析、面板数据分析等,以探讨经济现象的内在规律和影响因素。

4. 模型估计:建立模型后,我们需要对模型进行参数估计,得到模型的具体参数估计值,并进行显著性检验和模型拟合度检验,以验证模型的可靠性和有效性。

5. 结果分析:最后,我们将对模型估计结果进行分析,得出与经济现象相关的结论,并对实证分析结果进行解释和讨论。

实验结论通过以上实验步骤,我们得出了关于某一经济现象的实证分析结果,并得出了相关的结论。

这些结论对于理解经济现象的内在规律和制定经济政策具有重要的参考价值。

总结EViews计量经济学实验报告通过利用EViews软件进行实证分析,对经济现象进行了深入探讨,并得出了相关结论。

这些结论对于经济学研究和实际经济分析具有重要的理论和实践意义,为我们深入理解经济现象和推动经济发展提供了重要的参考依据。

EViews软件的应用为我们提供了一个强大的工具,帮助我们更好地理解和分析经济现象,为经济学领域的研究和实践提供了重要的支持和帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大连海事大学实验报告实验名称:计量经济学软件应用专业班级:财务管理2013-1姓名:安妮指导教师:赵冰茹交通运输管理学院二○一六年十一月一、实验目标学会常用经济计量软件的基本功能,并将其应用在一元线性回归模型的分析中。

具体包括:Eview的安装,样本数据基本统计量计算,一元线性回归模型的建立、检验及结果输出与分析,多元回归模型的建立与分析,异方差、序列相关模型的检验与处理等。

二、实验环境WINDOWSXP或2000操作系统下,基于EVIEWS5.1平台。

三、实验模型建立与分析案例1:我国1995-2014年的人均国民生产总值和居民消费支出的统计资料(此资料来自中华人民共和国统计局网站)如表1所示,做回归分析。

表1我国1995-2014年人均国民生产总值与居民消费水平情况(1)做出散点图,建立居民消费水平随人均国内生产总值变化的一元线性回归方程,并解释斜率的经济意义;利用eviews软件输出结果报告如下:Dependent Variable: CONSUMPTIONMethod: Least SquaresDate: 06/11/16 Time: 19:02Sample: 1995 2014Included observations: 20Variable Coefficient Std. Errort-Statistic Prob.??C691.0225113.3920 6.0941040.0000 AVGDP0.3527700.00490871.880540.0000R-squared0.996528????Mean dependentvar7351.300Adjusted R-squared0.996335????S.D. dependentvar4828.765S.E. of regression292.3118????Akaike infocriterion14.28816Sum squared resid1538032.????Schwarz criterion14.38773Log likelihood -140.8816????Hannan-Quinncriter.14.30760F-statistic5166.811????Durbin-Watsonstat0.403709Prob(F-statistic)0.000000由上表可知财政收入随国内生产总值变化的一元线性回归方程为:(令Y=CONSUMPTION,X=AVGDP(此处代表人均GDP))Y = 691.0225+0.352770* X其中斜率0.352770表示国内生产总值每增加一元,人均消费水平增长0.35277元。

检验结果R2=0.996528,说明99.6528%的样本可以被模型解释,只有0.3472%的样本未被解释,因此样本回归直线对样本点的拟合优度很高。

(2)对所建立的回归方程进行检验:(5%显着性水平下,t(18)=2.101)对于参数c假设: H0: c=0. 对立假设:H1: c≠0对于参数GDP假设: H0: GDP=0. 对立假设:H1: GDP≠0由上表知:对于c,t=6.094104>t(n-2)=t(18)=2.101因此拒绝H0: c=0,接受对立假设:H1: c≠0对于GDP, t=71.88054﹥t(n-2)=t(18)=2.101因此拒绝H0: GDP=0,接受对立假设: H1: GDP≠0此外F统计量为5166.811,数值很大,可以判定,人均国内生产总值对居民消费水平在5%的显着性水平下有显着性影响。

所以,回归系数显着不为零,常数项不为零,回归模型中应包括常数项。

综上,整体上看此模型是比较好的。

(3)序列相关问题由上图可知,DW统计量0.403709,经查表,当k=1,n=20时,dl=1.2,因此可判断此模型存在序列相关,且为序列正相关。

修正:广义差分法因为DW=0.403709,ρ=1-DW/2=0.7981455令X1=X-0.7981455*X(-1)Y1=Y-0.7981455*Y(-1)修正结果如下:Dependent Variable: Y1Method: Least SquaresDate: 06/11/16 Time: 19:56Sample(adjusted): 1996 2014Included observations: 19 afteradjustmentsCoefficient Std. Error t-Statistic Prob.??X1-1.14E+087970597.-14.338870.0000C -8.26E+10 5.45E+10-1.5164020.1478R-squared0.923631????Mean dependentvar-7.34E+11Adjusted R-squared0.919139????S.D. dependentvar 4.61E+11S.E. of regression1.31E+11????Akaike infocriterion54.13516Sum squared resid 2.92E+23????Schwarz criterion54.23457Log likelihood -512.284????Hannan-Quinncriter.54.15198F-statistic205.6031????Durbin-Watsonstat0.953595Prob(F-statistic)0.000000经修正后,DW=0.953595<dl=1.2,说明随机扰动项仍存在序列正相关。

(4)根据2015年中国国民经济与社会发展统计公报,2015年人均国民生产总值为49351元,对该年的居民消费水平进行预测。

点预测:Y = 691.0225+0.352770* X=18100.5748区间预测:计算出var^(Y0)=S2(∑-+2tn1XXX)()=1468.207,t0.25(n-2)=2.10,因此E(Y0)的预测区间为Y^±t0.25(n-2)√var^(Y)=49351±80.4661。

利用Eviews输出预测结果如下:案例2:下面给出了我国1995-2014年的居民消费水平(Y)和人均国内生产总值(X1)以及城镇居民人均可支配收入(X2)数据,对它们三者之间的关系进行研究。

具体数据如表2所示。

表2:1995年到2014年的统计资料单位:元(1)试建立二元线性回归方程利用Eviews软件输出结果报告如下:Dependent Variable: CONSUMPTION Method: Least SquaresDate: 09/11/16 Time: 16:23Sample(adjusted): 1995 2014Included observations: 20Coefficient Std. Error t-Statistic Prob.??AVGDP0.1606120.060350 2.6613350.0164 SAVING0.0181660.005693 3.1910610.0053 C1040.987143.32407.2631780.0000R-squared0.997829????Mean dependentvar7351.300Adjusted R-squared0.997573????S.D. dependentvar4828.765S.E. of regression237.8674????Akaike info13.91879criterionSum squared resid961875.6????Schwarz criterion14.06815Log likelihood -136.1879????Hannan-Quinncriter.13.94794F-statistic3906.446????Durbin-Watsonstat0.977467Prob(F-statistic)0.000000由上表可知,样本回归方程为:Y=417.4107+0.269124X1+0.145843X2(2) 对检验结果的分析AVGDP与SAVING的P值均小于0.05,t值均大于t(n-2)=t(18)=2.101,因此样本回归方程十分显着。

修整后的R2为0.997573,说明有99.76%的样本可以被样本回归方程所解释,拟合的很好。

F统计量为3906.446数值很大,可以判定,人均可支配收入以及城镇居民人均可支配收入对居民消费水平在5%的显着性水平下有显着性影响。

但是,值得注意的是DW 统计量为0.977467<dl=1.1(当k=2,n=20时),因此方程可能存在序列相关问题,可利用广义差分法进行修正,如案例1,此处不再赘述。

案例3:表3 列出了2014年中国部分省市城镇居民每个家庭平均全年可支配收入(income)与消费性支出(expense)的统计数据。

表3 2014年统计数据地区人均可支配收入人均消费性支出地区人均可支配收入人均消费性支出北京43910.00 28009.00 广西24669.00 15045.00 上海47710.00 30520.00 山东省29222.00 18323.00重庆25147.00 18279.00 陕西省28844.00 19968.00河北省24141.00 16204.00 山西省24069.00 14637.00山西省24069.00 14637.00 安徽省24839.00 16107.00内蒙古28350.00 20885.00 甘肃省20804.00 15507.00吉林省23217.80 17156.00 云南省24299.00 16268.00江苏省34346.00 23476.00 贵州省22548.21 15254.64浙江40393.00 27242.00 四川24381.00 18027.00(1)试用OLS法建立居民消费支出对可支配收入的线性模型利用eviews软件输出结果报告如下:Dependent Variable: EXPENSEMethod: Least SquaresDate: 09/11/16 Time: 20:15Sample(adjusted): 2001 2024Included observations: 24Coefficient Std. Error t-Statistic Prob.??INCOME0.6030840.03643516.552190.0000C2031.2261033.251 1.9658600.0621R-squared0.925669????Mean dependentvar18623.78Adjusted R-squared0.922291????S.D. dependentvar4401.364S.E. of regression1226.941????Akaike infocriterion17.14209Sum squared resid33118445????Schwarz criterion17.24026Log likelihood -203.7051????Hannan-Quinncriter.17.16814F-statistic273.9751????Durbin-Watsonstat 1.601642Prob(F-statistic)0.000000因此建立模型(令Y=EXPENSE 人均消费性支出,X=INCOME人均可支配收入):Y=2031.226+0.603084*X当人均可支配收入增长1元,人均消费性支出增加0.603084元。

相关文档
最新文档