(整理)多重共线性的检验与修正

合集下载

多重共线性、异方差及自相关的检验和修正

多重共线性、异方差及自相关的检验和修正

计量经济学实验报告多重共线性、异方差及自相关的检验和修正——以财政收入模型为例经济学 1班一、引言财政收入是一国政府实现政府职能的基本保障,对国民经济的运行及社会的发展起着非凡的作用。

首先,它是一个国家各项收入得以实现的物质保证。

一个国家财政收入规模的大小通常是衡量其经济实力的重要标志。

其次,财政收入是国家对经济实行宏观调控的重要经济杠杆。

财政收入的增长情况关系着一个国家的经济的发展和社会的进步。

因此,研究财政收入的增长显得尤为重要。

二、数据及模型说明研究财政收入的影响因素离不开一些基本的经济变量。

回归变量的选择是建立回归模型的一个极为重要的问题。

如果遗漏了某些重要变量,回归方程的效果肯定不会好;而考虑过多的变量,不仅计算量增大许多,而且得到的回归方程稳定性也很差,直接影响到回归方程的应用。

通过经济理论对财政收入的解释以及对实践的观察,对财政收入影响的因素主要有农业增加值、工业增加值、建筑业增加值、总人口数、最终消费、受灾面积等等。

全部数据均来源于中华人民共和国国家统计局网站/具体数据见附录一。

为分析被解释变量财政收入(Y)和解释变量农业增加值(X1)、工业增加值(X2)、建筑业增加值(X3)、总人口(X4)、最终消费(X5)、受灾面积(X6)的关系。

作如下线性图(图1)。

图1可以看出Y、X1、X2、X3、X5基本都呈逐年增长的趋势,仅增长速率有所变动,而X4和X6在多数年份呈现水平波动,可能这两个自变量和因变量间不一定是线性关系。

可以初步建立回归模型如下:Y=α+β1*X1+β2*X2+β3*X3+β4*X4 +β5*X5+β6*X6 +U i 其中,U i为随机干扰项。

三、模型的检验及验证(一)多重共线性检验及修正利用Eviews5.0,做Y对X1、X2、X3、X4、X5和X6的回归,Eviews的最小二乘估计的回归结果如下表(表1)所示:表1Dependent Variable: YMethod: Least SquaresDate: 11/16/13 Time: 20:54Sample: 1990 2011Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 145188.0 26652.27 5.447488 0.0001X1 -0.972478 0.222703 -4.366701 0.0006X2 0.210089 0.068192 3.080851 0.0076X3 -0.100412 0.569465 -0.176327 0.8624X4 -1.268320 0.247725 -5.119870 0.0001X5 0.600205 0.130089 4.613794 0.0003X6 -0.007430 0.044233 -0.167964 0.8689R-squared 0.999306 Mean dependent var 27186.86Adjusted R-squared 0.999029 S.D. dependent var 28848.33S.E. of regression 899.0866 Akaike info criterion 16.69401Sum squared resid 12125351 Schwarz criterion 17.04116Log likelihood -176.6341 F-statistic 3600.848Durbin-Watson stat 1.825260 Prob(F-statistic) 0.000000 由上表的回归结果可见,,该模型可决系数R2=0.9993很高,F检验值3601,明显显著。

多重共线性的检验与修正

多重共线性的检验与修正

多重共线性的检验与修正【实验目的】掌握多重共线性的检验方法和补救措施。

【实验要求】选择习题4.7,运用EViews 软件进行解答。

【实验内容】一、 利用EViews 软件,输入654321,X X X X X X Y ,,,,, 等数据,采用这些数据对模型进行OLS 回归,结果如下表所示由此可见,该模型2R =0.9810,2R =0.9677可决系数很高,F 检验值73.8081,明显显著,但是当228.2)818()(025.02/=-=-t k n t α,不仅所有解释变量系数t 检验不显著,而且654321X X X X X X ,,,,,系数符号与预期相反,这表明它们之间很可能存在严重多重共线性;二、计算各解释变量的相关系数,的相关系数矩阵如下由相关系数矩阵可以看出,各解释变量相互之间相关系数较高,证实确实存在严重的多重共线性。

三、修正多重共线性采用逐步回归的办法,去检验和解决多重共线性问题。

分别做lny对lnxi(i=1……7)的一元回归,结果如下表:其中,加入lnx1的方程修正拟合度最大,以lnx1为基础,顺次加入其它变量逐步回归,结果如下表:这里说明:对于两个解释变量标准T 分布为:1312318302502.)(t )(n t .α/=-=-,加入各解释变量后,要么2R 下降,要么ln i X (i=1……7)参数的T 检验不显著,这说明765432,X X X X X X ,,,,引起严重多重共线性,应予以剔除。

最后,修正后的回归结果为:1ln 2359.01631.9ˆln X Y t+= T= (73.1914) (19.7895)2R =0.9607 2R =0.9583 F=391.6234 DW=0.5038 这说明,在其他因素不变的情况下,当国民总收入增加e 单位,能源消费标准煤总量增加2359.0e单位。

此案例存在问题是样本容量过小,其可靠性受到影响,如果增大样本容量,效果会好一些; 【练习解答】1) 所建立的对数线性多元回归模型为1ln 2359.01631.9ˆln X Y t+= 2) 会,从表中的解释变量比如“国民总收入”与“GDP ”的本身意义,我们知道这两个变量之间存在很大的联系;3)存在多重共线性,通过逐步回归方法:①简单线性回归分析,找出基本解释变量②逐步进行二次,三次回归分析,直到出现回归系数不显著或者变量系数符号与预期不相符,以及修正拟合度不高的情况,即可认为该解释变量会引起严重多重共线性,应予以剔除,最后得出所需要的回归模型。

多重共线性问题的检验和处理【VIP专享】

多重共线性问题的检验和处理【VIP专享】

山西大学实验报告实验报告题目:多重共线性问题的检验和处理学院:专业:课程名称:计量经济学学号:学生姓名:教师名称:崔海燕上课时间:一、实验目的:熟悉和掌握Eviews在多重共线性模型中的应用,掌握多重共线性问题的检验和处理。

二、实验原理:1、综合统计检验法;2、相关系数矩阵判断;3、逐步回归法;三、实验步骤:(一)新建工作文件并保存打开Eviews软件,在主菜单栏点击File\new\workfile,输入start date1978和end date 2006并点击确认,点击save键,输入文件名进行保存。

(二)输入并编辑数据在主菜单栏点击Quick键,选择empty\group新建空数据栏,根据理论和经验分析,影响粮食生产(Y)的主要因素有农业化肥施用量(X1)、粮食播种面积(X2)、成灾面积(X3)、农业机械总动力(X4)和农业劳动力(X5),其中成灾面积的符号为负,其余均应为正。

下表给出了1983——2000中国粮食生产的相关数据。

点击name键进行命名,选择默认名称Group01,保存文件。

Y X1X2X3X4X5 1983387281660114047162091802231151 1984407311740112884152641949730868 1985379111776108845227052091331130 1986391511931110933236562295031254 1987402081999111268203932483631663 1988394082142110123239452657532249 1989407552357112205244492806733225 1990446242590113466178192870838914 1991435292806112314278142938939098 1992442642930110560258953030838669 1993456493152110509231333181737680 1994445103318109544313833380236628 1995466623594110060222673611835530 1996504543828112548212333854734820 1997494173981112912303094201634840 1998512304084113787251814520835177 1999508394124113161267314899635768 2000462184146108463343745257436043 2001452644254106080317935517236513 2002457064339103891273195793036870 2003430704412994103251660387365462004469474637101606162976402835269 2005484024766104278199666839833970 2006498044928104958246327252232561 2007501605108105638250647659031444(三)用普通最小二乘法估计模型参数用最小二乘法估计模型参数。

(完整word版)多重共线性问题的几种解决方法

(完整word版)多重共线性问题的几种解决方法

多重共线性问题的几种解决方法在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X1,X2,……,X k中的任何一个都不能是其他解释变量的线性组合。

如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。

多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。

这里,我们总结了8个处理多重共线性问题的可用方法,大家在遇到多重共线性问题时可作参考:1、保留重要解释变量,去掉次要或可替代解释变量2、用相对数变量替代绝对数变量3、差分法4、逐步回归分析5、主成份分析6、偏最小二乘回归7、岭回归8、增加样本容量这次我们主要研究逐步回归分析方法是如何处理多重共线性问题的。

逐步回归分析方法的基本思想是通过相关系数r、拟合优度R2和标准误差三个方面综合判断一系列回归方程的优劣,从而得到最优回归方程。

具体方法分为两步:第一步,先将被解释变量y对每个解释变量作简单回归:对每一个回归方程进行统计检验分析(相关系数r、拟合优度R2和标准误差),并结合经济理论分析选出最优回归方程,也称为基本回归方程。

第二步,将其他解释变量逐一引入到基本回归方程中,建立一系列回归方程,根据每个新加的解释变量的标准差和复相关系数来考察其对每个回归系数的影响,一般根据如下标准进行分类判别:1.如果新引进的解释变量使R2得到提高,而其他参数回归系数在统计上和经济理论上仍然合理,则认为这个新引入的变量对回归模型是有利的,可以作为解释变量予以保留。

2。

如果新引进的解释变量对R2改进不明显,对其他回归系数也没有多大影响,则不必保留在回归模型中。

3.如果新引进的解释变量不仅改变了R2,而且对其他回归系数的数值或符号具有明显影响,则认为该解释变量为不利变量,引进后会使回归模型出现多重共线性问题。

不利变量未必是多余的,如果它可能对被解释变量是不可缺少的,则不能简单舍弃,而是应研究改善模型的形式,寻找更符合实际的模型,重新进行估计.如果通过检验证明回归模型存在明显线性相关的两个解释变量中的其中一个可以被另一个很好地解释,则可略去其中对被解释变量影响较小的那个变量,模型中保留影响较大的那个变量。

多重共线性进行检验和补救

多重共线性进行检验和补救

实验报告课程名称:实验项目名称:单方程线性回归模型中多重共线性的检验与补救院(系):专业班级:姓名:学号:实验地点:实验日期:年月日实验目的:掌握利用EViews软件对模型中存在的多重共线性进行检验和补救。

实验内容:1、多重共线性的检验1)简单相关系数法2)综合统计检验法3)观察个别偏回归系数估计值的符号4)Klein法则5)辅助回归法2、多重共线性的补救措施—逐步回归法实验方法、步骤和结果:一、建立工作文件并完成数据输入1、File---new---workfile2、Quick---Empty Group ----paste3、将ser01重命名为yser01重命名为x2ser01重命名为x3ser01重命名为x4ser01重命名为x5ser01重命名为x6二、作变量线性回归模型Quick---Estimate Equation三、多重共线性的检验(1)综合统计检验法由以上估计结果可知:F=282.6908,R^2=0.992278,X3=-0.733214,即F值较大与R^2的值较高,而系数估计值X3很小,故可知模型存在多重共线性。

(2)观察个别偏回归系数估计值的符号检验系数估计值,X3代表城镇居民人均旅游支出,X5代表公路里程数(万公里)X3 X5的符号应为正号,而由上图可知X3 X5的符号为负不合理,所以也可判断模型具有多重共线性。

(3)简单相关系数法1、将X2 X3 X4 X5 X6合并:open---as group2、点击上图的Wiew----correlations----common sample,得到以下相关系数矩阵:例如上图X2 5=0.962528, X26=0.952085, X36=0.910568均.>0.9,X32=0.857534 X34=0.864466, X35=0.847218, 均>0.8,大多数相关系数大于0.8,故可得:解释变量间存在严重的多重共线性。

多重共线性、异方差、自相关的检测与模型修正

多重共线性、异方差、自相关的检测与模型修正

多重共线性、异方差、自相关的检测与模型修正从《国家统计数据库》找到了自1978—2008年我国人均居民消费、人均国内生产总值、居民消费价格指数、前期人均居民消费、城镇居民人均可支配收入以及农村居民人均纯收入的官方数据。

以此来分析我国人均消费的影响因素以及它们具体是如何对消费产生影响的。

1978—2008年我国人均消费及其影响因素相关数据城镇居民农村居民人均居民人均国内居民消费前期人均年份人均可支人均纯收消费生产总值价格指数居民消费配收入入343 134 1978 184 381 100.7 165405 160 1979 208 419 101.9 184477 191 1980 238 463 107.5 208501 223 1981 264 492 102.5 238535 270 1982 288 528 102 264564 310 1983 316 583 102 288652 355 1984 361 695 102.7 316739 398 1985 446 858 109.3 361901 424 1986 497 963 106.5 4461002 463 1987 565 1112 107.3 4971180 545 1988 714 1366 111.8 5651373 602 1989 788 1519 118 7141510 686 1990 833 1644 103.1 7881701 709 1991 932 1893 103.4 8332027 784 1992 1116 2311 106.4 9322577 922 1993 1393 2998 114.7 11163496 1221 1994 1833 4044 124.1 13934283 1578 1995 2355 5046 117.1 18334839 1926 1996 2789 5846 108.3 23555160 2090 1997 3002 6420 102.8 27895425 2162 1998 3159 6796 99.2 30025854 2210 1999 3346 7159 98.6 31596280 2253 2000 3631 7858 100.4 33466859 2366 2001 3886 8622 100.7 36317703 2476 2002 4143 9398 99.2 38868472 2622 2003 4474 10542 101.2 41439422 2936 2004 5031 12336 103.9 447410493 3255 2005 5572 14053 101.8 503111759 3587 2006 6263 16165 101.5 557213786 4140 2007 7255 19524 104.8 626315781 4761 2008 8348 23648 105.9 7255来自《国家统计数据库》设定如下形式的计量经济模型1:=++++ Y,X,,,X,Xi33i24124其中,Y为人均居民消费 , X2为人均国内生产总值 , X3为居民消费价格指数 , X4为前期人均消费。

多重共线性的判断与修正

多重共线性的判断与修正

多重共线性的判断与修正一、多重共线性的判断1. 综合统计检验法LS Y C X1 X2 对模型进行OLS, 得到参数估计表(1) 当2,R F 很大,而回归系数的t 检验值小于临界值时,可判定该模型存在多重共线性。

(2) 当完全共线性存在时,模型的OLS 无法进行,Eviews 会提示:矩阵的逆(1()T X X -)不存在。

2. 简单相关系数检验法LS Y C X1 X2 对模型进行OLS, 得到参数估计表中的2R .点击:Quick/Group Statistics/Correlation在对话框中输入:X1 X2 , 点击OK, 即可得到简单相关系数矩阵检验:若存在 i j x x r 接近于1, 或 22,i j x x r R >,则说明,i j x x 之间存在着严重的相关性。

3. 辅助回归法(方差扩大因子法)设 121112...(1)(1)...j j k Xj X X X j X j Xk V ααααα-+=+++-+++++ (j ) LS Xj X1 X2…Xk 对(j) 进行OLS, 得到参数估计表检验:若表中 (2,1)F F k n k α>--+, 则可确定存在多重共线性。

或者(方差扩大因子法):计算211j jVIF R =-, (2j R 为以上方程的可决系数), 若10j VIF ≥, 则可确定存在多重共线性。

4. 逐步回归法1) 首先计算被解释变量对每个解释变量的回归方程,得到基本回归方程:LS Y C Xi OLS ,得到基本回归方程(i), i = 1,2,…,k2) 从这些基本回归方程中选出最合理的方程, 即,2R 取值最大,且t 检验显著。

比方说,0j Y Xj ββ=+3) 在这个选出的方程中增加新的解释变量, 再进行OLS 分析:LS Y C Xj Xi ( i= 1,2,…,j-1, j+1,…k)判断: 如果新加入的解释变量对2R 改进最大, 且每个系数又是t 统计显著,则保留这个新的解释变量。

多重共线性检验与修正

多重共线性检验与修正

多重共线性检验与修正数据来源:《中国统计年鉴2014》12-10、4-3、12-4、12-5、12-8、Eviews操作:1、基本操作:(1)录入数据:命令:data y l m f a ir(y代表粮食产量,l代表第一产业劳动力数量,m代表农业机械总动力,f代表化肥施用量,a代表农作物总播种面积,ir为有效灌溉面积/农作总播种面积得出的灌溉率)(2)做线性回归:命令:LS y c l m f a ir2、检验多重共线性(1)方差膨胀因子判断法在生成的线性回归eq01中,view—coefficient diagnostics—variance inflation factors看生成表格中的Centered VIF,发现L、M、F、A、IR的方差膨胀因子都很大,说明存在严重多重共线性。

(eg:L的Centered VIF指以L为因变量,M、A、F、IR为自变量所做出的辅助回归的判定系数R²,然后1/1-R²得出的值。

)(由课本内容可知,当完全不共线性时,VIF=1;完全共线性时,VIF=正无穷)(2)相关系数矩阵判断法命令:cor l m f a ir这个是通过看各个解释变量之间的相关系数来判断是否存在多重共线性的。

可以看到大多数解释变量之间两两相关系数都大于0.9。

相关系数极大说明解释变量之间存在很高的相关性,因而也就很可能存在共线性。

3、修正多重共线性(1)逐步回归排除引起共线性的变量①菜单栏操作在生成的线性回归eq01中,Estimate—Method—STEPLS接下来会出现两个框框,上面的框框是固定住不做逐步回归的变量,一般设定为y和c下面的框框是需要进行逐步回归选择是否剔除的变量,这里填入l m f a ir 然后出来一个新的表格,这个表格已经自动选择了可以保留的变量l a f,剔除了m ir②命令栏操作命令:STEPLS y c @ l m f a ir这条命令其实和菜单栏操作的意思一样,stepls代表采用逐步回归方法,@前的y、c代表固定不做逐步回归的变量,@后的l、m、f、a、ir代表要做逐步回归的变量出来的结果和菜单栏操作的结果是一样的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附件二:实验报告格式(首页)山东轻工业学院实验报告成绩课程名称计量经济学指导教师实验日期 2013-5-25 院(系)商学院专业班级实验地点二机房学生姓名学号同组人无实验项目名称多重共线性的检验与修正一、实验目的和要求掌握Eviews软件的操作和多重共线性的检验与修正二、实验原理Eviews软件的操作和多重共线性的检验修正方法三、主要仪器设备、试剂或材料Eviews软件,计算机四、实验方法与步骤(1)准备工作:建立工作文件,并输入数据:CREATE EX-7-1 A 1974 1981;TATA Y X1 X2 X3 X4 X5 ;(2)OLS估计:LS Y C X1 X2 X3 X4 X5;(3)计算简单相关系数COR X1 X2 X3 X4 X5 ;(4)多重共线性的解决LS Y C X1;LS Y C X2;LS Y C X3;LS Y C X4;LS Y C X5;LS Y C X1 X3;LS Y C X1 X3 X2;LS Y C X1 X3 X4;LS Y C X1 X3 X5;五、实验数据记录、处理及结果分析(1)建立工作组,输入以下数据:98.45 560.20 153.20 6.53 1.23 1.89100.70 603.11 190.00 9.12 1.30 2.03102.80 668.05 240.30 8.10 1.80 2.71133.95 715.47 301.12 10.10 2.09 3.00140.13 724.27 361.00 10.93 2.39 3.29143.11 736.13 420.00 11.85 3.90 5.24146.15 748.91 491.76 12.28 5.13 6.83144.60 760.32 501.00 13.50 5.47 8.36148.94 774.92 529.20 15.29 6.09 10.07158.55 785.30 552.72 18.10 7.97 12.57169.68 795.50 771.16 19.61 10.18 15.12162.14 804.80 811.80 17.22 11.79 18.25170.09 814.94 988.43 18.60 11.54 20.59178.69 828.73 1094.65 23.53 11.68 23.37 (2)OLS估计Dependent Variable: YMethod: Least SquaresDate: 05/25/13 Time: 11:10Sample: 1974 1987Included observations: 14Variable Coefficient Std. Error t-Statistic Prob.C -3.496563 30.00659 -0.116526 0.9101X1 0.125330 0.059139 2.119245 0.0669X2 0.073667 0.037877 1.944897 0.0877X3 2.677589 1.257293 2.129646 0.0658X4 3.453448 2.450850 1.409082 0.1965X5 -4.491117 2.214862 -2.027719 0.0771R-squared 0.970442 Mean dependent var 142.7129Adjusted R-squared 0.951968 S.D. dependent var 26.09805S.E. of regression 5.719686 Akaike info criterion 6.623232Sum squared resid 261.7185 Schwarz criterion 6.897114Log likelihood -40.36262 F-statistic 52.53086Durbin-Watson stat 1.972755 Prob(F-statistic) 0.000007用Eviews进行最小二乘估计得,Yˆ=-3.497+0.125X1+0.074X2+2.678X3+3.453X4-4.491X5(-0.1) (2.1) (1.9) (2.1) (1.4) (-2.0)R2=0.970, 2R=0.952, DW=1.97, F=52.53其中括号内的数字是t值。

给定显著水平α=0.05,回归系数估计值都没有显著性。

查F 分布表,得临界值为F0.05(5,8)=3.69,故F=52.53>3.69,回归方程显著。

(3)计算简单相关系数COR X1 X2 X3 X4 X5 ;X1 X2 X3 X4 X5X1 1 0.866551867279170.8822931086064990.852*******193940.821305444858646X2 0.86655186727917 10.9458956983200270.9647730220121920.98253206329193X3 0.8822931086064990.945895698320027 10.9405058208239960.948361346495427X4 0.852*******193940.9647730220121920.940505820823996 10.98197917741363X5 0.8213054448586460.982532063291930.9483613464954270.98197917741363 1 r12=0.867,r13=0.882,r14=0.852,r15=0.821,r23=0.946,r24=0.965,r25=0.983,r34=0.941,r35=0.948,r45=0.982可见解释变量之间是高度相关的。

(4)多重共线性的解决, 采用Frisch法。

&1.对Y关于X1,X2,X3,X4,X5作最小二乘回归:1) LS Y C X1Dependent Variable: YMethod: Least SquaresDate: 05/25/13 Time: 11:12Sample: 1974 1987Included observations: 14Variable Coefficient Std. Error t-Statistic Prob.C -90.92074 19.32929 -4.703781 0.0005X1 0.316925 0.026081 12.15161 0.0000R-squared 0.924841 Mean dependent var 142.7129Adjusted R-squared 0.918578 S.D. dependent var 26.09805S.E. of regression 7.446964 Akaike info criterion 6.985054Sum squared resid 665.4873 Schwarz criterion 7.076347Log likelihood -46.89537 F-statistic 147.6617Durbin-Watson stat 1.536885 Prob(F-statistic) 0.000000得回归方程为:Yˆ=-90.921+0.317X1(-4.7)(12.2)R2=0.925, 2R=0.919, DW=1.537, F=147.6192) LS Y C X2Dependent Variable: YMethod: Least SquaresDate: 05/25/13 Time: 11:14Sample: 1974 1987Included observations: 14Variable Coefficient Std. Error t-Statistic Prob.C 99.61349 6.431242 15.48900 0.0000X2 0.081470 0.010738 7.587119 0.0000 R-squared 0.827498 Mean dependent var 142.7129Adjusted R-squared 0.813123 S.D. dependent var 26.09805S.E. of regression 11.28200 Akaike info criterion 7.815858Sum squared resid 1527.403 Schwarz criterion 7.907152Log likelihood -52.71101 F-statistic 57.56437Durbin-Watson stat 0.638969 Prob(F-statistic) 0.000006 得回归方程为:Yˆ=99.614+0.0815X2(15.5)(7.6)R=0.813, DW=0.639,F=57.564R2=0.828, 23)LS Y C X3Dependent Variable: YMethod: Least SquaresDate: 05/25/13 Time: 11:14Sample: 1974 1987Included observations: 14Variable Coefficient Std. Error t-Statistic Prob.C 74.64824 8.288989 9.005711 0.0000X3 4.892712 0.563578 8.681514 0.0000R-squared 0.862651 Mean dependent var 142.7129Adjusted R-squared 0.851205 S.D. dependent var 26.09805S.E. of regression 10.06704 Akaike info criterion 7.587974Sum squared resid 1216.144 Schwarz criterion 7.679268Log likelihood -51.11582 F-statistic 75.36868Durbin-Watson stat 0.813884 Prob(F-statistic) 0.000002得回归方程为:Yˆ=74.648+4.893X3(9.0)(8.7)R2=0.863, 2R=0.851, DW=0.814,F=75.3694) LS Y C X4Dependent Variable: YMethod: Least SquaresDate: 05/25/13 Time: 11:15Sample: 1974 1987Included observations: 14Variable Coefficient Std. Error t-Statistic Prob.C 108.8647 5.934330 18.34490 0.0000X4 5.739752 0.838756 6.843175 0.0000R-squared 0.796019 Mean dependent var 142.7129Adjusted R-squared 0.779021 S.D. dependent var 26.09805S.E. of regression 12.26828 Akaike info criterion 7.983475Sum squared resid 1806.129 Schwarz criterion 8.074769Log likelihood -53.88433 F-statistic 46.82904Durbin-Watson stat 0.769006 Prob(F-statistic) 0.000018 得回归方程为:Yˆ=108.865+5.740X4(18.3)(6.8)R2=0.796, 2R=0.779, DW=0.769,F=46.8295) LS Y C X5Dependent Variable: YMethod: Least SquaresDate: 05/25/13 Time: 11:16Sample: 1974 1987Included observations: 14Variable Coefficient Std. Error t-Statistic Prob.C 113.3747 6.077133 18.65596 0.0000X5 3.080811 0.512300 6.013688 0.0001 R-squared 0.750854 Mean dependent var 142.7129Adjusted R-squared 0.730091 S.D. dependent var 26.09805S.E. of regression 13.55865 Akaike info criterion 8.183490Sum squared resid 2206.044 Schwarz criterion 8.274784Log likelihood -55.28443 F-statistic 36.16444Durbin-Watson stat 0.593639 Prob(F-statistic) 0.000061 得回归方程为:Yˆ=113.375+3.081X5(18.7)(6.0)R2=0.75, 2R=0.73, DW=0.59,F=36.16选第一个方程为基本回归方程。

相关文档
最新文档