数学知识点-学年七年级数学上学期期中试题 (新人教版 第10套)-总结

合集下载

人教版七年级上册数学《期中》考试含答案

人教版七年级上册数学《期中》考试含答案

人教版七年级上册数学《期中》考试含答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2B.3C.9D.±32.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.4.4×108B.4.40×108C.4.4×109D.4.4×1010 3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.已知三角形三边长为a、b、c,且满足247-=-,b c-=,246a b2618-=-,则此三角形的形状是()c aA.等腰三角形B.等边三角形C.直角三角形D.无法确定5.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE6.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角8.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或59.数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A .4B .4-或10C .10-D .4或10-10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=_______________,△APE的面积等于6.3.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是________.4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如果一个角的补角是150°,那么这个角的余角的度数是________度.69 ________.三、解答题(本大题共6小题,共72分)1.解方程组(1)3759y xx y=+⎧⎨+=⎩(2)325352x yx y+=⎧⎨-=-⎩(3)5512237x yx y+=⎧⎨+=⎩(4)1354x yy zx z+=⎧⎪+=⎨⎪+=⎩2.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣13B;(2)若2A﹣13B与32C-互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.3.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是_____,∠AOC的余角是_____;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.4.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D (1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.5.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?6.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、C6、D7、A8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、1.5或5或93、(-2,0)4、205、606、3三、解答题(本大题共6小题,共72分)1、(1)1252xy⎧=-⎪⎪⎨⎪=⎪⎩;(2)11xy=⎧⎨=⎩;(3)15115xy⎧=⎪⎪⎨⎪=⎪⎩;(4)672xyz=⎧⎪=⎨⎪=-⎩2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、(1)∠AOE,∠BOC;(2)125°4、(1)略;(2)4.5、(1)200;(2)见解析;(3)54°;(4)估计该市初中生中大约有6800名学生学习态度达标.6、(1)40,30;(2)购买方案见解析,方案一所需资金最少,900万元.。

四川省巴中市恩阳区七年级数学上学期期中试题(含解析) 新人教版-新人教版初中七年级全册数学试题

四川省巴中市恩阳区七年级数学上学期期中试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省某某市恩阳区2015-2016学年七年级数学上学期期中试题一、选择题1.如果向东走2km,记作+2km,那么﹣3km表示( )A.向东走3km B.向南走3km C.向西走3km D.向北走3km2.最小的正有理数( )A.是0 B.是1 C.是0.00001 D.不存在3.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是( )A.b>c>0>a B.a>0>c>b C.b>a>c>0 D.c<0<a<b4.下列各组中互为相反数的是( )A.﹣2与B.|﹣2|和2 C.﹣2.5与|﹣2| D.与5.若a+b<0,ab<0,则下列说法正确的是( )A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能6.用四舍五入法,把数4.803保留三个有效数字,得到的近似数是( )7.“a,b两数的平方和”用代数式表示为( )A.a2+b2 B.(a+b)2C.a+b2D.a2+b8.下列各组数中,不相等的一组是( )A.(﹣2)3和﹣23B.(﹣2)2和﹣22C.(﹣2)和﹣2 D.|﹣2|3和|2|39.在多项式2x2﹣xy3+18中,次数最高的项是( )A.2 B.18 C.2x2D.﹣xy310.用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子( )A.4n枚B.(4n﹣4)枚C.(4n+4)枚D.n2枚二、填空题__________,相反数是__________,倒数是__________.[来源:Zxxk.]13.单项式﹣a2b3c的系数是__________,次数是__________次.14.地球离太阳约有150000000万千米,用科学记数法表示为__________万千米.15.在数轴上,与表示﹣3的点的距离是4数为__________.16.兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了__________元.17.规定a﹡b=﹣a+2b,则(﹣2)﹡3的值为__________.18.若(x﹣2)2+|y+3|=0,则y x=__________.19.多项式3a2b﹣a3﹣1﹣ab2按字母a的升幂排列是__________.20.一列数据:2,4,6,8,…;按此排列,那么,第7个数据是__________,第n个数据是__________.三、解答题:11.﹣1﹣(﹣3)=__________.21.(25分)计算.(1)(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)(2)﹣99×9(3)(﹣1)10×2+(﹣2)3÷4(4)(﹣1)3﹣〔2﹣(﹣3)2〕÷(﹣)(5)﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].22.将下列各数在数轴上表示出来,并用“<”连接:﹣22,﹣(﹣1),0,|﹣3|,﹣2.5.23.(14分)已知:有理数m所表示的点到点3距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.(1)求m的值,(2)求:2a+2b+()﹣m的值.24.已知﹣2x m y n+1的次数为10,求2m+2n﹣1的值.25.出租车司机李师傅一天下午的营运全是在东西走向的路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)如下:[来源:Zxxk.]+8,﹣6,﹣5,+10,﹣5,+3,﹣2,+6,+2,﹣5(1)若把李师傅下午出发地记为0,他将最后一名乘客送抵目的地时,李师傅在出发点什么方向?距离出发点多少米?(2)如果汽车耗油量为0.2升/千米,那么这天下午汽车共耗油多少升?26.X叔叔在南涧“龙凤丽都”房地产公司买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米),解答下列问题:(1)用式子表示这所住宅的总面积.(2)若铺1平方米地砖平均费用120元,求当x=6时,这套住宅铺地砖总费用为多少元?27.(16分)某餐厅中1X餐桌可坐6人,有以下两种摆放方式:(1)对于方式一,4X桌子拼在一起可坐多少人?nX桌子呢?对于方式二呢?(2)该餐厅有40X这样的长方形桌子,按方式一每5X拼成一X大桌子,则40X桌子可拼成8X大桌子,共可坐多少人?按方式二呢?(3)在(2)中,若改成每8X拼成一X大桌子,则两种方式分别可坐多少人?2015-2016学年某某省某某市恩阳区七年级(上)期中数学试卷一、选择题1.如果向东走2km,记作+2km,那么﹣3km表示( )A.向东走3km B.向南走3km C.向西走3km D.向北走3km【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:向东走记为正,则向西走就记为负,直接得出结论即可.【解答】解:如果向东走2km表示+2km,那么﹣3km表示向西走3km.故选C.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.最小的正有理数( )A.是0 B.是1 C.是0.00001 D.不存在【考点】有理数.【分析】根据大于零的有理数是正有理数,可得答案.【解答】解:没有最小的正有理数,故D正确.故选:D.【点评】本题考查了有理数,没有最小的正有理数,也没有最大的有理数.3.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是( )A.b>c>0>a B.a>0>c>b C.b>a>c>0 D.c<0<a<b【考点】有理数大小比较.【分析】数轴上的数,右边的数总比左边的数大,利用这个特点可比较四个数的大小.【解答】解:∵数轴上的数,右边的数总比左边的数大,∴b>c>0>a.故选A.【点评】本题考查了利用数轴比较有理数的大小,也就是把“数”和“形”结合起来,注意数轴上的数右边的数总比左边的数大.4.下列各组中互为相反数的是( )A.﹣2与B.|﹣2|和2 C.﹣2.5与|﹣2| D.与【考点】相反数.【分析】两数互为相反数,它们的和为0.本题可对四个选项进行一一分析,看选项中的两个数和是否为0,如果和为0,则那组数互为相反数.【解答】解:A、﹣2+(﹣)≠0,故﹣2与﹣一定不互为相反数,故选项错误;B、|﹣2|=2,2和2不是互为相反数,故选项错误;C、|﹣2|=2,与﹣2.5不是互为相反数,故选项错误;D、|﹣|=,+(﹣)=0,它们是互为相反数,故选项正确.故选:D.【点评】本题考查的是相反数的概念,两数互为相反数,它们的和为0.5.若a+b<0,ab<0,则下列说法正确的是( )A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.【点评】本题考查了有理数的乘法,有理数的加法运算,熟记运算法则是解题的关键.6.用四舍五入法,把数4.803保留三个有效数字,得到的近似数是( )【考点】近似数和有效数字.【分析】根据有效数字的定义,把千分位上的数字3进行四舍五入即可.【解答】解:4.803≈4.80(保留三个有效数字).故选B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.7.“a,b两数的平方和”用代数式表示为( )A.a2+b2 B.(a+b)2C.a+b2D.a2+b【考点】列代数式.【分析】“a,b两数的平方和”是先平方再相加.【解答】解:“a,b两数的平方和”代数式表示为用a2+b2.故选A.【点评】注意掌握代数式的意义.8.下列各组数中,不相等的一组是( )A.(﹣2)3和﹣23B.(﹣2)2和﹣22C.(﹣2)和﹣2 D.|﹣2|3和|2|3【考点】有理数的乘方.【分析】根据乘方的运算法则算出各自结果,然后进行比较得出答案.【解答】解:A中都是﹣8,B中一个是4一个是﹣4,C,D也都相等.故选B.【点评】解决此类题目的关键是熟记有理数的乘方运算法则和绝对值的定义.负数的奇数次幂是负数,负数的偶数次幂是正数.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数.9.在多项式2x2﹣xy3+18中,次数最高的项是( )A.2 B.18 C.2x2D.﹣xy3【考点】多项式.【分析】此多项式共五项:2x2、﹣xy3、18.最高次项为﹣xy3;【解答】解:由上面分析得多项式2x2﹣xy3+18中最高次数项是多项式﹣xy3;故选:D.【点评】本题考查了对多项式的项的系数和次数定义的掌握情况,熟练掌握单项式次数是解题关键.10.用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子( )A.4n枚B.(4n﹣4)枚C.(4n+4)枚D.n2枚【考点】规律型:图形的变化类.【分析】每增加一个数就增加四个棋子.【解答】解:n=1时,棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;…;n=n时,棋子个数为n×4=4n.故选A.【点评】主要培养学生的观察能力和空间想象能力.二、填空题,相反数是,倒数是﹣2.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】求一个数的相反数时在这个数的前面加上负号即可;求一个数的倒数只需将其分子分母交换位置.【解答】解:|﹣0.5|=﹣(﹣0.5)=0.5,∴﹣0.5的绝对值是0.5,相反数为:0.5;﹣0.5的倒数为:=﹣2,故答案为:0.5;0.5;﹣2.【点评】本题考查了求一个数的相反数、绝对值及倒数,属于较简单的题目,但考查的频率较高.13.单项式﹣a2b3c的系数是﹣,次数是六次.【考点】多项式.【分析】根据单项式的系数与次数的定义求解.【解答】解:单项式﹣a2b3c的系数是﹣,次数是六次.故答案为﹣,六.【点评】本题考查了单项式:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.14.地球离太阳约有150000000万千米,用科学记数法表示为1.5×108万千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将150000000用科学记数法表示为:1.5×108.故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.在数轴上,与表示﹣3的点的距离是4数为1或﹣7.【考点】数轴.【专题】常规题型.【分析】此题注意考虑两种情况:该点在﹣3的左侧,该点在﹣3的右侧.【解答】解:根据数轴的意义可知,在数轴上与﹣3的距离等于4的点表示的数是﹣3+4=1或﹣3﹣4=﹣7.故答案为:1或﹣7.【点评】本题主要考查了数轴,要注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉一种情况.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.16.兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了0.8m+2n元.【考点】列代数式.【分析】根据总花费=买铅笔用的钱+买练习本用的钱,列代数式.【解答】解:总花费=0.8m+2n.故答案为:0.8m+2n.【点评】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.17.规定a﹡b=﹣a+2b,则(﹣2)﹡3的值为8.【考点】有理数的混合运算.【专题】新定义.【分析】利用已知a﹡b=﹣a+2b得出(﹣2)﹡3=﹣(﹣2)+2×3进而求出即可.【解答】解:∵a﹡b=﹣a+2b,∴(﹣2)﹡3=﹣(﹣2)+2×3=8.故答案为:8.【点评】此题主要考查了新运算以及有理数的混合运算,根据已知得出(﹣2)﹡3变形后等式是解题关键.18.若(x﹣2)2+|y+3|=0,则y x=9.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵(x﹣2)2+|y+3|=0,∴x﹣2=0,y+3=0,∴x=2,y=﹣3,∴y x=(﹣3)2=9.故答案为9.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.多项式3a2b﹣a3﹣1﹣ab2按字母a的升幂排列是﹣1﹣ab2+3a2b﹣a3.【考点】多项式.【分析】先分清多项式的各项,然后按多项式降升幂排列的定义排列.【解答】解:多项式3a2b﹣a3﹣1﹣ab2按字母a的升幂排列是:﹣1﹣ab2+3a2b﹣a3.故答案是::﹣1﹣ab2+3a2b﹣a3.【点评】我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.20.一列数据:2,4,6,8,…;按此排列,那么,第7个数据是14,第n个数据是2n.【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,这是一列从2开始的偶数列,然后解答即可.【解答】解:∵2,4,6,8,…,∴按此排列,第7个数据是14;第n个数据是2n.故答案为:14;2n.【点评】本题是对数字变化规律的考查,观察出是偶数列是解题的关键.三、解答题:11.﹣1﹣(﹣3)=2.【考点】有理数的减法.【专题】计算题.【分析】根据有理数减法法则:减去一个数,等于加上这个数的相反数计算.【解答】解:﹣1﹣(﹣3)=﹣1+3=2.故答案为2.【点评】本题考查了有理数的减法.注意:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).21.(25分)计算.(1)(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)(2)﹣99×9(3)(﹣1)10×2+(﹣2)3÷4(4)(﹣1)3﹣〔2﹣(﹣3)2〕÷(﹣)(5)﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].【考点】有理数的混合运算.【分析】(1)利用加法交换律与结合律简算;(2)利用乘法分配律简算即可;(3)先算乘法,再算乘除,最后算加法;(4)先算乘方,再算除法,最后算减法;(5)先算乘方和括号里面的减法,再算乘法,最后算减法.【解答】解:((1)原式=(﹣3.14)+(+2.14)+(﹣7.96)+(+4.96)=﹣1﹣3=﹣4;(2)原式=﹣100×9+×9=﹣900+=﹣899;(3)原式=1×2+(﹣8)÷4=2﹣2=0;(4)原式=﹣1﹣〔2﹣9〕÷(﹣)=﹣1+7×(﹣2)=﹣1﹣14=﹣15;(5)原式=﹣1﹣××[2﹣9]=﹣1+=.【点评】此题考查有理数的混合运算,掌握运算顺序与计算方法是解决问题的关键.22.将下列各数在数轴上表示出来,并用“<”连接:﹣22,﹣(﹣1),0,|﹣3|,﹣2.5.【考点】有理数大小比较;数轴.【专题】数形结合.【分析】先画出数轴并表示出各数,根据数轴的特点用“<”把各数连接起来.【解答】解:画出数轴并表示出各数如图:从左到右用“<”把各数连接起来为:﹣22<﹣2.5<0<﹣(﹣1)<|﹣3|.【点评】本题考查的是有理数的大小比较,引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.23.(14分)已知:有理数m所表示的点到点3距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.(1)求m的值,(2)求:2a+2b+()﹣m的值.【考点】代数式求值;数轴;相反数;倒数.【专题】计算题.【分析】(1)根据m所表示的点到点3距离4个单位,确定出m即可;(2)利用相反数,倒数的定义求出a+b,,cd的值,代入原式计算即可得到结果.【解答】解:(1)根据题意得:m=﹣1或7,a+b=0,=﹣1,cd=1;(2)当m=﹣1时,原式=2(a+b)+﹣3cd﹣m=﹣1﹣3+1=﹣3;当m=7时,原式=﹣1﹣3﹣7=﹣11.【点评】此题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.24.已知﹣2x m y n+1的次数为10,求2m+2n﹣1的值.【考点】代数式求值;单项式.【分析】由﹣2x m y n+1的次数为10,可求得m+n=9,继而可求得2m+2n﹣1的值.【解答】解:∵﹣2x m y n+1的次数为10,∴m+n+1=10,∴m+n=9,∴2m+2n﹣1=2(m+n)﹣1=2×9﹣1=17.【点评】此题考查了代数式的求值,此题难度不大,注意掌握整体思想的应用.25.出租车司机李师傅一天下午的营运全是在东西走向的路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)如下:+8,﹣6,﹣5,+10,﹣5,+3,﹣2,+6,+2,﹣5(1)若把李师傅下午出发地记为0,他将最后一名乘客送抵目的地时,李师傅在出发点什么方向?距离出发点多少米?(2)如果汽车耗油量为0.2升/千米,那么这天下午汽车共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得李师傅距下午出发地有多远;(2)根据行车路程×0.2,可得耗油量.【解答】解:(1)8+(﹣6)+(﹣5)+10+(﹣5)+3+(﹣2)+6+2+(﹣5)=6(米).答:若把李师傅下午出发地记为0,他将最后一名乘客送抵目的地时,李师傅在出发点东方,距下午出发地有6米远;(2)|8|+|﹣6|+|﹣5|+|+10|+|﹣5|+|+3|+|﹣2|+|+6|+|+2|+|﹣5|=10.4(升).答:这天下午汽车共耗油10.4升.【点评】本题考查了正数和负数,有理数的加法是解题关键,注意不论向哪行驶都耗油.26.X叔叔在南涧“龙凤丽都”房地产公司买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米),解答下列问题:(1)用式子表示这所住宅的总面积.(2)若铺1平方米地砖平均费用120元,求当x=6时,这套住宅铺地砖总费用为多少元?【考点】列代数式;代数式求值.【分析】(1)根据总面积等于四部分的面积之和列式整理即可得解;(2)把x=6代入代数式求出总面积,再乘以120计算即可得解.【解答】解:(1)总面积=2x+x2+4×3+2×3=x2+2x+18;(2)x=6时,总面积=62+2×6+18=36+12+18=66m2,所以,这套住宅铺地砖总费用为:66×120=7920元.【点评】本题考查了列代数式和代数式求值,比较简单,主要利用了长方形的面积和正方形的面积公式,准确识图是解题的关键.27.(16分)某餐厅中1X餐桌可坐6人,有以下两种摆放方式:(1)对于方式一,4X桌子拼在一起可坐多少人?nX桌子呢?对于方式二呢?(2)该餐厅有40X这样的长方形桌子,按方式一每5X拼成一X大桌子,则40X桌子可拼成8X大桌子,共可坐多少人?按方式二呢?(3)在(2)中,若改成每8X拼成一X大桌子,则两种方式分别可坐多少人?【考点】规律型:图形的变化类.【分析】(1)仔细观察图形并找到规律求解即可.(2)分别代入4n+2时和2n+4时两种情况求得数值即可;(3)解法同第(2)题;【解答】解:(1)第一种中,只有一X桌子是6人,后边多一X桌子多4人.4X桌子可以坐18人,有nX桌子时是6+4(n﹣1)=4n+2.第二种中,有一X桌子是6人,后边多一X桌子多2人,四桌子可以坐12人,nX桌子可以坐6+2(n﹣1)=2n+4.(2)方式一:40X桌子拼成8X大桌子可以坐8×[6+16]=176人,方式二:40X桌子拼成8X大桌子可以坐8×[6+8]=112人;(3)方式一:40X桌子拼成8X大桌子可以坐5×[4×8+2]=170人;方式二:40X桌子拼成5X大桌子可以坐5×[6+14]=100人.【点评】本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律,难度不大.。

人教版七年级上册数学期中试卷及答案【完整版】

人教版七年级上册数学期中试卷及答案【完整版】

人教版七年级上册数学期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒8.6的相反数为( )A .-6B .6C .16-D .16 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.绝对值不大于4.5的所有整数的和为________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.分解因式:23m m -=________.5364 的平方根为________.6.若实数a 、b 满足a 2b 40+-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解下列方程:(1)37615=-y (2)21136x x ++-=2 (3)0.430.20.5x x +--=﹣1.62.已知关于x、y的方程组354526x yax by-=⎧⎨+=-⎩与2348x yax by+=-⎧⎨-=⎩有相同的解,求a、b的值.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l 异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:类别次数购买A商品数量(件)购买B商品数量(件)消费金额(元)第一次 4 5 320第二次 2 6 300第三次 5 7 258解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、A5、A6、D7、B8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、03、70.4、(3)m m-5、±26、1三、解答题(本大题共6小题,共72分)1、(1)y=3;(2)x=113;(3)x=﹣3.2.2、149299 ab⎧=⎪⎪⎨⎪=⎪⎩3、略4、(1)详略;(2)∠ABC=∠DEF,∠ACB=∠DFE,略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件。

陕西省西安市经开区经开第二中学2024-2025学年七年级上学期期中考试数学试题

陕西省西安市经开区经开第二中学2024-2025学年七年级上学期期中考试数学试题

陕西省西安市经开区经开第二中学2024-2025学年七年级上学期期中考试数学试题一、单选题1.实数5-的相反数是()A .5B .5-C .15D .15-2.锂电池是电动汽车的关键部件,我国的锂电池正突破重围,势不可挡.规定充电时长为正,耗电时长为负,若新能源汽车快充充电0.5小时记作0.5+小时,那么新能源汽车连续性耗电7小时记作()A .0.5+小时B .0.5-小时C .7+小时D .7-小时3.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为()A .617510⨯B .717.510⨯C .81.7510⨯D .90.17510⨯4.用一个平面截下列立体图形,截面不可能...是圆的是()A .B .C .D .5.对于多项式256x x --,下列说法正确的是()A .它是三次三项式B .它的常数项是6C .它的一次项系数是5-D .它的二次项系数是26.下列说法正确的是()A .整数和分数统称为有理数B .一个有理数的绝对值一定大于它本身C .x 与y 的和除以x 的商是yx x+D .相反数等于本身的数只有0和17.某工厂计划生产n 个零件,原计划每天生产a 个零件,实际每天比原计划多生产b 个零件,则实际生产所用的天数比原计划少()A .n n a b ⎛⎫- ⎪⎝⎭天B .n n b a ⎛⎫- ⎪⎝⎭天C .nn a b a ⎛⎫-⎪+⎝⎭天D .nn a a b ⎛⎫- ⎪+⎝⎭天8.已知,,a b c 三个数在数轴上对应的点如图所示,则下列结论中错误的是()A .0a b +<B .0c b ->C .0abc >D .b c b c+=+二、填空题9.比较大小:85-236-.(填“>”“<”或“=”)10.如图是一个正方体的展开图,如果相对面上两个数的和为0,则x y +的值为.11.对幻方的研究体现了中国古人的智慧,如图是一个没有填写完整的幻方,它每一横行、每一竖列以及两条斜对角线上的3个数的和都相等,那么m 表示的数为.12.数轴上与点A 距离3个单位长度的点表示的数是1,则点A 表示的数是.13.按照图(1)、(2)、(3)的方式分割三角形,所得三角形总个数分别是5个、9个、13个,照此规律分割下去,第n 个图中共有个三角形.三、解答题14.计算:()()22892323-÷-++⨯-.15.计算:()()4345222--+-÷-.16.化简:()()22234321m m m m -+--+.17.在数轴上表示下列各数,并用“<”把这些数连接起来.2-, 1.5+,72,12⎛⎫-- ⎪⎝⎭,4--.18.如图是一个“数值转换机”的示意图.(1)写出输出结果______(用含x 的代数式表示);(2)填写下表;x 2-1-012输出19.某公司上半年1月份盈利25万元,2月份亏损20万元,3月份盈利18万元,4月份亏损24万元,5月份盈利19万元,6月份亏损23万元,该公司上半年是盈利还是亏损,盈利或亏损了多少万元?20.先化简,再求值:()()22212322ab a b a ab -+---,其中1a =,2b =-.21.如图,大拇指与食指尽量张开时,两指尖的距离称为“一拃长”,某项研究表明身高与“一拃长”有如下的近似关系:一拃的长度乘10,再把结果加2cm ,就能得知对应的身高.(1)设一拃长为cm d ,对应的身高为cm h ,用代数式表示h 与d 之间的关系;(2)某同学一拃长为16.8cm ,则他的身高约是多少厘米?22.某特技飞行队在黄山湖风景区进行特技表演.其中一架飞机从起点开始起飞后的高度变化如下(记上升为正,下降为负):5.5km +, 3.2km -,1km +, 1.5km -,0.8km-(1)此时这架飞机比起飞点高了多少千米?(2)若飞机上升1千米平均消耗4升燃油,下降1千米平均消耗2升燃油,那么这架飞机在这5次高度变化中,一共需消耗多少升燃油?23.小明房间窗户的装饰物如图所示,它是由两个相等的四分之一圆组成,阴影部分表示阳光不能透过装饰物照进房间.(1)用含a ,b 的代数式表示窗户能射进阳光部分(空白部分)的面积;(2)当8dm a =,3dm b =时,求窗户能射进阳光部分(空白部分)的面积.(π取3.14,结果精确到0.1)24.乐高侧重于培养孩子的解决问题能力,沟通表达能力,自我学习能力和创新实践能力.某线上文具店计划每天销售100套乐高,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:套).星期一二三四五六日与计划量的差值+4-3-5+14-8+21-6(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售______套;(2)本周实际销售量是否达到了计划量?试说明理由;(3)若每套乐高按80元售卖,平均每套乐高需要线上文具店支付的运费是10元,那么该线上文具店本周销售乐高实际收入多少元?25.网约车是一种便捷的出行工具.某平台网约车计价规则如下表:计费项目里程费时长费远途费单价a 元/公里0.45元/分钟()1.4a -元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算,时长费按行车的实际时间计算,远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收()1.4a -元.(1)当行车里程为8公里,行车时间为7分钟时,在该平台约车需付车费多少元?(2)若小明乘坐该平台网约车,行车里程为30公里,行车时间为20分钟,则小明应付车费多少元?(3)小王与小张各自乘坐该平台网约车,行车里程分别为9公里与15公里,受路况情况影响,小王比小张乘车多用了23分钟,小王的行车时间为b 分钟,小张比小王付的车费多多少元?26.如图,在单位长度为1的数轴上有A ,B ,C ,D 四个点表示4个不同的有理数,点A ,C 表示的有理数互为相反数.(1)点A 表示的有理数是______,点B 表示的有理数是______;点C 表示的有理数是______;点D 表示的有理数是______;(2)点A ,B ,C ,D 同时开始在数轴上运动,若点C 和点D 分别以每秒2个单位长度和3个单位长度的速度向右匀速运动.同时,若点A 和点B 分别以每秒6个单位长度和5个单位长度的速度向左匀速运动,运动时间为t 秒.①用含t 的代数式表示点A ,D 之间的距离;②若点A ,C 之间的距离为m ,点B ,D 之间的距离为n ,求m n -的值.。

人教版七年级上学期期中数学试卷(含答案)

人教版七年级上学期期中数学试卷(含答案)

人教版七年级第一学期期中数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.20222.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.63.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×1094.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.5.(3分)计算:8×5的结果是()A.8B.25C.40D.416.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣88.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是210.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.12.(2分)化简分数:﹣=.13.(2分)计算:(+5)+(﹣6)+(﹣4)=.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回元.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日柚子销售超过或不足计划量情况(单位:千克)+3﹣5﹣2+11﹣7+13+5(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.(参考答案与详解)一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.2022【解答】解:﹣2022的相反数是2022,故选:D.2.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.6【解答】解:(﹣2)﹣(﹣4)=﹣2+4=2,故选:B.3.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×109【解答】解:110425000=1.10425×108.故选:C.4.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.【解答】解:A选项的数轴1,2的位置不对,故不符合题意;B选项的数轴有单位长度,有正方向,有原点,故符合题意;C选项的数轴正数和负数的位置反了,不符合题意;D选项的数轴单位长度不一致,故不符合题意;故选:B.5.(3分)计算:8×5的结果是()A.8B.25C.40D.41【解答】解:8×5=×5=41.故选:D.6.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃【解答】解:﹣2+5=3(℃),即该地15:00的气温是3℃.故选:B.7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣8【解答】解:积最大的是(﹣4)×(﹣3)=12,故选:B.8.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b【解答】解:由题意可知,a<b<0,∴a<b<﹣b<﹣a.故选:A.9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是2【解答】解:A、﹣15x2y的系数是﹣15,次数是3,故A不符合题意;B、多项式﹣x3﹣2x2y2+3y2有3项,次数是4,正确,故B符合题意;C、单项式x的系数是1,次数是1,故C不符合题意;D、多项式4x2﹣4x2y+y2的次数是3,故D不符合题意,故选:B.10.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元【解答】解:的意义是将原价打6折之后,再降低8元.故选:A.二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.【解答】解:有理数的倒数是.故答案为:.12.(2分)化简分数:﹣=﹣.【解答】解:﹣=﹣=﹣,故答案为:﹣.13.(2分)计算:(+5)+(﹣6)+(﹣4)=﹣5.【解答】解:(+5)+(﹣6)+(﹣4)=5+[(﹣6)+(﹣4)]=5+(﹣10)=﹣5.故答案为:﹣5.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回3225元.【解答】解:3000+3000×3.75%×2=3000+225=3225(元),∴到期时他取回3225元,故答案为:3225.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为2n+1.【解答】解:搭1个三角形需要火柴棒的根数为:3,搭2个三角形需要火柴棒的根数为:5=3+2=3+2×1,搭3个三角形需要火柴棒的根数为:7=3+2+2=3+2×2,…搭n个三角形需要火柴棒的根数为:3+2(n﹣1)=2n+1,故答案为:2n+1.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).【解答】解:原式=[(﹣0.5)+(﹣5.5)]+(3.25+2.75)=﹣6+6=0.17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.【解答】解:﹣22×[5﹣(﹣1)2022]+|﹣1+5|=﹣4×(5﹣1)+4=﹣4×4+4=﹣16+4=﹣12.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.【解答】解:原式=x2y+4xy2﹣6x2y﹣3xy2+6x2y﹣3=(1﹣6+6)x2y+(4﹣3)xy2﹣3=x2y+xy2﹣3,当x=﹣2,y=1时,原式=(﹣2)2×1+(﹣2)×12﹣3=4×1﹣2×1﹣3=4﹣2﹣3=﹣1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?【解答】解:(1)10﹣9+8﹣6+7.5﹣6+8﹣7=10+8+7.5+8﹣9﹣6﹣6﹣7=33.5﹣28=5.5(cm),答:停止时所在位置距A点5.5cm,在A点的右方;(2)10+9+8+6+7.5+6+8+7=61.5(cm),61.5÷2=30.75(秒).答:共用30.75秒.20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日+3﹣5﹣2+11﹣7+13+5柚子销售超过或不足计划量情况(单位:千克)(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?【解答】解:(1)3﹣5﹣2+11﹣7+13+5+100×7=18+700=718(千克).答:小王第一周实际销售柚子的总量是718千克.(2)718×(8﹣3)=718×5=3590(元).答:小王第一周销售柚子一共收入3590元.21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?Array【解答】解:(1)这套房子的总面积为:3x+xy+6y+3x=(6x+6y+xy)m2,答:这套房子的总面积为(5x+6y+xy)m2;(2)当x=5,y=8时,房子的总面积为:30+48+40=118(m2),0.5×118=59(万元),答:购买这套房子共需要59万元.22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.【解答】解:(1)∵A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5,∴A﹣3B=(3x2﹣x+2y﹣4xy)﹣3(x2﹣2x﹣y+xy﹣5)=3x2﹣x+2y﹣4xy﹣3x2+6x+3y﹣3xy+15=5x+5y﹣7xy+15;(2)∵+|xy+1|=0,∴x+y﹣=0,xy+1=0,∴x+y=,xy=﹣1,∴A﹣3B=5x+5y﹣7xy+15=5(x+y)﹣7xy+15=5×﹣7×(﹣1)+15=4+7+15=26.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.【解答】解:(1)∵|x﹣3|=|x+1|,∴x=(﹣1+3)=1;(2)由数轴得:|x﹣3|+|x+1|≤4,∴式子|x﹣3|+|x+1|的最小值为4.。

新人教版七年级数学上册期中考试(含知识点)

新人教版七年级数学上册期中考试(含知识点)

12020-2021 七年级上册一.填空题(本题共10题,每小题2分,共20分)1.计算:2a a -= ;单项式22ba -π的系数是 . 2.平方后得9的数是 .3.多项式123243-+-x x x 有 项,其中次数最高的项是 .4.数轴上到1的距离是3的数有 个,是 .5. 已知a 的相反数为6,则2a = .6.把数字325670000保留三个有效数字写成 .7.绝对值小于3的整数的和为 .8.比-x 2+x +3多x 2+5x 的是 .9.设a 的相反数是最大的负整数,b 的绝对值是最小的数,则b - a = .10.商场一种彩电标价为每台m 元 ,按9折优惠出售,则商场销售n 台彩电共得 元 .二.选择题(本题共10题,每小题2分,共20分)1.下列说法正确的是 【 】 A. 2πx 3 的系数是2 B. x 2y 的系数是0 C. - 2x 2y 的系数是2 D. 4y 的系数是42.在代数式2m n +,22x y ,1x ,-5,a 中,单项式的个数是 【 】A. 1个B. 2个C. 3个D. 4个 3.如果|a |=-a , 下列各式一定成立的是【 】A. a >0B. a >0或a =0C. a <0或a =0D. 无法确定A .-a -b -c B. -a -b +c C . -a +b -c D . a +b -c6.中国人口达到13亿,精确到 【 】 A.个位 B.万位 C .亿位 D.千万位7.下列运算中,正确的是 【 】 A. -32 =9 B. 32 =9 C . 0.12 =0.2 D.2(2)4-=-8.下列说法正确的是 【 】 A.有最大的负整数 B.有最小的负整数 C.0是最小的整数 D.没有绝对值最小的数9.下列说法正确的是【 】A.按科学记数法表示的近似数3.14×105,原数是31400000B.近似数3.14×105 精确到十分位C.将数123000保留两个有效数字是1.2×105D.近似数3.14×105有两个有效数字10.若21m xy --是四次单项式,则m 的值是 【 】A. 4B. 2C. 32D.52三.解答题(共60分)1.计算:(本题共7题,每小题4分,共28分)(1)2108(2)(4)(3)-+÷---⨯- (2)22234(1)-+-÷-1习491272(5)8x -x 3+x 2+4x 3-x 2-7x -6 (6) 2(2x ﹣3y )-3(2y ﹣3x )(7)2222343525x y xy x y xy --+++2.解答题(本题共2题,每小题5分,共10分) (1)设2(3)10x y -++=,求代数式x 2y 2的值.3.先化简,再求值(本题6分)(){}23323x y x x y --+--⎡⎤⎣⎦,其中11,5x y =-=-.4.(本题5分)某地探空气球的气象观测资料表明,高度每增加1千米,气温下降大约6℃,若该地区地面温度为23℃,该地区高空某点温度为-31℃,则此点的高度是大约是多少千米?5.(本题6分)设a 是绝对值大于1而小于5的所有整数的和,b 是不大于2的非负整数的和,分别求出a 、b 的值及b ﹣a 的值.6.(本题5分)任意取一个两位数,交换个位数字和十位数字的位置得到一个新的两--------------------密---------------------------------------------封-------------------------------------------- 线----------------------------------------※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※12020-2021人教版七年级数学上册必须要记、背的知识点1.有理数:(1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

2024—2025学年七年级上学期人教版数学期中考试卷

2024—2025学年七年级上学期人教版数学期中考试卷(评测范围: 1-3单元)注意事项:1,本卷分为两部分,第Ⅰ卷为选择题。

第Ⅱ部分为非选择题。

2, 全卷满分120分, 作答时间120分钟。

3,请在答题卡作答,考试结束后,将本卷与答题卡一同上交。

第Ⅰ卷一、单选题 (每小题3分,共24分)1. 在数-2, 0, -7.11, -π, +6中, 负数有( )A. 1个B. 2个C. 3个D. 4个2. -2023的相反数是 ( )A.−12023B.12023C. 2023D. -20233. 计算(-3)+5的结果等于 ( )A. 2B. -2C. 8D. -84. 如果 abc>0, ac<0, a>c, 那么 ( )A. a<0, b<0, c>0B. a>0, b>0, c<0C. a<0, b>0, c>0D. a>0, b<0, c<05. 下列各组中,数值相等的是 ( )A. -2².与(-2)²B. (-3)³与-3³C. -|-2|与-(-2)D.−223与 (−23)26. 观察下列图形:第1个图形有6根小棍,第2个图形有11根小棍,第3个图形有16根小棍…,则第n(n 为正整数)个图形中小棍根数共有( )A. 5(n-1)B. 6nC. 5n+1D. 6n-117. 已知3x-2y+5=7, 那么多项式15x-10y+2的值为( )A. 8B. 10C. 12D. 358.截止2023年1月16日,银川市在新能源产业建成光伏、风电装机容量425.25万千瓦.将数据425. 25万用科学记数法表示为4.2525×10n, 则n的值为( )A. 4B. 5C. 6D. 7第Ⅱ卷二、填空题(每题3分,共24分)9. 中国古代数学著作《九章算术》在方程一章首次正式引入“负数”,如果电梯上升3层记为+3. 那么电梯下降5层应记为 .10. 比较大小:0 -60, −54−45(填“<”或“>”)11.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”“8cm ”的刻度分别对应数轴上-3和x所表示的点,则x的值是 .12. 计算: 722×(−5)+(−722)×9−722×813. 若a、b互为相反数,c为最大的负整数,d的倒数等于它本身,则2a+2b- cd的值是.14. 市场上西红柿每千克a元,白菜每千克 b元,学校食堂买30kg西红柿,50kg白菜共需元.15. 如图所示的运算程序中,若开始输入的x值为96,我们发现第1次输出的结果为48, 第2次输出的结果为24, ……, 第2024次输出的结果为 .216. 化简: −9−12= .三、解答题 17. 计算:(1)(−12)−(−213)+234+(−78)−323(2)−1⁶+8÷(−2)²−(−4)×(−3)(3)(−32)×(116+18−132) (4)−2⁴+|3−4|−2×(−1)²⁰⁰⁶18. 请将下列数填到对应的大括号内:65%, - 13, 105, -2, 94, -0.125, 0.正整数{ …};负整数{ …}正分数{ …};负分数{ …}19. 某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1) 用含m, n 的代数式表示Q;(2) 若共购进5 5×10⁴本甲种书及 3×10³本乙种书,用科学记数法表示Q 的值.20. 某中学九年级 (1) 班三位老师带领本班 a 名学生利用假期去某地旅游,枫江旅行社收费标准:教师全价,学生半价. 而东方旅行社不管教师还是学生一律八折优惠,两家旅行社全价都是500 元.(1)用含a 的式子分别表示三位老师和a 名学生参加这两家旅行社所需费用各多少元?3(2)如果a=55时,请你计算选择哪一家旅行社比较合算?21. 若a与b互为相反数, c、d互为倒数, 则2019(a+b)-2020cd的值是多少?22. 学校要买95套课桌,现有甲、乙、丙三个商场可以选择. 三个商场每套课桌的单价都是80元,但各自的优惠办法不一样.甲: 买 10套送1套, 不足 10套不送.乙: 一次买50套以上, 优惠10%.丙: 满1000 元返回现金100元, 不满1000 元不返回.为了节省经费,你认为学校应去哪个商场买课桌? 最少要用多少元? (先进行有关计算后再回答)23. 观察下列解题过程:计算:1+5+52+53+⋯+524+525的值.解: 设.s=1+5+52+53+⋯+524+525,○1则5s=5+52+53+⋯+525+526.②.②-①, 得4s=526−1,s=526−14通过阅读,你一定学会了一种解决问题的方法,请用你学到的方法计算:(1)1+3+32+33+⋯+39+310(2)1+x+x2+x3+⋯+x99+x10024. 计算(1)(29−14+118)÷(−136).(2)−22−(−2)2+(−3)2×(−23)−42÷|−4|425. 如图,在数轴上点A表示的数a、点B表示数b,a、b满足||a−30|+(b+6)²=0.点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为 .(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为 .(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P 移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?26. 先阅读下列材料,然后解答问题:材料:从4张不同的卡片中选取2张,有6种不同的选法,抽象成数学问题就是从4个不=6.一般地,从n个不同元素中选取同元素中选取2个元素的组合,组合数记为C42=4×32×1(m≤n).m个元素的组合数记作(C n m,C n m=n(n−1)(n−2)⋯(n−m+1)m(m−1)(m−2)⋯2×1=20例如:从6个不同元素中选3个元素的组合,组合数记作C63=6×5×43×2×1(1)为迎接国家建设工作检查,学校将举办小型书画展览. 王老师在班级8幅优秀书画中选取3幅,共有多少种选法?(2) 探索发现:计算:C32=,c33=,c43=,c53=,c54=,c64=, .由上k+1之间有什么关系. (只写结论,不需说明理由)述计算, 试猜想C n k,C n k+1,C n+1(3) 请你直接利用 (2) 中猜想的结论计算:C43+C42+C52+C62+⋯+C1025。

【人教版】七年级上册数学《期中考试试卷》及答案解析

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷一、选择题(每小题3分,共30分)1.温度由3C ︒-上升6C ︒是( )A. 3C ︒B. 9C -︒C. 3C -︒D. 9C ︒2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走2米记为+2米,那么向西走5米记为( )A. +5米B. +2米C. -5米D. -2米3.若一个整数21500…0用科学记数法表示为102.1510⨯,则原数中“0”的个数为( )A. 7B. 8C. 9D. 104.有一个两位数,它的十位数字是x ,个位数字是y ,则这个两位数为( )A. xyB. +x yC. 10x y +D. 10(x y +)5.在如图所示的数轴上,表示-1.25的点是( )A. 点EB. 点FC. 点GD. 点H6.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )A. B. C. D.7.下列说法中,正确有( )①圆柱、圆锥的底面都是圆;②棱柱的底面是四边形;③棱柱的侧面一定是长方形;④长方体一定是柱体.A. 1个B. 2个C. 3个D. 4个8.从3,2,-1,-4,-5中任取两个数相乘,若所得积中最大值是a ,最小值是b ,则a b的值为( )A. 203B. 13C. 12-D. 43- 9.下列关于多项式2227m n mn --的说法中,正确的是( )A. 最高次项是2m nB. 二次项系数是2C. 常项数是7D. 次数和项数都是3 10.如图是一个长方形的铝合金窗框,其长为am ,高为bm ,①②③处装有同样大小的塑钢玻璃,当第②块向右拉到与第③块重叠12,再把第①块向右拉到与第②块重叠13时,用含a 与b 的式子表示这时窗户的通风面积( )A . 21718abm B. 21318abm C2518abm D. 2118abm 二、填空题(每小题3分,共15分)11.在7,32-,0,3,-2,17中,正数有__________个. 12.一个正方体的每个面都写有一个汉字,其表面展开图如图所示,则在该正方体中,若“生”在正方体的前面,则这个正方体后面的汉字是“__________”.13.在-1,0,|2|--,5,(4)-+这5个数中任意两个数相减,所得的差中最大值是__________.14.如果2|2|(6)0x y -++=,则x y -=__________. 15.在数轴上,点P 表示的数是a ,点P'表示的数是11a-,我们称点P'是点P 的“相关点”.已知数轴上点1A 的相关点为2A ,点2A 的相关点为3A ,点3A 的相关点为4A ……这样依次得到点1A ,2A ,3A ,4A ,……,n A .若点1A 在数轴上表示的数是12,则点2034A 在数轴上表示的数是__________. 三、解答题(本大题共8个小题,满分75分)16.(1)计算:13710 3.68 6.444+-+--. (2)计算:21224(2)6323⎛⎫-÷---⨯-⎪⎝⎭. 17.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为1.求2082a b cd m +-+的值. 18.如果3a b x y -和2425a y x -是同类项,先化简1323(3)2ab a ab b a ⎛⎫-++-+ ⎪⎝⎭,再求值. 19.如图所示是一个圆柱体,它的底面半径为3cm ,高为6cm .(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少? 20.用若干大小相同的小立方体块搭一个几何体,使得从正面和上面看到这个几何体的形状图如图所示,其中从上面看到的形状图的小正方形中的字母表示该位置小立方体的个数.请解答:(1)c 表示几?b 的最大值是多少?(2)这个几何体最少是用多少个小立方体搭成的?最多呢?21.数学课上老师出了一道计算题:1234567891333333333+++++++++,老师在教室里巡视了一圈,发现同学都做不出来,于是老师给出了下面的一种解法:解:令1234567891333333333S =+++++++++,①234567891033333333333S =+++++++++,②②-①,得10231S =-. 所以10312S -=. (1)仿照以上方法计算:1234567891913333333333+++++++++++.(写出计算过程,结果用幂表示) (2)根据以上计算方法请猜想下列各式的计算结果(结果用幂表示):①123201913333+++++=________. ②123201917777+++++=________.22.(1)如图(1),在某年某月的日历中,任意圈出一竖列相邻的三个数,设中间的一个数为a ,则用含a 的代数式表示这三个数分别是__________;(按从小到大的顺序写在横线上)(2)现将连续自然数1~2007按图(2)的方式排成一个长方形阵形然后用一个正方形框出16个数. ①图中框出的这16个数的和是__________;②在图(2)中,要使一个正方形框出的16个数的和等于2016,2168,是否可能?若不可能,请说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.23.某服装厂生产一种西装和领带,西装每套定价280元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):方案一:买一套西装送一条领带;方案二:西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x 套西装,y 条领带(y x >).(1)该客户选择两种不同方案所需费用分别是多少元?(用含x ,y 的式子表示并化简)(2)若该客户需要购买10套西装,25条领带,则他选择哪种方案更划算?(3)若该客户需要购买25套西装,35条领带,则他选择哪种方案更划算?答案与解析一、选择题(每小题3分,共30分)1.温度由3C ︒-上升6C ︒是( )A. 3C ︒B. 9C -︒C. 3C -︒D. 9C ︒【答案】A【解析】【分析】根据题意列式计算即可.【详解】解:-3+6=3,∴温度由-3℃上升6℃后是3℃.故选A .【点睛】本题主要考查了有理数的加减法,熟记运算法则是解答本题的关键.2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走2米记为+2米,那么向西走5米记为( )A. +5米B. +2米C. -5米D. -2米 【答案】C【解析】【分析】根据题意,可以知道负数表示向西走,问题得以解决.【详解】解:∵向东走2米记为+2米,∴向西走5米记为-5米,故选:C .【点睛】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.3.若一个整数21500…0用科学记数法表示为102.1510⨯,则原数中“0”的个数为( )A. 7B. 8C. 9D. 10 【答案】B【解析】【分析】把102.1510⨯写成不用科学记数法表示的原数的形式即可得.【详解】解:∵102.1510⨯表示的原数为21500000000,∴原数中“0”的个数为8,故选B.【点睛】本题主要考查了科学记数法—原数,要熟练掌握,把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.4.有一个两位数,它的十位数字是x ,个位数字是y ,则这个两位数为( )A. xyB. +x yC. 10x y +D. 10(x y +)【答案】C【解析】【分析】 根据两位数字的表示方法:十位数字×10+个位数字即可得出. 【详解】解:根据两位数的表示方法得:这个两位数表示为:10x+y .故选C .【点睛】本题主要考查了两位数的表示方法,数字的表示方法要牢记.两位数字的表示方法:十位数字×10+个位数字.5.在如图所示的数轴上,表示-1.25的点是( )A .点EB. 点FC. 点GD. 点H 【答案】B【解析】【分析】直接利用数轴得出-1.25的位置.【详解】解: 1.251-<-,由图可知:点E 表示的数小于-1.5,∴在数轴上表示 1.25-的点是:F 点.故选:B . 【点睛】本题主要考查了数轴,正确理解数轴的意义是解题关键.6.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A. B. C. D.【答案】C【解析】【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.故选C.【点睛】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.7.下列说法中,正确的有()①圆柱、圆锥的底面都是圆;②棱柱的底面是四边形;③棱柱的侧面一定是长方形;④长方体一定是柱体.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据柱体和锥体的性质,可判断①②③,根据长方体的性质,可判断⑤.【详解】解:①圆柱、圆锥的底面都是圆,正确;②n棱柱的底面是n边形,不一定是四边形,错误;③直棱柱的侧面一定是长方形,斜棱柱的侧面不是长方形,错误;④长方体一定是柱体,正确;故选B.【点睛】本题主要考查了常见的几何体,应注意棱柱由上下两个底面以及侧面组成.8.从3,2,-1,-4,-5中任取两个数相乘,若所得的积中最大值是a,最小值是b,则ab的值为()A. 203B. 13C. 12-D. 43- 【答案】D【解析】【分析】先确出积的最大值和最小值,然后再代入计算即可.【详解】解:最大值为-5×-4=20=a ,最小值为3×-5=-15=b , ∴a b =204=153--. 故选:D.【点睛】本题主要考查的是有理数的乘法,求得这两个数的乘积的最大值和最小值是解题的关键. 9.下列关于多项式2227m n mn --的说法中,正确的是( )A. 最高次项是2m nB. 二次项系数是2C. 常项数是7D. 次数和项数都是3【答案】D【解析】【分析】直接利用多项式的项数以及次数确定方法分析得出答案.【详解】解:多项式2227m n mn --,最高次项是22m n ,故选项错误;二次项为2mn -,二次项系数是-2,故选项错误;常数项是-7,故选项错误;次数是2+1=3,项数是3,故选项正确;故选D. 【点睛】本题主要考查了多项式,正确把握相关定义是解题关键.10.如图是一个长方形的铝合金窗框,其长为am ,高为bm ,①②③处装有同样大小的塑钢玻璃,当第②块向右拉到与第③块重叠12,再把第①块向右拉到与第②块重叠13时,用含a 与b 的式子表示这时窗户的通风面积( )A. 21718abm B. 21318abm C. 2518abm D.2118abm 【答案】C【解析】【分析】 第②块向右拉到与第③块重叠12,再把第①块向右拉到与第②块重叠13时,第一块和第二块玻璃之间的距离是(12-13)×3a ,窗子的通风面积为①中剩下的部分. 【详解】解:由题意可得:115=3332318a a a ab ab ⎡⎤⎛⎫---⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦, 故选C.【点睛】本题考查了列代数式和整式的混合运算,有一定的难度,应根据图示找到窗子通风的部位在哪里,是哪个长方形,其长和宽式多少,都需要求出来,再进行面积计算.二、填空题(每小题3分,共15分)11.在7,32-,0,3,-2,17中,正数有__________个. 【答案】3【解析】【分析】根据正数的定义,即可解答.【详解】解:正数>0,∴正数有7,3,17共3个. 故答案为:3.【点睛】本题考查了正数和负数,解题的关键是掌握正数的概念,属于基础题,难度不大.12.一个正方体的每个面都写有一个汉字,其表面展开图如图所示,则在该正方体中,若“生”在正方体的前面,则这个正方体后面的汉字是“__________”.【答案】尚【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:∵“生”在正方体的前面,前面和后面是相对面,∵“崇”和“低”是相对面,“活”和“碳”是相对面,∴“生”和“尚”是相对面,故答案为:尚.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.在-1,0,|2|--,5,(4)-+这5个数中任意两个数相减,所得的差中最大值是__________.【答案】9【解析】【分析】先化简各数,根据有理数的减法用最大数减去最小数即可得差最大的值.【详解】解:|2|--=-2,(4)-+=-4,∴5个数为:-1,0,-2,5,-4,∴差最大为:5-(-4)=9.故答案为:9.【点睛】本题考查了有理数大小比较和有理数的减法,解决此类问题的关键是找出最大最小有理数和对减法法则的理解.14.如果2|2|(6)0x y -++=,则x y -=__________. 【答案】8【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】解:∵2|2|(6)0x y -++=,∴x-2=0,y+6=0,解得:x=2,y=-6,代入x y -,原式=8.【点睛】本题考查了绝对值和平方的非负性,几个非负数的和为0时,这几个非负数都为0.15.在数轴上,点P 表示的数是a ,点P'表示的数是11a-,我们称点P'是点P 的“相关点”.已知数轴上点1A 的相关点为2A ,点2A 的相关点为3A ,点3A 的相关点为4A ……这样依次得到点1A ,2A ,3A ,4A ,……,n A .若点1A 在数轴上表示的数是12,则点2034A 在数轴上表示的数是__________. 【答案】-1【解析】【分析】 先根据已知求出各个数,根据求出的数得出规律,即可得出答案.【详解】解:∵点A 1在数轴表示的数是12, ∴A 2=1112-=2,A 3=1=112--, A 4=()11=112--, A 5=1112-=2,A 6=-1,…,2034÷3=678,∴点A 2034在数轴上表示的数是-1,故答案为:-1.【点睛】本题考查了数轴和有理数的计算,能根据求出的结果得出规律是解此题的关键.三、解答题(本大题共8个小题,满分75分)16.(1)计算:13710 3.68 6.444+-+--. (2)计算:21224(2)6323⎛⎫-÷---⨯-⎪⎝⎭. 【答案】(1)-3;(2)4【解析】【分析】(1)根据加法交换律和结合律先分别计算分数部分、整数部分、小数部分,再将各部分计算结果相加即可; (2)按照有理数的混合运算法则计算即可.【详解】解:(1)原式137(108)( 3.6 6.4)44⎛⎫=++--⎝-+ ⎪⎭5210=+-3=-;(2)原式12(34)9=---12(1)9=---1219=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序,注意简便算法.17.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为1.求2082a b cd m +-+的值. 【答案】-7【解析】【分析】利用相反数,倒数,以及绝对值的意义求出a+b ,cd ,及m 的值,代入所求式子计算即可得到结果.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为1.∴0a b +=,1cd =,1m =±,∴201m =. ∴20808112a b cd m +-+=-⨯+ 817=-+=-.【点睛】本题考查了代数式求值,相反数,倒数,以及绝对值,熟练掌握各自的定义是解本题的关键. 18.如果3a b x y -和2425a y x -是同类项,先化简1323(3)2ab a ab b a ⎛⎫-++-+ ⎪⎝⎭,再求值. 【答案】33-ab b ,-2【解析】【分析】原式去括号合并得到最简结果,利用同类项的定义求出a 与b 的值,代入计算即可求出值.【详解】解:∵3a b x y -和2425a y x -是同类项,∴42a a =-,2b =,∴23a =,2b =, 原式363ab a ab b a =-++--33ab b =-.当23a =,2b =时, 原式232323=⨯⨯-⨯ 462=-=-.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键,同时也考察了同类项的概念.19.如图所示是一个圆柱体,它的底面半径为3cm ,高为6cm .(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少?【答案】(1)()254πcm;(2)能截出截面最大的长方形,长方形面积的最大值为:()236cm 【解析】分析】(1)用圆柱上下底面积加上侧面积即可;(2)当截得的面积最大时,长方形的长为底面直径,宽为6,可得面积最大值.【详解】解:(1)圆柱体的表面积为:232236ππ⨯⨯+⨯⨯1836ππ=+;()254π=cm ;(2)能截出截面最大的长方形.该长方形面积的最大值为:()2(32)636⨯⨯=cm .【点睛】本题考查了圆柱表面积的求法和截几何体,根据截面的形状既与被截的几何体有关,还与截面的角度和方向有关,得出这个圆柱体的截面面积最大是长方形是本题的关键.20.用若干大小相同的小立方体块搭一个几何体,使得从正面和上面看到这个几何体的形状图如图所示,其中从上面看到的形状图的小正方形中的字母表示该位置小立方体的个数.请解答:(1)c 表示几?b 的最大值是多少?(2)这个几何体最少是用多少个小立方体搭成的?最多呢?【答案】(1)c 表示3,b 的最大值为2;(2)最少是用11,最多是用16【解析】【分析】(1)根据从正面、上面看到的几何体进行判断;(2)第一列小立方体的个数最多为3+3+3=9,最少为3+1+1=5,那么加上其他两列小立方体的个数即可;【详解】解:(1)由从正面和上面看到的这个几何体的形状图可知,c 表示3,b 的最大值为2; (2)这个几何体最少是用53311++=个小立方体搭成的,最多是用94316++=个小立方体搭成的.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.21.数学课上老师出了一道计算题:1234567891333333333+++++++++,老师在教室里巡视了一圈,发现同学都做不出来,于是老师给出了下面的一种解法:解:令1234567891333333333S =+++++++++,①234567891033333333333S =+++++++++,②②-①,得10231S =-. 所以10312S -=. (1)仿照以上方法计算:1234567891913333333333+++++++++++.(写出计算过程,结果用幂表示) (2)根据以上计算方法请猜想下列各式的计算结果(结果用幂表示):①123201913333+++++=________. ②123201917777+++++=________.【答案】(1)20312-=S ;(2)①2020312-;②2020716- 【解析】【分析】(1)参照老师的做法对所求式子变形,从而可以解答本题;(2)参照示例和(1)解题过程得出1123111b b a a a a a a +-+++++=-,从而可得①和②的结果. 【详解】解:(1)令1231913333S =+++++,①23420333333S =+++++,②②-①,得20231S =-.∴20312-=S ; (2)根据老师的做法和(1)中的解题过程可知:1123111b b a a a a a a +-+++++=-,根据规律得: ①123201913333+++++=2020312-;②123201917777+++++=2020716-. 【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.(1)如图(1),在某年某月的日历中,任意圈出一竖列相邻的三个数,设中间的一个数为a ,则用含a 的代数式表示这三个数分别是__________;(按从小到大的顺序写在横线上)(2)现将连续自然数1~2007按图(2)的方式排成一个长方形阵形然后用一个正方形框出16个数. ①图中框出的这16个数的和是__________;②在图(2)中,要使一个正方形框出的16个数的和等于2016,2168,是否可能?若不可能,请说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.【答案】(1)7a -,a ,7a +;(2)①352;②框出的16个数它们的和可以等于2016,且最小数为114,最大数为138;它们的和不可能等于2168,见解析【解析】【分析】(1)经过观察可知,如果中间的数是a ,则上面的数是a-7,下面的数是a+7;(2)①可以把这16个数直接加起来即可, ②可以设最小的数是m ,那么第一行的四个数的和就是4m+6,第二行的四个数的和就是4m+6+7×4=4m+34,第三行的四个数的和是4m+34+7×4=4m+62,第四行的四个数的和是4m+62+7×4=4m+90,(其中最大数是m+24),然后这16个数相加也就是四行数相加,令其结果等于2016或2168,看计算出的m 的值是不是整数,若是整数说明存在,若不是就说明不存在.【详解】解:(1)若中间的数是a ,那么上面的数是a-7,下面的数是a+7,故这三个数从小到大排列分别是a-7,a ,a+7;(2)①16个数中,第一行的四个数之和是:10+11+12+13=46,第二行的四个数之和是:46+4×7=74,第三行的四个数之和是:74+4×7=102, 第四行的四个数之和是:102+4×7=130. 于是16个数之和=46+74+102+130=352.故图中框出的这16个数之和是352;②设这16个数中最小的数为m ,则这16个数分别为m ,1m +,2m +,3m +,7m +,8m +,9m +,10m +,14m +,15m +,16m +,17m +,21m +,22m +,23m +,24m +,它们的和为16192m +(m 为正整数),所以它们的和可以等于2016,理由:161922016m +=,解得114m =,所以24138m +=,因此框出的16个数它们的和可以等于2016,且最小数为114,最大数为138,它们的和不可能等于2168,理由:161922168m +=,解得123.5m =,而m 应为整数,所以16个数的和不可能等于2168.【点睛】本题考查了一元一次方程的应用,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.23.某服装厂生产一种西装和领带,西装每套定价280元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):方案一:买一套西装送一条领带;方案二:西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x 套西装,y 条领带(y x >).(1)该客户选择两种不同的方案所需费用分别是多少元?(用含x ,y 的式子表示并化简)(2)若该客户需要购买10套西装,25条领带,则他选择哪种方案更划算?(3)若该客户需要购买25套西装,35条领带,则他选择哪种方案更划算?【答案】(1)(24040)x y +元和(25232)x y +元;(2)他选择方案二购买更划算;(3)他选择方案一购买更划算【解析】【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)把x 、y 的值代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)把x 、y 的值代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;【详解】解:(1)该客户选择方案一购买,需付款28040()(24040)x y x x y +-=+(元),该客户选择方案二购买,需付款28090%4080%(25232)x y x y ⨯+⨯=+(元).该客户选择方案一和方案二两种不同的购买方式所需费用分别是(24040)x y +元和(25232)x y +元;(2)当10x =,25y =时,按方案一购买,需付款:240104025240010003400⨯+⨯=+=(元)按方案二购买,需付款:25210322525208003320⨯+⨯=+=(元)∵34003320>,∴他选择方案二购买更划算.(3)当25x =,35y =时,按方案一购买,需付款:240254035600014007400⨯+⨯=+=(元), 按方案二购买,需付款:252253235630011207420⨯+⨯=+=(元)∵74007420<,∴他选择方案一购买更划算.【点睛】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.。

人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含三套题)

密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:150分 时间: 120分钟)一、选择题(本大题共12小题,每小题4分,共48分) 1.(4分)某种速冻水饺的储藏温度是﹣18±2°C,四个冷藏室的温度如下:A 冷藏室,﹣17°C;B 冷藏室,﹣22°C;C 冷藏室,﹣18°C;D 冷藏室,﹣19°C.则不适合储藏此种水饺的是( )A .A 冷藏室B .B 冷藏室C .C 冷藏室D .D 冷藏室 2.(4分)下列各式结果是负数的是( ) A .﹣|﹣3| B .()2 C .﹣(﹣3) D .(﹣3)2 3.(4分)如果m 是一个有理数,那么﹣m 是( ) A .正数 B . 0C .负数D .以上三者情况都有可能4.(4分)下列方程中,是一元一次方程的是( ) A .3x ﹣1= B .x 2﹣4x=3 C .x+2y=1 D .xy ﹣3=55.(4分)大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为( ) A .1.6×105 B .1.6×106 C .1.6×107 D .1.6×108 6.(4分)如图,数轴上的A ,B ,C 三点所表示的数是分别是a 、b 、c ,其中AB=BC ,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间(靠近点C )或点C 的右边 7.(4分)下列式子:x 2+1, +4,,,﹣5x ,0中,整式的个数是( ) A .6 B .5 C .4 D .38.(4分)关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+19.(4分)如图是某年3月份的日历表,任意圈出一竖列上相题号一 二 三 四 五 总分 得分封线内邻的三个数,运用方程思想来研究,发现这三个数的和不可能是()A.69 B.54 C.40 D.2710.(4分)多项式x3﹣2x2+5x+3与多项式2x2﹣x3+4+9x的和一定是()A.奇数 B.偶数 C.2与7的倍数D.以上都不对11.(4分)观察下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…根据其中的规律,得出的第10个单项式是()A.﹣29x10 B.29x10 C.﹣29x9 D.29x912.(4分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31二、填空题(本大题共6小题,每小题413.(4分)某天的气温从﹣3℃上升14.(4分)﹣17的相反数是.15.(4分)若a,b互为倒数,则a2b﹣(a﹣16.(4分)若x的2倍与3的和是﹣15,17.(4分)如图,边长为(m+3为m隙),若拼成的矩形一边长为318.(4分)有依次排列的3个数:3,9,8个数,都用右边的数减去左边的数,可产生一个新数串:3,6,9,﹣1,89,﹣10,﹣1,9,8三、解答题(本大题共2小题,每小题719.(7分)计算:()2﹣|﹣1÷0.2|+(﹣5)3×(﹣)20.(7分)(1)合并同类项:3a2﹣2a+4a2﹣7a.(2)解方程:﹣2x﹣=x+.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)(1)解方程:﹣=1﹣; (2)先化简,再求值:2x 2﹣[3(﹣x 2+xy )﹣2y 2]﹣2(x 2﹣xy+2y 2),其中x=,y=﹣1.22.(10分)已知A=2x 2+3xy ﹣2x ﹣1,B=﹣x 2+xy ﹣1; (1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值.23.(10分)一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x >9且x <26,单位:km )第一次 第二次第三次 第四次 xx ﹣52(9﹣x )(1)说出这辆出租车每次行驶的方向.(2)求经过连续4次行驶后,这辆出租车所在的位置. (3)这辆出租车一共行驶了多少路程?24.(10分)李师傅下岗后,做起来小生意,第一次进货,他以每件a 元的价格购进了30件甲种小商品,以每件b 元的价格购进了40件乙种小商品,且a <b .(1)若李师傅将甲种商品提价40%,乙种商品提价30%全部出售,他获利多少元?(用含有a ,b 的式子表示结果)(2)若李师傅将两种商品都以元的价格全部出售,他这次买卖是赚钱还是亏本,请说明理由?五、解答题(本大题共2小题,每小题12分,共24分) 25.(12分)探索规律:观察下面由※组成的图案和算式,并解答问题. 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 1+3+5+7+9=25=52(1)试猜想1+3+5+7+9+…+19= ;(2)试猜想1+3+5+7+9+…+(2n ﹣1)+(2n+1)+(2n+3)= ; (3)请用上述规律计算:1001+1003+1005+…+2015+2017(请算出最后数值哦!)26.(12分)家乐福超市开展元旦促销活动出售A 、B 两种商品,活动方案有如下两种: 方案一A B 标价(单位:元)90100答 题每件商品返利 按标价的30% 按标价的15%例:买一件A 商品,只需付款90(1﹣30%)元方案二 若所购商品达到或超过100件(不同商品可累计),则按标价的20%返利.(同一种商品不可同时参与两种活动)(1)某单位购买A 商品30件,B 商品90件,选用何种活动划算?能便宜多少钱?(2)若某单位购买A 商品x 件(x 为正整数),购买B 商品的件数比A 商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分) 1.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃, 温度范围:﹣20℃至﹣16℃,A 、﹣20℃<﹣17℃<﹣16℃,故A 不符合题意;B 、﹣22℃<﹣20℃,故B 符合题意;C 、﹣20℃<﹣18℃<﹣16℃,故C 不符合题意;D 、﹣20℃<﹣19℃<﹣16℃,故D 不符合题意;故选:B . 2.【解答】解:A 、﹣|﹣3|=﹣3,故选项正确; B 、()2=,故选项错误;C 、﹣(﹣3)=3,故选项错误;D 、(﹣3)2=9,故选项错误.故选:A .3.【解答】解:如果m 是一个有理数,那么﹣m 负数,故选:D .4.最高次数为1且两边都为整式的等式.故选:A .5.解:将160万用科学记数法表示为1.6×106.故选:B 6.【解答】解:∵|a|>|b|>|c|,∴点A 到原点的距离最大,点B 其次,点C 最小, 又∵AB=BC ,∴在点B 与点C 之间,且靠近点C 的地方或点C 的右边,D .7.解:整式有x 2+1,,﹣5x ,0,共4个,故选:C .8.解:该多项式四次项是﹣7xy 3,其系数为﹣7,故选:B 9.【解答】解:设中间的数是x ,则上面的数是x ﹣7数是x+7.则这三个数的和是(x ﹣7)+x+(x+7)=3x , 因而这三个数的和一定是3的倍数. 则,这三个数的和不可能是40.故选:C .10.【解答】解:(x 3﹣2x 2+5x+3)+(2x 2﹣x 3+4+9x )=14x+7密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题果是个多项式;又14x+7=7(2x+1),此处x 为任意有理数,而并非只取正整数, ∴结果不确定.故选:D .11.【解答】解:依题意得:(1)n 为奇数,单项式为:﹣2(n﹣1)x n;(2)n 为偶数时,单项式为:2(n ﹣1)x n .综合(1)、(2),本数列的通式为:2n ﹣1•(﹣x )n ,∴第10个单项式为:29x 10.故选:B .12.【解答】解:显然选项A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选:C . 二、填空题(本大题共6小题,每小题4分,共24分) 13.【解答】解:由题意,的﹣3℃+2℃ =﹣1℃故答案为:﹣114.【解答】解:﹣17的相反数是17, 故答案为:17.15.【解答】解:∵a ,b 互为倒数, ∴ab=1,∴a 2b ﹣(a ﹣2017) =ab •a ﹣(a ﹣2017) =a ﹣a+2017 =2017.故答案为:2017.16.【解答】解:由题意:2x+3=﹣15, ∴x=﹣9, ∴x 2﹣1=80, 故答案为80.17.【解答】解:依题意得剩余部分为 (m+3)2﹣m 2=m 2+6m+9﹣m 2=6m+9, 而拼成的矩形一边长为3, ∴另一边长是(6m+9)÷3=2m+3. 故答案为:2m+3.18.【解答】解:一个依次排列的n 个数组成一个数串:a 1,a 2,a 3,…,a n ,依题设操作方法可得新增的数为:a 2﹣a 1,a 3﹣a 2,a 4﹣a 3,a n ﹣a n ﹣1,所以,新增数之和为:(a 2﹣a 1)+(a 3﹣a 2)+(a 4﹣a 3)+…+(a n ﹣a n ﹣1)=a n ﹣a 1,原数串为3个数:3,9,8,第1次操作后所得数串为:3,6,9,﹣1,8,根据(*)可知,新增2项之和为:6+(﹣1)=5=8﹣3, 第2次操作后所得数串为:3,3,6,3,9,﹣10,﹣1,9,8,内 答 根据(*)可知,新增2项之和为:3+3+(﹣10)+9=5=8﹣3, 按这个规律下去,第100次操作后所得新数串所有数的和为: (3+9+8)+100×(8﹣3)=520, 故答案为:520.三、解答题(本大题共2小题,每小题7分,共14分) 19.【解答】解:原式=﹣5+75=72. 20.【解答】解:(1)3a 2﹣2a+4a 2﹣7a =3a 2+4a 2﹣7a ﹣2a =7a 2﹣9a .(2)﹣2x ﹣=x+, ﹣12x ﹣9=6x+2, ﹣12x ﹣6x=2+9, ﹣18x=11, x=﹣.四、解答题(本大题共4小题,每小题10分,共40分) 21.【解答】解:(1)去分母,得2(x+2)﹣5(x ﹣1)=10﹣2x ,去括号,得2x+4﹣5x+5=10﹣2x , 移项,合并得﹣x=1, 系数化为1,得x=﹣1;(2)原式=2x 2+x 2﹣2xy+2y 2﹣2x 2+2xy ﹣42y 2, =x 2﹣40y 2,当x=,y=﹣1,原式=﹣40=﹣39.22.【解答】解:(1)原式=3(2x 2+3xy ﹣2x ﹣1)+6(﹣x 2﹣1)=6x 2+9xy ﹣6x ﹣3﹣6x 2+6xy ﹣6 =15xy ﹣6x ﹣9(2)原式=(15y ﹣6)x ﹣9 由题意可知:15y ﹣6=0 y=23.【解答】(1是向东,第四次是向西.(2)解:x+(﹣x )+(x ﹣5)+2(9﹣x )=13﹣x , ∵x >9且x <26, ∴13﹣x >0,∴经过连续4次行驶后,这辆出租车所在的位置是向东(13﹣x )km .(3)解:|x|+|﹣x|+|x ﹣5|+|2(9﹣x )|=x ﹣23, 答:这辆出租车一共行驶了(x ﹣23)km 的路程.24.【解答】解:(1)由题意可得:30×40%a+40×30%b=(密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题元;(2)他这次买卖亏本; 理由:70×﹣(30a+40b )=5(a ﹣b )∵a <b ,∴5(a ﹣b )<0, ∴他这次买卖是亏本.五、解答题(本大题共2小题,每小题12分,共24分) 25.【解答】解:(1)1+3+5+7+9+…+19=()2=100;(2)1+3+5+7+9+…+(2n ﹣1)+(2n+1)+(2n+3) =()2=(n+2)2.故答案为:100;(n+2)2;(3)1001+1003+1005+…+2009+2017 =()2﹣()2=10092﹣5002 =1018081﹣250000 =768081.26.【解答】解:(1)选择方案一所需费用为:30×90×(1﹣30%)+90×100×(1﹣15%)=9540(元),选择方案二所需费用为:(30×90+90×100)×(1﹣20%)=9360(元),∵9540>9360,9540﹣9360=180(元), ∴选择方案二划算,答:选用方案二划算,能便宜180元钱;(2)当0≤x ≤99时,选择方案一,当x ≥100时,选择方案二,理由:由题意可得,选择方案一所需费用为:90×(1﹣30%)x+100×(1﹣15%)×(2x+1)=233x+85,选择方案二所需费用为:当0≤x ≤99时,90x+100(2x+1)=290x+100,当x ≥100时,[90x+100(2x+1)]×(1﹣20%)=232x+80, 由题意可得,当0≤x ≤99时,选择方案一, 当x ≥100时,233x+85<232x+80,得x <﹣5, 233x+85=232x+80,得x=﹣5, 233x+85>232x+80,得x >﹣5, 则当x ≥100选择方案二,由上可得,当0≤x ≤99时,选择方案一,当x ≥100时,选择方案二.人教版2020—2021学年度上学期七年级密封线内得答题数学(上)期中测试卷及答案(满分:100分时间:100分钟)一、精心选择,相信自己判断力!(共10小题,每小题2分,满分20分)1.(2分)计算:﹣2+5的结果是()A.﹣7B.﹣3C.3D.72.(2分)有理数a、b在数轴上的位置如图所示,则a、b的大小关系是()A.a<b B.a>b C.a=b D.无法确定3.(2分)在﹣(﹣3)、﹣|﹣3|、(﹣3)2、(﹣3)3四个数中,负数有()个.A.1B.2 C.3D.74.(2分)下列对整式说法不正确的是()A.单项式﹣5xy的系数为﹣5B.单项式﹣5xy的次数为2C.多项式x2﹣x﹣1的次数为3D.多项式x2﹣x﹣1的常数项为﹣15.(2分)下列说法正确的是()A.0的倒数是0B.若a为有理数,则a2>0C.有理数可分为整数,0,分数D.当a≤0时,则|a|=6.(2分)下列计算正确的是()A.2a+3b=5ab B.﹣2(a﹣b)=﹣2a+bC.﹣3a+2a=﹣a D.a3﹣a2=a7.(2分)x与y差的平方,正确列式是()A.x﹣y2B.(x﹣y)2C.x2﹣y D.x2﹣y28.(2分)计算=()A.B.C.D.9.(2分)如图所示:两个圆的面积分别为19、11部分的面积分别为a、b(a>b),则a﹣b的值为()A.5B.6C.7D.810.(2表示1的点与表示﹣3的点重合,若数轴上A、B距离为2017(A在B的左侧),且A、B合,则A点表示的数为()A.﹣1007.5B.﹣1008.5C.﹣1009.5D.﹣2010.5密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题二、耐心填空,试试自己的身手!(共6小题,每小题3分,满分18分)11.(3分)我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么﹣1场表示: .12.(3分)我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为55 000 000千米,这个数据用科学记数法可表示为 .13.(3分)计算:3÷(﹣)×(﹣2)= . 14.(3分)观察下面的一列单项式:2x 2,﹣4x 3,8x 4,﹣16x 5,…根据其中的规律,得出第5个单项式是: .15.(3分)已知四部互不相等的整数,a 、b 、c 、d ,且满足abcd=4.则a +b +c +d= .16.(3分)若a <b ,ab <0:则﹣a +b= (用含|a |和|b |的式子表示)三、用心解答,相信自己能行!(本大题共9题,满分62分) 17.(12分)计算:(1)﹣4+13﹣(﹣6)﹣(﹣7) (2)16÷(﹣8)﹣(﹣)×(﹣4) (3)﹣14﹣(﹣4)2﹣|3﹣7|÷(﹣) 18.(8分)计算: (1)3a ﹣2+(4a ﹣5)(2)x 2﹣2(x 2﹣y )﹣(x 2﹣y ) 19.(5分)阅读下面的解题过程并回答问题 计算:8a 2﹣[3a +2(a ﹣4a )2]解:原式=8a 2﹣3a ﹣2a ﹣8a 2=(8﹣8)a 2+(﹣2﹣3)a=﹣5a① ② ③回答问题:(1)上面解题过程中错误的步骤是: (填上面序号)(2)上面由第①步到第②步的计算过程中,所用到的运算律是(3)请给出正确的计算过程.20.(5分)先化简,再求值:﹣4y +6x 2+3(y ﹣x 2),其中x=,y=﹣1.21.(5分)若a 、b 互为相反数,c 、d 互为倒数,|x |=3,求式子: 3a +b ﹣(x ﹣b )﹣(cd )2017的值.22.(6分)出租车司机小刘某天下午的营运全是在东西走向的大道上.如果规定向东为正,向西为负.他这天下行车情况如下(单位:千米)+5,﹣3,﹣8,﹣6,+10,﹣6,+11,﹣9(1)将最后一名乘客送到目的地时,小刘在下午出车地点A 的东面还是西面?离点A 的距离是多少千米?(2)在下午营运开始前出租车油箱内有(58a ﹣a 2﹣1)升汽油,汽车耗油量a升/千米,问:小刘这个下午从营运开始到送完最后一位乘客,途中是否需要加油?23.(7分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减运算与整式的加、减运算类似.复数的乘方意义与有理数的乘方的意义类似,例如:(1)i3=i•i•i=i2•i=﹣i(2)(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i根据以上信息,完成下列问题:(1)填空:(﹣1+i)(1﹣i)=;i﹣4=.(2)化简:i+i2+i3+i4+ (i2017)24.(6分)如图①所示是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于.(2)请用两种不同的方法表示图②中阴影部分的面积.方法①;方法②.(3)观察图②,请写出(m+n)2、(m﹣n)2、mn这三个代数式之间的等量关系:.(4)若a+b=6,ab=5,则求a﹣b的值.25.(8分)在一条不完整的数轴上从左到右有点A,B,其中点A到点B的距离为3,点C到点B的距离为7,示:设点A,B,C所对应的数的和是m.(1)若以B为原点,则点C所对应的数是;若以为原点,则m的值是.(2)若原点O在图中数轴上,且点C到原点O的距离为求m的值.(3)动点P从A点出发,以每秒2C移动,动点Q同时从B点出发,以每秒1点C移动,当几秒后,P、Q两点间的距离为2答案.参考答案一、选择题1.C.2.B.3.B.4.C.5.D.6.C.7.B.8.B.9.D.10.C二、填空题密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题11.中国队输1场.12.5.5×107. 13.12. 14.32x 615.0 16.|a |+|b |.三、解答题17.解:(1)原式=﹣4+13+6+7 =﹣4+26 =22;(2)原式=﹣2﹣ =﹣2;(3)原式=﹣1﹣16﹣4÷(﹣) =﹣17+6 =﹣11.18.(1)解:原式=(3a +4a )+(﹣2﹣5) =7a ﹣7;(2)原式=x 2﹣2x 2+y ﹣x 2+y =(x 2﹣2x 2﹣x 2)+(y +y ) =﹣2x 2+y .19.解:(1)①.(2)加法交换律、加法结合律、乘法分配律; (3)原式=8a 2﹣[3a +2(﹣3a )2] =8a 2﹣3a ﹣2(9a 2) =8a 2﹣3a ﹣18a 2 =(8﹣18)a 2﹣3a =﹣15a 2﹣3a .20.解:﹣4y +6x 2+3(y ﹣x 2) =﹣4y +6x 2+3y ﹣2x 2 =4x 2﹣y ,当x=,y=﹣1时,原式=4×()2﹣(﹣1)=2.21.解:由题意得:a +b=0,cd=1,x=±3;当x=3时,原式=3×0﹣3﹣(﹣1)2017=0﹣3+1=﹣2; 当x=﹣3时,原式=3×0+3﹣(﹣1)2017=0+3+1=4.22.解:(1)5﹣3﹣8﹣6+10﹣6+11﹣9=﹣6(千米) 所以小刘在出发点的A 西面,离A 的距离是6 千米. (2)|5|+|﹣3|+|﹣8|+|﹣6|+|+10|+|﹣6|+|+11|+|﹣9|=58(千米)(58a﹣a2﹣1)﹣58a=﹣a2﹣1<0,所以需要加油.23.解:(1)原式=﹣(1﹣i)2=﹣1+2i+1=2i;原式==1;故答案为:2i;1;(2)原式=(i﹣1﹣i+1)×504+i=i.24.解:(1)图②中的阴影部分的小正方形的边长=m﹣n;(2)方法①(m+n)2﹣4mn;方法②(m﹣n)2;(3)这三个代数式之间的等量关系是:(m﹣n)2=(m+n)2﹣4mn;(4)(a﹣b)2=(a+b)2﹣4ab,∵a+b=6,ab=5,∴(a﹣b)2=36﹣20=16,∴a﹣b=±4.故答案为m﹣n;(m+n)2﹣4mn (m﹣n)2;(m+n)2﹣4mn=(m﹣n)2.25.解:(1)当B为原点时,点C对应的数是7;当以C为原点时,A、B对应的数分别为﹣7,﹣10,m=﹣10+(﹣7)+0=﹣17,故答案为:7,﹣17;(2)当O在C的左边时,A、B、C分别为﹣6、﹣3、4,则m=﹣6﹣3+4=﹣5,当O在C的右边时,A、B、C为﹣14、﹣11、﹣4,则m=﹣14﹣11﹣4=﹣29,综上所述:m=﹣5或﹣29;(3)假如以C为原点,则A、B、C对应的数为﹣10,﹣7,Q对应的数是﹣(7﹣t),P对应的数是﹣(10﹣2t),当P在Q的左边时,[﹣(7﹣t)]﹣[﹣(10﹣2t)]=2,解得:t=1当P在Q的左边时,[﹣(10﹣2t)]﹣[﹣(7﹣t)]=2,解得:t=5,即当1秒或5秒后,P、Q两点间的距离为2.人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分时间:100分钟)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分). 1.﹣2的相反数是( )A .B .2C .﹣D .﹣22.将数据15 000 000用科学记数法表示为( )A .15×106B .1.5×107C .1.5×108D .0.15×1083.在数8,﹣6,0,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14中,负数的个数有( ) A .4B .5C .6D .7 4.下列说法正确的是( )A .一个数前面加上“﹣”号这个数就是负数B .非负数就是正数C .正数和负数统称为有理数D .0既不是正数也不是负数5.下列各图中,数轴表示正确的是( )A .B .C .D .6.如果单项式与2x 4y n+3是同类项,那么m 、n 的值分别是( )A .B .C .D .7.下面运算正确的是( )A .3ab+3ac=6abcB .4a 2b ﹣4b 2a=0C .2x 2+7x 2=9x 4D .3y 2﹣2y 2=y 28.下列式子中去括号错误的是( )A .5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5zB .2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2dC .3x 2﹣3(x+6)=3x 2﹣3x ﹣6D .﹣(x ﹣2y )﹣(﹣x 2+y 2)=﹣x+2y+x 2﹣y 29.若2是关于x 的方程x+a=﹣1的解,则a 的值为( )A .0B .2C .﹣2D .﹣610.如图,M ,N ,P ,Q ,R 分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN=NP=PQ=QR=1.数a 对应的点在N 与P 之间,数b 对应的点在Q 与R 之间,若|a|+|b|=3,则原点可能是( )A .M 或QB .P 或RC .N 或RD .P 或Q二、填空题(每小题2分,共16分). 11.比较大小:﹣2 ﹣3.题号一 二 三 四 五 六 总分 得分不12.单项式﹣的系数是 ,次数是 次.13.将多项式﹣2+4x 2y+6x ﹣x 3y 2按x 的降幂排列: . 14.已知x ﹣3y=3,则6﹣x+3y 的值是 . 15.若(m ﹣2)x|m|﹣1=3是关于x 的一元一次方程,则m 的值是 .16.若关于x 的方程mx+2=2(m ﹣x )的解是,则m= .17.若|a|=2,|b|=4,且|a ﹣b|=b ﹣a ,则a+b= . 18.观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第5个图形中共有点的个数是 .三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1)③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 四、先化简、再求值:(本题5分)20.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中﹣5.五、解下列方程(每题4分,共8分)21.解方程:(1)2x ﹣(x+10)=6x ; (2)=3+.六、解答题:(本题21分,第1-4题各4分,第5小题题分)22.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为求a ﹣2cd+b+m 的值.23.有理数在数轴上的对应点位置如图所示,化简:﹣2|a ﹣b|.24.已知|2a+1|+(4b ﹣2)2=0,求:(﹣ a+b 2)﹣(a ﹣b 2)﹣(+b )的值.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题25.用“☆”定义一种新运算:对于任意有理数a 、b ,都有a ☆b=ab+a 2,例如(﹣3)☆2=﹣3×2+(﹣3)2=3(1)求(﹣5)☆3的值;(2)若﹣a ☆(1☆a )=8,求a 的值.26.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0.现将A 、B 之间的距离记作|AB|,定义|AB|=|a ﹣b|.(1)|AB|= ;(2)设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.参考答案与试题解析一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分).1.【解答】解:﹣2的相反数是2,故选:B .2.【解答】解:将15 000 000用科学记数法表示为:1.5×107. 故选:B .3.【解答】解:﹣|﹣2|=﹣2,(﹣1)2015=﹣1,﹣14=﹣1,负数有:﹣6,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14,负数的个数共6个, 故选:C .4.【解答】解:A 、不一定,例如0前面加上“﹣”号0还是0;B 、错误,0既不是正数也不是负数;C 、错误,正数和负数和0统称为有理数;D 、正确.故选D .5.【解答】解:A 、没有正方向,不是数轴,故本选项错误;B 、没有原点,不是数轴,故本选项错误;C 、没有单位长度,不是数轴,故本选项错误;D 、符合数轴的定义,故本选项正确.故选D . 6.【解答】解:∵单项式与2x 4y n+3是同类项,∴2m=4,n+3=1,解得:m=2,n=﹣2.故选A .7.【解答】解:A 、3ab+3ac=3a (b+c );B 、4a 2b ﹣4b 2a=4ab (a ﹣b );C 、2x 2+7x 2=9x 2;D 、正确.故选D .8.【解答】解:A 、5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5z ,故本选项不符合题意;B 、2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2d ,故本选项不符合题意;C 、3x 2﹣3(x+6)=3x 2﹣3x ﹣18,故本选项符合题意;封线内不得答D、﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y2,故本选项不符合题意.故选C.9.【解答】解:把x=2代入方程得:1+a=﹣1,解得:a=﹣2,故选C10.【解答】解:∵MN=NP=PQ=QR=1,∴|MN|=|NP|=|PQ|=|QR|=1,∴|MR|=4;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在N或R时且|Na|=|bR|时,|a|+|b|=3;③当原点在M点时,|a|+|b|>3,又因为|a|+|b|=3,所以,原点不可能在M点;综上所述,此原点应是在N或R点.故选:C.二、填空题(每小题2分,共16分).11.【解答】解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.12.【解答】解:单项式﹣的系数是﹣,次数是5,故答案为:﹣,5.13.【解答】解:多项式﹣2+4x2y+6x﹣x3y2按字母x列是:﹣x3y2+4x2y+6x﹣2.故答案是:﹣x3y2+4x2y+6x﹣2.14.【解答】解:∵x﹣3y=3,∴原式=6﹣(x﹣3y)=6﹣3=3,故答案为:315.【解答】解:∵(m﹣2)x|m|﹣1=3是关于x程,∴,解得m=﹣2.故答案为:﹣2.16.【解答】解:把x=代入方程,得:m+2=2(m﹣),解得:m=2.故答案是:2.17.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,∴或,∴a+b=6或2,故答案为:6或2.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.【解答】解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点,…第n 个图有1+1×3+2×3+3×3+…+3n 个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46. 故答案为:46.三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 【解答】解:①原式=12+18=30. ②原式=﹣3××=﹣2. ③原式=﹣6.5+13﹣3.5=3.④原式=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4.⑤原式=4+(﹣6)×9=﹣50. 四、先化简、再求值:(本题5分)20.【解答】解:原式=a 2+5a 2﹣2a ﹣2a 2+6a=4a 2+4a ,当a=﹣5时,原式=100﹣20=80. 五、解下列方程(每题4分,共8分)21.【解答】解:(1)方程去括号得:2x ﹣x ﹣10=6x , 移项合并得:5x=﹣10, 解得:x=﹣2;(2)方程去分母得:2(x+1)=12+2﹣x ,去括号得:2x+2=12+2﹣x , 移项合并得:3x=12, 解得:x=4.六、解答题:(本题21分,第1-4题各4分,第5小题题5分)22.【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴原式=(a+b )﹣2cd+m=﹣2±2, ∴a ﹣2cd+b+m 的值为0或﹣4.23.【解答】解:∵由图可知,a <﹣1<0<b <1,∴a+b <0,a ﹣b <0,∴原式=﹣a ﹣(a+b )+2(a ﹣b )=﹣a ﹣a ﹣b+2a ﹣2b密 封 =﹣3b .24.【解答】解:∵|2a+1|+(4b ﹣2)2=0,∴a=﹣,b=.(﹣a+b 2)﹣(a ﹣b 2)﹣(+b )=﹣a+b 2﹣a+b 2﹣﹣b =当a=﹣,b=时,原式==.25.【解答】解:(1)(﹣5)☆3=(﹣5)×3+(﹣5)2=﹣15+25=10;(2)∵﹣a ☆(1☆a )=﹣a ☆(a+1)=﹣a (a+1)+(﹣a )2=﹣a 2﹣a+a 2=﹣a=8, ∴a=﹣8.26.【解答】解:(1)∵|a+4|+(b ﹣1)2=0,∴a=﹣4,b=1, ∴|AB|=|a ﹣b|=5;(2)当P 在点A 左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.当P 在点B 右侧时, |PA|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P 不存在.当P 在A 、B 之间时,|PA|=|x ﹣(﹣4)|=x+4,|PB|=|x ﹣﹣x ,∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x )=2.∴x=﹣,即x 的值为﹣; 故答案为:5.。

湖南省永州市零陵区2023-2024学年七年级上学期期中考试数学试卷(含解析)

数学试卷一、选择题(本题共10个小题,每小题只有一个正确答案,请将正确选项填涂到答题卡上相应的位置.每小题3分,共30分)1.2023的相反数是( )A.B.C.2023D.﹣2023解:2023的相反数是﹣2023.故选:D.2.下列四个数中是负分数的是( )A.﹣2B.3.14C.﹣0.618D.解:﹣0.618是负分数;﹣2是负整数;3.14,是正分数;故选:C.3.下列整式与ab2为同类项的是( )A.a2b B.﹣2ab2C.ab D.ab2c解:在a2b,﹣2ab2,ab,ab2c四个整式中,与ab2为同类项的是:﹣2ab2,故选:B.4.10月26日11时14分,搭载神舟十七号载人飞船的长征二号F遥十七运载火箭在酒泉卫星发射中心点火发射,长征二号F是捆绑四级助推器的两级运载火箭,其起飞重量为480吨,火箭全长58.34米,近地轨道运载能力为8500千克.请你将8500用科学记数法表示为( )A.8.5×103B.85×102C.0.85×104D.850×10解:8500=8.5×103,故选:A.5.下列计算正确的是( )A.﹣52=25B.C.7ab﹣5ab=2D.a﹣3a=﹣2a解:A.﹣52=﹣25,故本选项不符合题意;B.,故本选项不符合题意;C.7ab﹣5ab=2ab,故本选项不符合题意;D.a﹣3a=﹣2a,故本选项符合题意.故选:D.6.若a=(﹣1)2022,b=(﹣1)2023,c=﹣2024,则下列对a,b,c的值大小排列正确的是( )A.c>b>a B.b>a>c C.a>b>c D.a>c>b解:a=(﹣1)2022=1,b=(﹣1)2023=﹣1,∵1>﹣1>﹣2024,∴a>b>c.故选:C.7.下列对于0的说法错误的是( )A.0是整数B.0既不是正数也不是负数C.0的倒数是0D.0的任何正整数次幂是0解:0是整数,所以A正确;0既不是正数也不是负数,所以B正确;0不能做分母,所以0没有倒数,所以C错误;0的任何正整数次幂是0,所以D正确;故选:C.8.在一次数学课外实践活动中老师提出一个问题,假设有一张足够长和宽的纸,纸的厚度约为0.1毫米,对折30次,请大家猜想折叠后有多厚?下面是四个同学的猜想:甲同学:大约有一本数学书厚;乙同学:大约比姚明的身高还高(注:姚明身高226cm);丙同学:大约比我们的5层教学楼还高;丁同学:大约比珠穆朗玛峰还高.你认为哪个同学的猜想更合理?( )A.甲B.乙C.丙D.丁解:根据题意可知0.1×230=107374182.4(毫米),107374182.4毫米=107374.1824米,107374.1824>8848,∴大约比珠穆朗玛峰还高.故选:D.9.下列图形是用长度相同的小木棒按一定规律拼搭而成,图形①需要8根小木棒,图形②需要15根小木棒,图形③需要22根小木棒,…,按此规律,第n个图形需要小木棒的根数是( )A.7n+1B.7n+8C.8n+1D.8n﹣1解:由图可得,图案①有:1+7=8根小木棒,图案②有:1+7×2=15根小木棒,图案③有:1+7×3=22根小木棒,…,则第n个图案有:(7n+1)根小木棒,故选:A.10.如图,在数轴上有a,b,c三个数,则下列结论正确的是( )A.|a|<b B.a+b<0C.abc>0D.|a﹣b|=a﹣b 解:由数轴得,a<﹣1,0<b<1,c>1,∴|a|>b,a+b<0,abc<0,a﹣b<0,∴|a﹣b|=b﹣a,故选:B.二、填空题(本题共6小题,每小题3分,共18分)11.计算:(﹣2)3= ﹣8 .解:(﹣2)3=﹣8.12.单项式﹣2a2b的次数是 3 .解:单项式﹣2a2b的次数是:3.故答案为:3.13.已知有两个数a,b,且ab=1,若,则b= ﹣4 .解:∵ab=1,而a=﹣,即﹣b=1∴b=﹣4,故答案为:﹣4.14.第三届“一带一路”国际合作论坛于2023年10月17日至18日在北京隆重举行,期间共有140多国家,30多个国际组织代表参加了会议.其中,俄罗斯总统于10月17日到达北京,已知俄罗斯首都莫斯科与北京的时差是﹣5小时(即同一时刻莫斯科时间比北京时间晚5小时),俄罗斯总统普京乘坐的专机飞往北京需6小时,普京乘坐的专机从莫斯科凌晨1:00(当地时间)出发,则到达北京机场的北京当地时间是 12:00 .解:1+5+6=12(时),即到达北京机场的北京当地时间是12:00,故答案为:12:00.15.11月8日零陵区第二届学生运动会在永州工商职业中专隆重召开,开幕式上蘋洲校区七年级三百多人为大家表演了一场精彩绝伦,美轮美奂的集体舞.学校为每位表演的同学购买了一套演出服装,下面是商家给出购买服装的优惠措施:①若购买服装不超过100套按每套标价120元出售;②若购买服装不超过200套,超过100套部分按标价8折出售;③若购买服装超过200套,超过200套部分按标价6折出售.若学校购买的服装为x套(x≥300),则应付款 (72x+7200) 元(用含x的代数式表示,结果要化简).解:由题意可得,100×120+(200﹣100)×120×0.8+(x﹣200)×120×0.6=12000+100×120×0.8+120×0.6x﹣200×120×0.6=12000+9600+72x﹣14400=(72x+7200)元,即应付款(72x+7200)元,故答案为:(72x+7200).16.高斯是德国著名的数学家,他首次用[x]表示不大于x的最大整数,如[3.14]=3,[﹣1.6]=﹣2,根据定义计算:[0.618]﹣[﹣5.1]×[4.3]= 24 .解:由题意得:[0.618]﹣[﹣5.1]×[4.3]=0﹣(﹣6)×4=0+24=24.故答案为:24.三、解答题(本大题共9个小题,共72分,解答题要求写出证明步骤或解答过程)17.计算:(1)2﹣(﹣3)+(﹣5);(2).解:(1)2﹣(﹣3)+(﹣5)=2+3+(﹣5)=0;(2)=×24﹣×24﹣×24=12﹣16﹣20=﹣24.18.计算:(1)﹣2x2﹣3﹣x2+1;(2)3x2y﹣5xy2﹣3(x2y﹣2xy2).解:(1)﹣2x2﹣3﹣x2+1=(﹣2x2﹣x2)+(﹣3+1)=﹣3x2﹣2;(2)3x2y﹣5xy2﹣3(x2y﹣2xy2)=3x2y﹣5xy2﹣3x2y+6xy2=xy2.19.先化简,再求值:xy﹣(3x﹣2xy)+(3xy﹣2x),其中x=2,.解:原式=xy﹣3x+2xy+3xy﹣2x=6xy﹣5x,当x=2,y=﹣时,原式=6×2×(﹣)﹣5×2=﹣6﹣10=﹣16.20.为实施乡村振兴战略,零陵区委区政府打造特色经济作物产业,根据我区地域优势发展种植“四季水果园”.黄田铺镇的万亩纽荷尔脐橙便是其中精品项目之一,纽荷尔脐橙质优价美,深受大家喜爱.下面是小明家种植的一块地所采摘的20袋脐橙,小明在记录重量时采用了如下记录方法,以25千克为标准,超过或不足部分分别用正,负数表示,记录如下:与标准质量差值﹣2﹣1.5﹣1012袋数541334(1)请求出20袋脐橙中最重一袋比最轻一袋重 4 千克;(2)与标准质量相比,20袋脐橙总质量超过或不足多少千克;(3)若这批脐橙每千克售价为5元,那么这20袋脐橙可卖多少元?解:(1)2﹣(﹣2)=2+2=4(千克),即20袋脐橙中最重一袋比最轻一袋重4千克,故答案为:4;(2)﹣2×5﹣1.5×4﹣1×1+0×3+1×3+2×4=﹣6(千克),即与标准质量相比,20袋脐橙总质量不足6千克;(3)(25×20﹣6)×5=494×5=2470(元),即这20袋脐橙可卖2470元.21.零陵历史文化悠久,风景优美,其中位于潇水中路的零陵楼是零陵古城的标志性建筑,如图所示,零陵楼下的桥洞是由一个半圆和一个长方形组成.(1)若桥洞宽为a,桥墩高为b,求桥洞横截面的面积S(用含a,b,π的代数式表示);(2)当a=20m,b=9m,则它的面积是多少平方米(结果保留π).解:(1)桥洞横截面面积=半圆的面积+长方形的面积,半圆的面积=×π×()2=,长方形的面积=ab,桥洞横截面的面积S=ab+;(2)当a=20m,b=9m时,S=180+50π,它的面积是(80+50π)平方米.22.已知多项式A=2x2+3xy﹣5x,B=x2﹣xy+y2.(1)化简2A﹣4B;(2)若x是最大的负整数,y是绝对值最小的数,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.解:(1)2A﹣4B=2(2x2+3xy﹣5x)﹣4(x2﹣xy+y2)=4x2+6xy﹣10x﹣4x2+4xy﹣4y2=10xy﹣10x﹣4y2.(2)∵x是最大的负整数,y是绝对值最小的数,∴x=﹣1,y=0,∴原式=10×(﹣1)×0﹣10×(﹣1)﹣4×02=10.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣10x﹣4y2=10x(y﹣1)﹣4y2,所以y﹣1=0,所以y=1.23.材料1:在一个含有两个字母的多项式中,如果任意交换两个字母的位置,多项式的值不变,则称这样的多项式为“二元轮换对称式”.例如x2+y2,x3+y3,(5x﹣3)(5y﹣3),…都是“二元轮换对称式”,对于所有的“二元轮换对称式”都可以用含相同字母的另一个“二元轮换对称式”来表示,形成一个“基本轮换对称式”,例如:x2+y2=(x+y)2﹣2xy是一个“基本轮换对称式”.材料2:求形如x n+y n(n≥2且为整数)的“基本轮换对称式”x2+y2=(x+y)2﹣2xyx3+y3=(x2+y2)(x+y)﹣xy(x+y)x4+y4=(x3+y3)(x+y)﹣xy(x2+y2)…通过阅读上列材料,解决以下问题.(1)式子①2a﹣2b;②3a2+3b2;③a3+2ab+b3;④a3+ab2+a2b+b3中,属于“二元轮换对称式”的是 ②③④ (填序号);(2)若已知x+y=5,xy=3,求x4+y4的值;(3)请你直接写出x k+1+y k+1的“二元轮换对称式”.解:(1)在①2a﹣2b;②3a2+3b2;③a3+2ab+b3;④a3+ab2+a2b+b3中,②3a2+3b2;③a3+2ab+b3;④a3+ab2+a2b+b3,a、b互换值不变,∴②③④是二元对称式,故答案为:②③④;(2)将x+y=5,xy=3代入得:∵x3+y3=(x2+y2)(x+y)﹣xy(x+y)∴x3+y3=5(x2+y2)﹣15,∵x2+y2=(x+y)2﹣2xy,∴x2+y2=25﹣6=19,∴x3+y3=5(x2+y2)﹣15=5×19﹣15=80;∴x4+y4=(x3+y3)(x+y)﹣xy(x2+y2)=80×5﹣3×19=343.(3)根据题意x k+1+y k+1的“二元轮换对称式”为:x k+1+y k+1=(x k+y k)(x+y)﹣xy(x k﹣1+y k﹣1),其中k为正整数.24.【新知学习】在数轴有两点M,N,则点M与点N的距离可以记“MN”,若点M表示的数为m,点N 表示的数为n,则点M与点N的距离是MN=|m﹣n|.例如:﹣3与1的距离可以计算为|﹣3﹣1|=4.(1)【呈现问题】若在数轴上A,B两点所对应点的数分别是a,b,且|a+3|+(b﹣9)2=0,则a= ﹣3 ,b= 9 ,AB= 12 ;(2)【解决问题】在(1)的条件下,有一动点P从点A出发,第1次向左移动1个单位长度,然后在新的位置向右移动2个单位长度,在此位置第3次运动,向左运动3个单位长度,…,按照此规律不断地左右运动,当运动到4052次时,求点P所对应的数;(3)【拓展应用】在(2)的条件下,点P在某次运动时恰好到达某一位置,使得PB=3PA,求此时点P所对应的数,并直接写出是第几次运动?解:(1)由题意得,a+3=0,b﹣9=0,∴a=﹣3,b=9.∴AB=|﹣3﹣9|=12.故答案为:﹣3,9,12.(2)设向左运动记为负数,向右运动记为正数,依题意得:﹣3﹣1+2﹣3+4﹣5+6﹣7+…+4050﹣4051+4052,=﹣3+2026=2023.答:点P所对应的数为2023.(3)设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣3﹣x,PB=9﹣x,依题意得:9﹣x=3(﹣3﹣x),解得:x=﹣9;②当点P在点A和点B之间时:PA=x﹣(﹣3)=x+3,PB=9﹣x,依题意得:9﹣x=3(x+3),解得:x=0;③当点P在点B的右侧时:PA=x﹣(﹣3)=x+3,PB=x﹣9,依题意得:x﹣9=3(x+3),解得:x=﹣9,这与点P在点B的右侧(即x>9)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣9和0.∴﹣9和0分别是点P运动了第11次和第6次到达的位置.25.在一般情况是不成立的,但是在有些特殊情况下有些数可以使它成立,例如:a=b=0.我们把使得成立的一对数a,b称为“好闺蜜数对”,记作(a,b).(1)请你判断(1,)是不是“好闺蜜数对”;(2)请你分别求出当a=2,3,﹣4时对应的b的值;(3)通过上面计算请你猜想a,b的关系,直接写出结论;(4)若(m,n)是“好闺蜜数对”,求代数式的值.解:(1)是;理由:由公式,当a=1,b=﹣时,则==﹣,==﹣,∴=成立,∴(1,)是不是“好闺蜜数对”;(2)由公式,当a=2时,=,解得:b=﹣4.5,记作(2,﹣4.5);当a=3时,,解得:b=﹣,记作(3,﹣);当a=﹣4时,,解得:b=9,记作(﹣4,9);(3)由公式成立,则15a+10b=6a+6b,整理得:9a+4b=0,故a,b的关系为9a+4b=0;(4)当(m,n)是“好闺蜜数对”,根据(3)中结论可得9m+4n=0,则=﹣m﹣n﹣4m+2(3n﹣1)=﹣3m﹣n+6n﹣2=﹣3m﹣n﹣2=﹣(9m+4n)﹣2=3×0﹣2=﹣2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年下学期仁寿联谊校七年级半期检测 数 学 试 题
(考试时间:120分钟 全卷总分:120分)
一、选择题:( 12小题,每题3分,共36分)
1、在+5,-4,-π,
23-,22,—(43-),3)6(-, -8- ,5)2(--, —(-5) ,24-,这几个数中,负数( )个.
A .3. B.4 C.5 。

D.6
2、下列各数中互为相反数的是( )
A 、+(—5)与—5
B 、—(+5)与—5
C 、—(—5)与+(—5) D.—(+5)与—|—5|
3、下列说法错误的是( )
A 、若
a b =,则a b =或a b =-。

B 、如果23a a =,那么3a = C 、若20a b +=时,则0a =且0b =。

D 、若a a =-,则a ≤0。

4、代数式2
y x -的意义是() A 、x 与y 的一半的差 B 、x 减去y 除以2的差 C 、x 与y 的差的一半 D 、x 与y 的
21的差 5、在CCTV“开心辞典”栏目中,主持人问这样一道题目:“a 是最小的正整数,b 是最大的负整
数,c 是绝对值最小的有理数,请问:a ,b ,c 三数之和是( )”
A .-1
B .0
C .1
D .
6、一种面粉的质量标识为“26±0.25千克”,则下列面粉中合格的是:( )
A 、26.30千克
B 、25.70千克
C 、26.51千克
D 、25.80千克
7、2010年5月27日,上海世博会参观人数达到37.7万人,这个数用科学记数法表示为( )
A 、0.377×106人
B 、3.77×105人
C 、3.77×104人
D 、377×103

8.、若a,b 为有理数,a>0,b<0,且|a|<|b|,则a ,b ,-a ,︱b ︱的大小关系是( )
A.b<-a<︱b ︱<a
B.b<-a<a<︱b ︱
C.b<︱b ︱<-a<a
D.-a<︱b ︱<b<a
9.、下列说法:①如果两个数的和为1,则这两个数互为倒数;②如果两个数积为0,则至少
有一个数为0;③绝对值是本身的有理数只有0;④倒数是本身的数是-1,0,1。

其中错误的
个数是( ) 班级:
姓名:
考号:
A.0个
B.1个
C.2个
D.3个
10、如果2a +与(b -1)2互为相反数, 那么代数式2011()a b +的值是( )
A 、1
B 、-1
C 、±1 D、2008
11、当x =1时,代数式mx 3+nx +1的值是2009,则当x =—1时,代数式mx 3+nx +1的值是
( )
A.—2007
B. —2009
C. —2008
D.2008
12、 如图所示,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出
来的图形是( ).
二、耐心填一填(每题3分,共30分)
13.、若把每月生300个零件记作0个,则二月份生产了340个零件记作_________个,四月份生产
了280个零件记作_________个;
14.、a 的相反数是10
7,则a 的倒数是 。

15、大于-4且小于3的所有整数的和是 。

16、 若x 2=4,则x 3=______.
17、在数轴上与表示-2的数相距4个单位长度的点对应的数是 。

18、定义一种运算(a*b )=2a ×(a+b),则4*5= 。

19、 若a 、b 互为相反数,c 、d 互为倒数,∣m∣=2,
m
b a 4++m 2-3cd= 20、∣x ∣=4, ∣y ∣=6,且xy >0,则∣x-y ∣= 21、结合生活实际解释代数式:2a+3b=
22、a 表示一个两位数,b 表示一个四位数,把a 放在b 的左边组成一个六位数,那么这个六位数
用代数式为 .
三.23.(5分).在数轴上画出表示下列各数的点,并用“<”号把它们连接起来。

-(-4),-︱-2︱,0,-3.75,-(-2)2
四.24.(6分)下面两个圈分别表示正数集和分数集,请找出9个数,填入这两个圈内,使其中
每个圈正好6个数,重叠部分为3个数。

五、耐心算一算(每题5分,共20分) 25. 123(0.6)(3)(7)2454
----++-︱-2︱
26. —22×(—
21)+8÷(—2)2
27. —1×2
1—(0.5—121) ×321÷(—32—1)
28. (1—121—83+12
7)×(—24)
六.简答题( 23 分 ) 29. (8分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,在某个时刻停留在A
处,规定以岗亭为原点,向北方向为正,这段时间行驶纪录如下(单位:千米)
+10,-9,+7,-15,+6,-14,+4,-2.
(1) 、A 在岗亭哪个方向?距岗亭多远?
(2)、若摩托车行驶每千米耗油0.2升,每升7.5元,且最后返回岗亭,这一天耗油共需多少
元?
30.(9分)某市为了增强居民的节水意识,特制定了居民用水标准,规定居民用水量不超过标准用水量15m ³(含15m ³),每立方米按a 元收费;超过标准用水量的,超过部分每立方米按2a
元收费。

(1)小明家用水量为12m ³,应缴水费多少元?
(2)小明家本月用水量为20m ³,应缴水费多少元?
(3)小明家用水量为xm ³,应缴水费多少元?
31.(6分)观察算式:
2
1211211=-=⨯, 3
23121211321211=-+-=⨯+⨯ 4
341313121211431321211=-+-+-=⨯+⨯+⨯ 按规律填空
(1分)
=⨯+⨯+⨯+⨯5
41431321211_______________; (1分)=⨯++⨯+⨯+⨯+⨯100991541431321211 ______________;
(1分)如果n 为正整数,那么
()
=+⨯++⨯+⨯+⨯+⨯11541431321211n n . (3分)由此拓展写出具体过程, 751531311⨯+⨯+⨯+…+=
⨯101991
2013年下学期仁寿联谊校(七)年级半期检测
数学试题答案
一、选择题:( 12小题,每题3分,共36分)
1.C
2.C.
3.B
4.C
5.B
6.D
7.B
8.B
9.B 10.B
11.A 12.B
二、耐心填一填(每题3分,共30分)
13. 40 、-20 14. -10/7 15. -3 16. +8 17. -6和2 18. 72
19. 1 20. 2 21.解释合理给分 22.10000a+b
三.23.(5分).在数轴上画出表示下列各数的点,并用“<”号把它们连接起来。

答案略
四.24.(6分)下面两个圈分别表示正数集和分数集,请找出9个数,填入这两个圈内,使其中
每个圈正好6个数,重叠部分为3个数。

答案略(答案正确得分)
五、耐心算一算(每题5分,共20分)
25. -4 26. 4 27.-17/20 28. 7
六.简答题( 23 分)
(29)解.(1)+10+(-9)+(+7)+(-15)+(+6)+(-14)+(+4)+(-2)
=-13(千米)
∴.A在岗亭南方,距离岗亭13千米。

(2)(∣+10∣+∣-9∣+∣+7∣+∣-15∣+∣+6∣+∣-14∣+∣+4∣+∣-2∣)×0.2×7.5=100.5(元)
∴这一天耗油共需100.5元
(30)解:(1)12a元(2)〔15a+(20-15)·2a〕元或25a元(3)当x≤15时,应缴水.
费ax元. 当x>15时,应缴水费〔15a+(x-15)·2a〕元.
七、31.(1)4/5 (2)99/100 (3)n/ n+1 (4)50/101。

相关文档
最新文档