(完整)七年级数学整式单元测试题
七年级数学-整式的加减单元测试题及答案

七年级数学-整式的加减单元测试题及答案七年级数学-整式的加减单元测试题一、选择题(每小题2分,共20分)1.在代数式中,x2-5,-1,x2-3x+2,π,5/x,x2+1/x+1,-3π整式有()A。
3个 B。
4个 C。
5个 D。
6个2.单项式-3πxy2z2的系数和次数分别是()A。
-π,5 B。
-1,6 C。
-3π,6 D。
-3,73.下面计算正确的是()A。
3x2-x2=3 B。
3a2+2a3=5a5 C。
3+x=3x D。
-0.25ab+1/4ab=04.多项式-x2-1/2x-1的各项分别是()A。
-x2,1/2x,1 B。
-x2,-1/2x,-1 C。
-x2,1/2x,-1 D。
x2,-1/2x,-15.已知2x3y2和-3x3my2是同类项,则式子4m-24的值是()A。
20 B。
-20 C。
28 D。
-286.下面各题去括号错误的是()A。
x-(6y-1/2)=x-6y+1/2B。
2m+(-n+1/3a-b)=2m-n+1/3a-bC。
-1/2(4x-6y+3)=-2x+3y+3D。
(a+1/2b)-(-1/3c+2/7)=a+1/2b+1/3c-2/77.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元。
A。
4m+7n B。
28mn C。
7m+4n D。
11mn8.减去-4x等于3x2-2x-1的代数式是()A。
3x2-6x-1 B。
5x2-1 C。
3x2+6x-1 D。
3x2+2x-19.已知下列一组数,用代数式表示第n个数:1、3/4、5/9、7/16、9/25……则第n个数为()A。
2n-1/n B。
n2-4/n C。
2n-1/n2 D。
2n+1/n210.如果a-b=1/2,那么-3(b-a)的值时()A。
-3/5 B。
2/3 C。
3/2 D。
1/6二、填空题(每小题3分,共30分)11.在代数式中,xy,-3,-1/4x2+1,x-y,-m2n,1/x,4-x2,ab2,2/x+3单项式有5个,多项式有3个。
初一数学整式的运算单元测试题及答案

初一数学整式的运算单元测试题及答案第七章整式的运算一、选择题。
1、以下判别中不正确的选项是( )①单项式m的次数是0 ②单项式y的系数是1③ ,-2a都是单项式④ +1是二次三项式2、假设一个多项式的次数是6次,那么这个多项式任何一项的次数( )A、都小于6B、都等于6C、都不小于6D、都不大于63、以下各式中,运算正确的选项是( )A、 B、C、 D、4、以下多项式的乘法中,可以用平方差公式计算的有 ( )A、 B、C、 D、5、在代数式中,以下结论正确的选项是( )A、有3个单项式,2个多项式B、有4个单项式,2个多项式C、有5个单项式,3个多项式D、有7个整式6、关于计算正确的选项是( )A、0B、1C、-1D、27、多项式中,最高次项的系数和常数项区分为( )A、2和8B、4和-8C、6和8D、-2和-88、假定关于的积中常数项为14,那么的值为( )A、2B、-2C、7D、-79、,那么的值是( )A、9B、49C、47D、110、假定,那么的值为( )A、-5B、5C、-2D、2二、填空题11、 =_________。
12、假定,那么。
13、假定是关于的完全平方式,那么。
14、多项多项式除以多项式A得商式为,余式为,那么多项式A为________________。
15、把代数式的共同点写在横线上_______________。
16、应用_____公式可以对停止简便运算,运算进程为:原式=_________________。
17、。
18、,那么P=______, =______。
三、解答题19、计算:(1)(2)(3)20、解方程:21、先化简后求值:,其中。
参考答案一、选择题1、B2、D3、D4、B5、A6、B7、D8、B9、C 10、C 二填空题11、 12、2;4 13、或7 14、15、(1)都是单项式 (2)都含有字母、 ;(3)次数相反16、平方差;17、 18、 ;三、解答题19、(1)1 (2) (3)20、21、34。
(完整)七年级数学整式单元测试题

(完整)七年级数学整式单元测试题本文为《七年级数学整式单元测试题》。
第一节选择题(共10小题,每小题2分,共计20分)1. 若a = -3,b = 5,则ab的值为()。
A. 8B. -8C. 15D. -152. 已知整式 f(x) = 2x² - 3x + 4 ,则 f(-1)的值为()。
A. -1B. 9C. 7D. -93. 若整式 P(x) = 3x³ - 2x² + 5x + 1 ,则 P(0)的值为()。
A. 1B. 0C. -1D. -54. 若 m = 2 ,则整式 2m² - 3m - 1 的值为()。
A. 1B. -1C. 5D. -55. 设整式 f(x) = 2x³ + 4x² - x + 1 ,则 f(1) + f(-1)的值为()。
A. 1B. 4C. 0D. -26. 若整式 \(g(x) = 4x^4 - 3x^2 + 7\),则 g(-1)的值为()。
A. -14B. 4C. 14D. -47. 已知整式 P(x) = x³ - 2x² - x + 4 ,则 P(3)的值为()。
A. -2B. 2C. 4D. 88. 若整式 \(f(x) = 2x^3 - 4\),则 f(2)的值为()。
A. 2B. 0C. 8D. -49. 设整式 \(P(x) = 3x^3 + 2x^2 - 5x - 2\),则 P(-1)的值为()。
A. -8B. 0C. 8D. 210. 若 a = -1 ,b = 2 ,则 \(ab^2\)的值为()。
A. -2B. -4C. 4D. 8第二节填空题(共5小题,每小题4分,共计20分)11. 设整式 \(f(x) = 3x^3 + 4x^2 - 2x + 1\) ,则 \(f(-2)\)的值为\underline{~~~~-3~~~~}。
12. 若 \(m = -2\) ,则整式 \(3m^2 + 4m + 1\) 的值为\underline{~~~~-3~~~~}。
七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。
七年级数学整式单元测试卷

七年级数学整式单元测试卷一、选择题(每题3分,共30分)1. 下列式子中,整式为()A. (1)/(x)B. x + yC. √(x)D. (1)/(x + y)2. 单项式-3xy^2的系数和次数分别是()A. -3,3B. -3,2C. 3,3D. 3,2.3. 多项式2x^2-3x + 1的次数是()A. 2B. 3C. 1D. 0.4. 下列运算中,正确的是()A. x^2+x^3=x^5B. x^3· x^2=x^6C. (x^2)^3=x^6D. x^6÷ x^2=x^35. 化简-2a + 3a的结果是()A. -aB. aC. 5aD. -5a.6. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 17. 若单项式3x^my^3与-2x^2y^n是同类项,则m + n的值为()A. 5B. 4C. 3D. 2.8. 计算(a - 2b)(a + 2b)的结果是()A. a^2-4b^2B. a^2+4b^2C. a^2-2b^2D. a^2+2b^29. 当 a = -2时,代数式a^2-2a + 1的值为()A. 9B. 1C. -1D. -9.10. 已知 A = 2x^2+3xy - 2x - 1,B=-x^2+xy - 1,则 A - 3B等于()A. 5x^2+10xy - 2x - 4B. 5x^2+10xy - 2x + 2C. 5x^2-10xy - 2x - 4D.5x^2-10xy - 2x + 2二、填空题(每题3分,共15分)11. 单项式(2)/(3)π r^2的系数是___。
12. 多项式3x^2y - 5xy^2+y - 2x是___次___项式。
13. 若x^2+mx + 9是一个完全平方式,则m =___。
初一数学整式练习题精选(含答案)

初一数学整式练习题精选(含答案) 以下是初一数学第三单元整式练题精选,含答案。
一、判断题1.x+1是关于x的一次两项式。
(错误,应为一次一项式)2.-3不是单项式。
(正确)3.单项式xy的系数是1.(正确)4.x3+y3是6次多项式。
(错误,应为3次多项式)5.多项式是整式。
(正确)二、选择题1.在下列代数式中,多项式有4个。
(选项不全,无法判断正确答案)2.多项式-23m-n2是三次二项式。
(错误,应为二次二项式)3.下列说法正确的是3x-2x+5的项是3x,2x,5.(正确)4.2-与2x-2xy-5都是多项式。
(正确)5.一个多项式的次数是6,则这个多项式中只有一项的次数是4.(错误,应为6)6.下列多项式中,是二次多项式的是3x+1.(正确)7.x减去y的平方的差,用代数式表示正确的是x-y2.(正确)8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S米,同学上楼速度是a米/分,下楼速度是b米/分,则他的平均速度是sab/(s+a+b)米/分。
(正确)9.下列单项式次数为3的是3abc。
(错误,应为3次单项式)10.下列代数式中整式有2x+y,a2b,3x4x。
(正确)11.下列整式中,单项式是2x-y。
(正确)12.下列各项式中,+1.(正确)13.x(x+a)是单项式。
(错误,应为一次二项式)14.在多项式x3-xy2+25中,最高次项是x3.(正确)24.单项式的系数是系数,次数是次数。
25.多项式x2y+xy-xy2-53中的三次项是-xy2.26.当a=1时,整式x2+a-1是单项式。
27.多项式xy-1是一次二项式。
28.当x=-3时,多项式-x3+x2-1的值等于-31.29.如果整式(m-2n)x2ym+n-5是关于x和y的五次单项式,则m+n=7.30.一个n次多项式,它的任何一项的次数都是小于等于n 的。
31.系数是-3,且只含有字母x和y的四次单项式共有4个,分别是-3x2y,3xy2,-x2y2,xy3.32.组成多项式1-x2+xy-y2-xy3的单项式分别是1,-x2,xy,-y2,-xy3.四、列代数式1.5/a+3/22.m2+n23.1/(x+y)4.(x-y)2/(a+b)五、求代数式的值1.当x=-2时,代数式x-3x-1的值为-17.2.当a=21,b=-3时,代数式|b-a|的值为5.3.当x=0时,代数式2x2-11/x3的值不存在。
人教版初一数学第二章整式的运算单元测验题(3套)

人教版七年级数学整式的运算单元测验(一)班别:初一( )班 学号: 姓名: 评分:一、填空题(每空2分,本题共40分)1、单项式22b a -的系数是 。
2、多项式123243-+-x x x 有 项,其中次数最高的项是 。
3、去括号:=---)2675(2b a x 。
4、=⨯1221010 ,=-⨯-32)3()3( ,=-⨯32)5(5 ,=⨯-3255 。
5、=32)4( ,=-32)4( ,=-32)]4[( ,=-23)4( 。
6、=÷5877 ,=-÷-n m )7()7( ,=÷-5877 ,=-÷58)7(7 。
7、=-32 ,=--2)2( ,=⎪⎭⎫ ⎝⎛-221 , =⨯-1010100 。
二、选择题(每小题3分,本题共18分)1、单项式7243xy -的次数是 【 】 A 、8次 B 、3次 C 、4次 D 、5次2、下列多项式次数为3的是 【 】A 、1652-+-x xB 、12-+x x πC 、22b ab b a ++D 、1222--xy y x3、下列整式加减正确的是 【 】A 、2x -(x 2+2x )= x 2B 、2x -(x 2-2x )= x 2C 、2x +(y +2x )= yD 、2x -(x 2-2x )= x 24、减去x 2-后,等于4x 2-3x -5的代数式是 【 】A 、4x 2-5x -5B 、-4x 2+5x +5C 、4x 2-x -5D 、4x 2-55、下列运算正确的是 【 】A 、954a a a =+B 、954632a a a =⨯C 、33333a a a a =⨯⨯D 、743)(a a =-6、下列计算结果错误的是 【 】A 、437)()()(ab ab ab =÷B 、x x x =÷2332)()(C 、224323232⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-m m m D 、24625)5()5(a a a =-÷三、解答题(每小题5分,共25分)1、)()(n m q p -++- 2、)264()27(22x x x x ---+-3、2332)()(a a +-4、y xy y x ⋅-+-⋅-232)()2()(5、)103()106(58⨯÷⨯四、求x 3与x x 3472++的差,并求当21-=x 时差的值。
七年级上册数学整式的加减单元测试卷(含答案)

七年级上册数学整式的加减单元测试卷(含答案)整式的加减试卷满分:100分,考试时间:90分钟第Ⅰ卷一、选择题(本小题共10个小题,每小题3分,共30分)1.下列说法正确的是()。
A。
xyz与xy是同类项;B。
99x2与23是同类项;C。
0.5xy与xy是同类项;D。
5mn与2是同类项。
2.去括号是我们要掌握的最基础的运算法则,下列去括号计算正确的是()。
A。
x(3y2)x3y2;B。
m(n a b)m n a b;C。
(4x6y3)4x6y3;D。
(a b)(c2)a b c 2.3.下列计算正确的是()。
A。
4x7x6x3x;B。
2a22(a1);C。
x5x3x3(x21);D。
4.目前我校正在开展篮球运动会,已知买一块毛巾需要x 元,买2个篮球需要y元,七年级3班购买了4块毛巾,6个篮球,需要的费用是()。
A。
4x6y;B。
4x3y;C。
3x4y;D。
6x4y。
5.两个4次多项式的和的次数是()。
A。
八次;B。
四次;C。
不低于四次;D。
不高于四次。
6.计算:6a25a3与5a22a1的差,结果正确的是()。
A。
a23a4;B。
a23a2;C。
a27a2;D。
a27a 4.7.在一次数学考试中,不听劝告的___同学使用了钢笔作答,这不!他不小心将一滴墨水滴在了试卷上面:(x23xy0.5y2)(0.5x24xy y2)0.5x2xy y2.那么被墨水遮住的部分应该是()。
A。
xy;B。
xy;C。
7xy;D。
7xy。
8.x2+ax-2y+7-(bx2-2x+9y-1)的值与x的取值无关,则a+b的值为()。
A。
-1;B。
1;C。
-2;D。
2.9.如果m-n=5,那么-3m+3n-7的值是()。
A。
22;B。
-8;C。
8;D。
-22.10.下列图形都是由同样大小的五角星按一定的规律组成,其中第1个图形一共有2个五角星,第2个图形一共有8个五角星,第3个图形一共有18个五角星,第4个图形中有32个五角星,…,则第12个图形中五角星的个数为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天完成.
二、选择题.(每小题 3 分,共 30 分)
9.方程 2m+x=1 和 3x-1=2x+1 有相同的解,则 m 的值为( ).
A.0
B.1
C.-2
D.-
10.方程│3x│=18 的解的情况是( ).
A.有一个解是 6
B.有两个解,是±6
C.无解
D.有无数个解
11.若方程 2ax-3=5x+b 无解,则 a,b 应满足( ).
5.在方程 4x+3y=1 中,用 x 的代数式表示 y,则 y=________.
6.某商品的进价为 300 元,按标价的六折销售时,利润率为 5%,则商品的标价为____元.
7.已知三个连续的偶数的和为 60,则这三个数是________.
8.一件工作,甲单独做需 6 天完成,乙单独做需 12 天完成,若甲、乙一起做,•则需________
A. x2+3x-6 B.-x2+3x
C. x2-3x-6
D.x2-3x
7、下列各式错误的是│a-b│+│a+b│的结果是( )。
A. -(a-b) = b-a
B. (a-b)2= (b-a)2
C. │a-b│=│b-a│
D. a-b = b-a
8、代数式 2a2-3a+1 的值是 6,则 4a2-6a+5 的值是( )。
≥3)分钟时所需费用是
元。
8.若 n 表示 3 个连续偶数中的最小一个,则这三个连续偶数的和为
。
9.化简:
(1)-2x-5x=__________;(2)-2x+5x=_________;(3)3m2-m2=__________;
(4)mn + nm =________;(5)-k-2k=__________;(6)-p2-p2-p2=________;
请你将猜想到的规律用自然数 n(n≥1)表示出来______________________。
2、 用拖拉机耕地,第一天耕了这块地的 1 还多 2 公顷,第二天耕了剩下的 1 ,若这块地为 x 公顷,求两天后还
4
2
剩多少地未耕?
一元一次方程练习题
一、填空题.(每小题 3 分,共 24 分)
(7)6a-2(a-2b)=_________;(8) -(-6x2) +4x2 +(-9x2 )=_____________。
三.计算题(1、2、3、4、5 每题 6 分,6、7 题每题 7 分,共 44 分)
1、 3x – 2 (2 + x )
2、 2x - (x+3y) - (-x-y) + (x-y)
某校初一甲、乙两班共 103 人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班 为单位分别购票,则一共需付 486 元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱? (2)两班各有多少名学生?(提示:本题应分情况讨论)
【知能点分类训练】 知能点 1 合并与移项 1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正. (1)从 3x-8=2,得到 3x=2-8; (2)从 3x=x-6,得到 3x-x=6.
是( ).
A.从甲组调 12 人去乙组 B.从乙组调 4 人去甲组
C.从乙组调 12 人去甲组
D.从甲组调 12 人去乙组,或从乙组调 4 人去甲组
17.足球比赛的规则为胜一场得 3 分,平一场得 1 分,负一场是 0 分,•一个队打了 14 场比赛,
负了 5 场,共得 19 分,那么这个队胜了( )场.
A.3
B.4
C.5
D.6
18.如图所示,在甲图中的左盘上将 2 个物品取下一个,则在乙图中右盘上取下几个砝码才能使
天平仍然平衡?( )
A.3 个
B.4 个
C.5 个
D.6 个
三、解答题.(19,20 题每题 6 分,21,22 题每题 7 分,23,24 题每题 10 分,共 46 分
20.解方程: (x-1)- (3x+2)= - (x-1).
2.下列变形中: ①由方程 =2去分母,得 x-12=10; ②由方程 x= 两边同除以 ,得 x=1; ③由方程 6x-4=x+4移项,得 7x=0; ④由方程 2- 两边同乘以 6,得 12-x-5=3(x+3). 错误变形的个数是( )个. A.4 B.3 C.2 D.1 3.若式子 5x-7 与 4x+9 的值相等,则 x 的值等于( ). A.2 B.16 C. D. 4.合并下列式子,把结果写在横线上. (1)x-2x+4x=__________; (2)5y+3y-4y=_________; (3)4y-2.5y-3.5y=__________.
减少了 10%,则三月份的销售额比一月份的销售额( ).
A.增加 10%
B.减少 10% C.不增也不减 D.减少 1%
15.在梯形面积公式S= (a+b)h 中,已知 h=6 厘米,a=3 厘米,S=24 平方厘米,则 b=( •)
厘米.
A.1
B.5
C.3
D.4
16.已知甲组有 28 人,乙组有 20 人,则下列调配方法中,能使一组人数为另一组人数的一半的
5.解下列方程. (1)6x=3x-7 (2)5=7+2x
(3)y- = y-2 (4)7y+6=4y-3
6.根据下列条件求 x 的值: (1)25 与 x 的差是-8. (2)x 的 与 8 的和是 2.
7.如果方程 3x+4=0 与方程 3x+4k=8 是同解方程,则 k=________. 8.如果关于 y 的方程 3y+4=4a 和 y-5=a 有相同解,则 a 的值是________. 知能点 2 用一元一次方程分析和解决实际问题 9.一桶色拉油毛重8 千克,从桶中取出一半油后,毛重4.5 千克,•桶中原有油多少千克?
4、下列式子是二次三项式的是( )。
A. 0.5x2-3x+5 B. -x2+5 C. xn+2-7x n+1+12x n
D. 2x2-x3-9
5、多项式 4xy+ 2 xy2-5x3y2+5x4-3y2-7 中最高次项系数是 ( )。 3
A.4
B. 2
3
C.-5
D.5
6、若 M+N=x2-3,M=3x-3,则 N 是( ) 。
3
是______________
。
4.若 2xm y3 和-7xy2n-1 是同类项,则 m=
, n=
。
5.2a-b+c-2d = 2a - (
)。
6. 结 合 日 常 生 活 实 际 , 用 语 言 解 释 代 数 式 2(a+b) 的 意 义 是
______________________
。
7.已知从甲地向乙地打电话,前 3 分钟收费 2.4 元,3 分钟后每分钟加收费 1 元,则通话时间 t(3
单元测试题
班级:__________ 姓名:____________ 学号:______________ 得分:_____________
一、选择题。(每题 3 分,共 24 分)
1、代数式-0.5、-x2y、2x2-3x+1、- 2 、 x 1 、 x 中,单项式共有( )。
a33
A.2 个
B.3 个
3、5a2b – [ 2ab2- 3(ab2 - a2b)]
4、 4(2x2-3x+1) – 10( 2 x2 - 7 +2) 5 10
5、先化简再求值:2x2 + y2 +(2 y2-3x2 ) – 2( y2 - 2x2 ),其中 x=-1,y=2 .
6、已知:A=2x2-3xy+2y2,B=2x2+xy-3y2,求 A-(B-2A)。
7、当│x +5│+(y-2) 2 = 0 时,求代数式(4x-2y2)-[ 5x - (x - y2) ]-x 的值。
附加题。(共 10 分,每题 5 分) 1、观察下列式子:
13 + 23 = 33, 13 + 23 + 33 = 63,13 + 23 + 33 + 43 = 103 ,
......
10.如图所示,天平的两个盘内分别盛有 50 克,45 克盐,问应该从盘 A 内拿出多少盐放到盘 B 内, 才能使两盘内所盛盐的质量相等.
11.小明每天早上 7:50 从家出发,到距家 1000 米的学校上学,•每天的行走速度为 80 米/分.一 天小明从家出发 5 分后,爸爸以 180 米/分的速度去追小明,•并且在途中追上了他. (1)爸爸追上小明用了多长时间? (2)追上小明时距离学校有多远?
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
13.在800米跑道上有两人练中长跑,甲每分钟跑 300 米,乙每分钟跑 260 米,•两人同地、同时、
同向起跑,t 分钟后第一次相遇,t 等于( ).
A.10 分
B.15 分
C.20 分
D.30 分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了 10%,三月份比二月份
22.一个三位数,百位上的数字比十位上的数大 1,个位上的数字比十位上数字的 3 倍少 2.若将 三个数字顺序颠倒后,所得的三位数与原三位数的和是 1171,求这个三位数.
24.某公园的门票价格规定如下表: 购票人数 1~50 人 51~100 人 100 人以上 票 价 5 元 4.5 元 4 元
A.17