化工热力学基本概念和重点
化工原理考研知识点总结

化工原理考研知识点总结一、化工热力学热力学是化工工程中最基本的理论之一,它研究能量转化和能量转化的规律。
化工热力学包括热力学基本概念、热力学过程、热力学第一定律和第二定律、热力学性质等内容。
1. 热力学基本概念热力学是研究物质的能量转化和能量转化的规律的科学。
它包括能量的概念、系统的概念、外界和内界、热力学平衡等基本概念。
2. 热力学过程热力学过程是物质在外界条件下的能量转化过程。
热力学过程包括等温过程、等容过程、等压过程和绝热过程。
等温过程是在恒温条件下进行的能量转化过程,等容过程是在恒容条件下进行的能量转化过程,等压过程是在恒压条件下进行的能量转化过程,绝热过程是在绝热条件下进行的能量转化过程。
3. 热力学第一定律和第二定律热力学第一定律是能量守恒定律,它描述了热力学系统中能量的变化。
热力学第二定律是能量转化定律,它描述了热力学系统中能量转化的规律。
这两个定律是热力学的基本定律。
4. 热力学性质热力学性质是描述物质在热力学条件下的性质。
包括物质的焓、熵、热容、热膨胀系数、压缩系数等性质。
这些性质对于热力学过程和热力学系统的分析和计算是十分重要的。
二、流体力学流体力学是研究流体运动和流体静力学的学科。
在化工工程中,流体力学是非常重要的理论基础之一。
流体力学包括流体的基本性质、流体静力学、流体动力学等内容。
1. 流体的基本性质流体的基本性质包括密度、粘度、表面张力、压力等。
这些性质对于描述和研究流体的运动和静力学是非常重要的。
2. 流体静力学流体静力学是研究流体在静力条件下的性质和规律。
它包括流体静力平衡条件、流体压力、浮力等内容。
3. 流体动力学流体动力学是研究流体在运动状态下的性质和规律。
它包括流体动力学基本方程、流体的流动性质、流动的基本规律等内容。
三、物理化学物理化学是化学和物理学的交叉学科,它研究物质的结构、性质和变化规律。
在化工工程中,物理化学是非常重要的理论基础之一。
物理化学包括化学热力学、化学动力学、电化学等内容。
化工热力学考试重点-终极版整理

化工热力学一、重点1、临界点定义及表达式:维持气液平衡的最高温度和压力点。
、。
c 0T T p V =∂⎛⎫= ⎪∂⎝⎭220cT T p V =⎛⎫∂= ⎪∂⎝⎭2、Virial 方程体积表达式:231pV B C DZ RT V V V ==++++L 压力表达式:231pVZ B p C p D p RT'''==++++L3、偏心因子的定义及表达式:各种物质在时,纯态流体对比蒸汽0.7r T =压对数值与Ar ,Kr ,Xe 的值的偏差,即。
()0.7lg 1.00r s r T p ω==--物理意义:偏心因子表征物质的偏心度,即非球型分子偏离球对称的程度。
4、普遍化Virial 系数01ccBp B B RT ω=+011r r r rp p Z B B T T ω=++0 1.61 4.20.4220.0830.1720.139r r B T B T =-=-普遍化Virial系数与普遍化压缩因子适用范围5、Prausnitz 混合规则()()()()0.5311331222cij ci cj ijcicjcij cij ci zj cij cij cij cijcij i j T T T k V V V Z Z Z p Z RT V ωωω=-⎛⎫+ ⎪=⎪ ⎪⎝⎭=+==+6、熵的表达式的推导第一方程dS 当时,则有(),S S T V =V TS S dS dT dVT V ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭因 V V V V Q TdS S C T T T T ∂∂⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭得 V V C S T T ∂⎛⎫= ⎪∂⎝⎭又 T V S p V T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭所以 V VdT p dS C dV T T ∂⎛⎫=+ ⎪∂⎝⎭积分得到000ln T V V T V Vp S S S C d T dVT ∂⎛⎫-=∆=+ ⎪∂⎝⎭⎰⎰第二方程dS 当时,则有(),S S T p =p TS S dS dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭因 p p C S T T ∂⎛⎫= ⎪∂⎝⎭p TS V p T ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭所以 p pdT V dS C dp T T ∂⎛⎫=- ⎪∂⎝⎭积分得到000ln Tpp T p pV S S S C d T dpT ∂⎛⎫-=∆=- ⎪∂⎝⎭⎰⎰第三方程dS 当时,则有(),S S p V =p VS S dS dp dVp V ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭因为VV V V V C S T S T p p T p T ⎛⎫⎛⎫⎛⎫∂∂∂∂⎛⎫== ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭p p p p p C S T S T V V T V T ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭p V pV C C T T dS dp dV T p TV ⎛⎫∂∂⎛⎫=+⎪ ⎪∂∂⎝⎭⎝⎭积分得到000pV p V p V pVC C T T S S dp dV T p T V ⎛⎫∂∂⎛⎫-=+ ⎪ ⎪∂∂⎝⎭⎝⎭⎰⎰7、焓的表达式推导利用刚刚导出的三个方程来得到三个方程。
化工热力学精ppt课件

利用纯物质在临界点附近的特殊性质,通过一 些经验公式或图表,估算其在其他条件下的热 物理性质。
混合物热物理性质预测方法
基于组分的加权方法
根据混合物中各组分的摩尔分数或质量分数,采用加权平均的方法 预测混合物的热物理性质。
基于活度的预测方法
引入活度系数来描述混合物中组分间的相互作用,通过活度系数与 纯物质性质的关联,预测混合物的热物理性质。
01
夹点技术
通过优化换热网络,降低能源消耗。
热泵技术
利用外部能源,提高低温热源的品 位,实现能量的升级利用。
03
02
热集成
将多个操作单元集成在一起,提 高能源利用效率。
04
节能技术与措施
改进工艺和设备
采用先进的生产工艺和设备,降低能源消耗。
设计优化方法
通过选择合适的萃取剂、优化萃取塔结构、改进操作条件 等方式,提高萃取过程的分离效率,降低能耗和投资成本。
案例分析
结合具体萃取案例,分析热力学原理在萃取过程设计中的 应用,以及优化方法对提高萃取效率的作用。
其他分离过程热力学原理简介
01
02
结晶过程热力学原理
利用物质在溶液中的溶解度随温度、压 力等条件的变化而变化的性质,实现物 质的分离和提纯。结晶过程涉及相平衡、 传热等热力学基本原理。
封闭系统
与外界有能量交换但没有物质交换的系统。
开放系统
与外界既有能量交换又有物质交换的系统。
热力学基本定律
热力学第零定律
如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统也必定处于热平衡状态。
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
化工热力学考试重点

溶解热: 气体, 液体, 或固体溶解于液体时的热效应称为溶解热。 溶解 1mol 溶质于极大量的溶液中以至于溶液的浓度只有无限小的变化,或是在某一 浓度的溶液中加入无限小量的溶质,而将其热效应换算为 1mol 量的值, 这样的热效应称为微分溶解热。若溶解 1mol 溶质于某一数量溶剂中,得 到一定组成的溶液,则所产生的热效应称为积分溶解热 稀释热:将溶剂加入溶液中,使溶质的浓度降低,也有热效应产生,称为 稀释热。 稀释热和温度、 压力、 稀释前和稀释后的浓度以及溶液的量有关。 稀释热分为微分稀释热和积分稀释热。将 1mol 溶剂添加到极大量的溶液 中, 或是在某一浓度的溶液中加入无限小量的溶剂, 溶液的浓度保持不变, 这样的热效应称为微分稀释热。若将一定量的溶剂加到含有 1mol 溶质的 溶剂中,所产生的热效应称为积分稀释热。 Lewis-Randdall 规则:理想混合物(理想溶液)中组分的逸度和它的摩尔 分数成正比。 理想气体混合物与理想混合物是两个不同的理想化模型,前者比后者更为 理想化。理想气体混合物必然也是气体理想混合物,反之,气体理想混合 物却不一定是理想气体混合物。 超额性质:是指在相同温度、压力和组成条件下真实溶液性质与理想溶液 性质之差,用 M 表示:M = M ---M . 正偏差:如果恒温的 p-x-y 图上的 p-x 曲线高于 Raoult 定律的 p-x 直线, 则各组分的或活度系数γ > 1,称为正偏差。 负偏差:如果 p-x-y 图上的 p-x 曲线低于 Raoult 定律 p-x 直线,则各组分 的活度系数γ <1,称为负偏差。 闪蒸:闪蒸是单级平衡分离过程。高于泡点压力的液体混合物,如果将其 压力降低至泡点压力与露点压力之间,就会出现部分汽化现象,即闪蒸。 气液平衡:是指常规条件下的气态组分与液态组分之间的平衡关系。汽液 平衡中,体系中至少有一种组分是不凝性气体,平衡温度可高于体系中某 一组分的临界温度。 封闭体系热力学第一定律:Δ U=Q+W 稳流体系热力学第一定律:Δ H+Δ u²/2+gΔ z=Q+W 稳流体系热力学第一定律可简化为:Δ H=Q+W Δ H=Q Δ H=0 Bernoulli 方程:Δ p/ρ +Δ u²/2+gΔ z = 0,使用条件:不可压缩的流体作 无摩擦的、且与外界环境没有轴功交换的流动。 热力学第二定律表达式:Δ S 孤立≥0,该式表明,自发进行的不可逆过 程只能向总熵增大的方向进行,直到总熵增大到最大值,体系达到平衡。 由于过程的不可逆性引起的熵产生为Δ Sg,Δ S 积累= 稳流系统熵平衡式为: 如果该稳流系统经 历的是可逆过程可简化为: 理想功: 即指在一定的条件下, 体系的状态变化按完全可逆的过程进行时, 理论上可能产生的最大功或者必须消耗的最小功。 封闭体系理想功:W =Δ U+p0Δ V-T0Δ S ,封闭体系的理想功仅与体系 变化前后的状态及环境的温度(T0)和压力(p0)有关,而与具体的变化途 径无关。 稳流过程的理想功:W=Δ H-T0Δ S , 稳流过程的理想功仅取决于体系的 初态与终态以及环境的温度 T0,而与具体的变化途径无关。理想功与可 逆功是有区别的,虽然两者都经历了完全可逆的变化,但理想功是可逆有 用功。 损失功 W :由于实际过程的不可逆性,导致在给定状态变化的实际过程 所产生(或所消耗)功 W 与经历相同状态变化的可逆过程所产生(或所 消耗) 的理想功 W 之间存在差值, 此差值即为损失功 W :W =W - W ,损失功也是过程可逆与否的标志。对于可逆过程,W =0;对于不 可逆过程,W >0。 热力学效率:理想功与实际值的比值。任何实际过程的热力学效率η 都 小于 1。 有效能:体系在一定状态下的有效能,就是体系从所处状态变化到与周围 环境处于热力学平衡时,对外界做出的最大有用功。也就是体系从所处状 态变化到基态过程中所做的理想功。 功、电能和机械能的有效能:Exw=W, 热量的有效能:Exq=W = Q,热量的有效能总是小于其能量, 冷量的有效能有可能大于其能量。 功的损失来源于:过程的不可逆性。 要降低流动过程的有效能损失,就应当尽量减小流动过程的推动力,也就 是减小流体流经管道的压力降。 过程热力学分析:利用热力学基本原理来分析和评价过程,称为过程热力 学分析。 化工过程热力学分析分类:能量衡算法、熵增法、有效能分析法。 能量衡算法只能反映能量数量的损失,不能反映有效能的损失,因而不能 真实反映能量损失的根本原因。只有在能量衡算的基础上,进行有效能分 析,才能找出能量损失的真正原因、大小和分布,为节能攻关指明正确的 方向和途径。
化工热力学 冯新 教案

化工热力学冯新教案化工热力学是化学工程专业中一门重要的基础课程,它以热力学原理为基础,研究了化学反应与能量转化之间的关系。
本文将从简单到复杂,由浅入深地探讨化工热力学的相关概念和原理,以帮助您更加全面、深入地理解这门学科。
一、热力学的定义及基本概念1.1 热力学的定义热力学是研究物质及其能量变化规律的科学,其基本任务是揭示物质与能量之间的关系。
1.2 系统与环境热力学中,我们将研究的对象称为系统,而与系统相互作用的外界称为环境。
1.3 状态函数与过程函数在热力学中,我们用状态函数来描述系统的状态,如温度、压力、体积等;而过程函数则描述了系统在不同状态之间变化的过程,如热量、功等。
二、热力学基本定律2.1 第一定律:能量守恒定律能量既不可以创造也不可以消灭,只能从一种形式转化为另一种形式。
2.2 第二定律:熵增定律热力学第二定律规定了自然界中某些过程不可逆的方向,即熵在正常过程中总是增加的。
2.3 第三定律:绝对零度定律绝对零度是热力学温标的最低温度,绝对零度下物质的熵为零。
三、化学反应的热力学特征3.1 焓变与焓变反应热焓是热力学中常用的状态函数之一,焓变表示系统在化学反应过程中的焓变化,而焓变反应热则是表征反应热力学特征的重要指标。
3.2 熵变与熵变反应熵熵是反映系统混乱程度的物理量,熵变表示系统在化学反应过程中的熵变化,而熵变反应熵则是衡量反应熵学特征的重要指标。
四、化工热力学的应用4.1 热力学循环过程热力学循环过程是化工工艺中常用的一种能量转化方式,如卡诺循环、蒸汽动力循环等。
4.2 化学反应平衡热力学在研究化学反应平衡时也发挥着重要作用,例如利用平衡常数计算反应的热力学数据。
五、个人观点与理解化工热力学作为化学工程专业的基础课程,对于深入理解工业过程以及提高工艺效率具有重要意义。
我认为掌握好化工热力学的基本原理和应用方法,可以为我们的未来职业发展打下坚实的基础。
在学习化工热力学过程中,我发现系统与环境的概念十分重要。
化工热力学-第一章

四、热力学的研究方法
抽象的、 方法来处理 (2)利用抽象的、概括的、理想的方法来处理 )利用抽象的 概括的、理想的方法 问题,当用于实际时,加以修正。 问题,当用于实际时,加以修正。
如:理想气体 实际气体 剩余性质 超额性质 PV=RT PV=Z PV=ZRT =M- 实际的MR=M-M*=实际的-理想的 (气体) 气体)
=M实际的-理想的(液体) ME=M-Mid=实际的-理想的(液体)
修正项: , , 修正项:Z,MR,ME
五、学习化工热力学的目的、要求 学习化工热力学的目的、
1.目的 两个) 1.目的 ( 两个) (1)了解化工热力学的基本内容 (2)提高利用化工热力学的观点、方法来 提高利用化工热力学的观点、 分析、解决化工生产、工程设计、 分析、解决化工生产、工程设计、科学研究中 有关实际问题的能力。 有关实际问题的能力。
2.热力学的分支 2.热力学的分支
(1)工程热力学(Engineering 工程热力学( Thermodynamics) Thermodynamics) 主要研究功、热转化, 主要研究功、热转化,以及能量利用率的 高低。 高低。 Thermodynamics) (2)化学热力学(Chemical Thermodynamics) 化学热力学( 应用热力学原理研究有关化学中各类平 衡问题。 衡问题。 主要侧重于热力学函数的计算,主要是H 主要侧重于热力学函数的计算,主要是H、 的计算。 S、U、 F和G的计算。
工程热力学 化学热力学 化工热力学 经典热力学
3.化工热力学在化学工程中的地位 3.化工热力学在化学工程中的地位
原料 反应 反应工程 分离提纯 分离工程 产品
工艺学
化工动力学 催化工程
化工热力学
化工热力学知识点

一, 课程简介化工热力学是化学工程学科的一个重要分支,是化工类专业学生必修的基础技术课程。
化工热力学课程结合化工过程阐述热力学基本原理, 定理及其应用,是解决工业过程(特殊是化工过程)中热力学性质的计算和预料, 相平衡计算, 能量的有效利用等实际问题的。
二, 教学目的培育学生运用热力学定律和有关理论知识,初步驾驭化学工程设计及探讨中获得物性数据;对化工过程中能量和汽液平衡等有关问题进行计算的方法,以及对化工过程进行热力学分析的基本实力,为后续专业课的学习及参与实际工作奠定基础。
三, 教学要求化工热力学是在基本热力学关系基础上,重点探讨能量关系和组成关系。
本课程学习须要具备肯定背景知识,如高等数学和物理化学等方面的基础知识。
采纳敏捷的课程教学方法,使学生能正确理解基本概念,娴熟驾驭各种基本公式的应用领域及应用技巧,驾驭化学工程设计及探讨中求取物性数据及平衡数据的各种方法。
以课堂讲解, 自学和作业等多种方式进行。
四, 教学内容第一章绪论本章学习目的及要求:了解化工热力学的发展简史, 主要内容及探讨方法。
第二章流体的P-V-T关系本章学习目的及要求:了解纯物质PVT的有关相图中点, 线, 面的物理意义,驾驭临界点的物理意义及其数学特征;理解志向气体的基本概念和数学表达方法,驾驭采纳状态方程式计算纯物质PVT性质的方法;了解对比态原理,驾驭用三参数对比态原理计算纯物质PVT性质的方法;了解真实气体混合物PVT性质的计算方法。
第一节纯物质的PVT关系1. 主要内容: P-V相图,流体。
2. 基本概念和知识点:临界点。
3. 实力要求:驾驭临界点的物理意义及其数学特征。
第二节气体的状态方程式1. 主要内容:志向气体状态方程,维里方程,R-K方程。
2. 基本概念和知识点:志向气体的数学表达方法,维里方程,van der Waals方程,R-K方程。
3. 实力要求:驾驭采纳状态方程式计算纯物质PVT性质的方法。
第三节对比态原理及其应用1. 主要内容:三参数对比态原理,普遍化状态方程。
高等化工热力学复习考点

3、常用位能函数
4、常用分子力场
5、系综的概念与种类
6、配分函数
7、径向分布函数
8、晶格模型理论与胞腔论
9、微扰理论
10、高分子溶液的晶格模型理论
二、重点公式及推导
1、剩余函数与超额函数
2、逸度与逸度系数、活度与活动系数
3、汽液相平衡关系式
4、β∝ 的推导
5、U= kt2( )N,V推导
6、由位形配分函数推导范德华方程p = +kT( )T,N
7、HV混合规则的推导
8、第二维里系数的统计力学基础
三、重点掌握的方法
1、相平衡(汽液)计算方法
1、已知萨日兰流体模型的位能函数为u(r) = ,且第二维里系数B与位能函数间的关系为B=2πNA ,试推导第二维里系数计算式。
2、推导出Berthelot状态方程p= - 中的常数项a、b和临界温度、临界压力之间的关系。
高等化工热力学考试重点
一、基本概念
1、定域子系统与离域子系统:
定域子系统(定位系统、可别粒子系统):体系中的粒子彼此可以分辨。例如原子晶体中,粒子在固定的晶格位置上作振动,每个位置可以想象给予编号而加以区分,所以定位体系的微观态数是很大的。
离域子系统(非定位系统、等同粒子系统):体系中的粒子彼此不可以分辨。例如气体分子,总是处于混乱运动之中,彼此无法分辨,所以气体是非定位体系,它的微观状态数在粒子数相同的情况下要比定位体系少得多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章热力学第一定律及其应用本章内容:*介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。
第一节热力学概论*热力学研究的目的、内容*热力学的方法及局限性*热力学基本概念一.热力学研究的目的和内容目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。
内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。
其中第一、第二定律是热力学的主要基础。
一.热力学研究的目的和内容把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。
化学热力学的主要内容是:*利用热力学第一定律解决化学变化的热效应问题;*利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建立相平衡、化学平衡理论;*利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题。
二、热力学的方法及局限性方法:以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。
而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。
二、热力学的方法及局限性优点:*研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。
*只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。
二、热力学的方法及局限性局限性:*只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的说明或给出宏观性质的数据。
例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。
*只讲可能性,不讲现实性,不知道反应的机理、速率。
三、热力学中的一些基本概念*系统与环境系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统(system)。
环境:系统以外与系统密切相关的其它部分称环境(surrounding)。
三、热力学中的一些基本概念注意:*体系内可有一种或多种物质,可为单相或多相,其空间范围可以是固定或随过程而变。
*体系和环境之间有分界,这个分界可以是真实的,也可以是虚构的,既可以是静止的也可以是运动的。
三、热力学中的一些基本概念根据体系与环境的关系将体系区分为三种:*孤立体系(隔离体系)(isolated system):体系与环境之间既无能量交换,又无物质交换的体系。
体系完全不受环境的影响,其中能量包括:热、功;*封闭体系(closed system ):与环境之间只有能量交换,没有物质交换;*敞开体系(open system):与环境之间既有能量交换,又有物质交换。
三、热力学中的一些基本概念*体系的性质通常用体系的宏观可测性质来描述体系的热力学状态。
这些性质称热力学变量。
如:体积、压力、温度、粘度、密度等。
体系的性质分两类:广度性质和强度性质。
三、热力学中的一些基本概念*广度性质(容量、广延):其数值的大小与体系中所含物质的数量成正比,具有加和性。
广度性质在数学上是一次奇函数。
如:质量、体积、热力学能。
三、热力学中的一些基本概念*强度性质:其数值的大小与体系中所含物质的量无关,而取决于体系自身的特性,不具有加和性。
强度性质在数学上是零次奇函数。
如:温度、压力、密度、粘度等。
三、热力学中的一些基本概念二者之间的联系:某种广度性质除以质量或物质的量就成为强度性质或两个容量性质相除得强度性质。
如:体积是广度性质,它除以物质的量得到摩尔体积Vm = V / n,Vm是强度性质,它不随体系中所含物质的量而变。
ρ=m / v, ρ是强度性质,它不随体系中所含物质的量而变。
三、热力学中的一些基本概念*热力学平衡态体系的诸性质不随时间而改变则系统就处于热力学平衡态。
注意:经典热力学中所指的状态均指热力学平衡态。
因为只有在热力学平衡态下,体系的宏观性质才具有真正的确定值,体系状态才确定。
热力学平衡态包括以下四个方面:*热平衡(thermal equilibrium):体系的各个部分温度相等;三、热力学中的一些基本概念*力学平衡(机械平衡,mechanical equilibrium):体系各部分之间及体系与环境之间没有不平衡的力存在。
*相平衡(phase equilibrium):当体系不止一相时,各相组成不随时间而变化。
相平衡是物质在各相之间分布的平衡。
*化学平衡(chemical equilibrium):当各物质之间有化学反应时,达到平衡后,体系的组成不随时间而变。
三、热力学中的一些基本概念*状态及状态函数状态:体系一切性质的总和,或者体系一切性质的综合体现。
状态函数:用于描述和规定体系状态的宏观性质,称状态函数或状态性质,也称热力学函数,热力学性质。
三、热力学中的一些基本概念状态函数有如下特征:*是体系平衡状态的单值函数,其数值仅取决于体系所处的状态,而与体系的历史无关;*其变化值仅取决于体系的始态和终态,而与变化的途径无关。
状态函数的特性可描述为:异途同归,值变相等;周而复始,数值还原。
三、热力学中的一些基本概念体系的一些性质,其数值仅取决于体系所处的状态,而与体系的历史无关;它的变化值仅取决于体系的始态和终态,而与变化的途径无关。
具有这种特性的物理量称为状态函数(state function)。
用数学方法来表示这两个特征,则可以说,状态函数具有全微分性质,即其微小改变量是全微分。
三、热力学中的一些基本概念状态方程:体系状态函数之间的定量关系式称为状态方程(state equation )对于一定量的单组分均匀体系,状态函数T,p,V 之间有一定量的联系。
经验证明,只有两个是独立的,它们的函数关系可表示为:T=f(p,V)p=f(T,V)V=f(p,T)例如,理想气体的状态方程可表示为:pV=nRT三、热力学中的一些基本概念*过程与途径过程:体系状态发生的任何变化。
例如:气体的膨胀;水的升温;冰的融化;化学反应等。
途径:实现某一过程经历的具体步骤。
例如:1molH2 (理想气体)在298K时的膨胀过程三、热力学中的一些基本概念三、热力学中的一些基本概念在热力学研究中一般涉及到以下几个过程:*等温过程:体系温度恒定不变的过程,在此过程中,T1 (始态)= T2 (终态)= T环*等容过程:体系体积恒定不变的过程; dV=0*等压过程:体系压力恒定不变的过程,在此过程中,*P1 (始态)= P2 (终态) = P环三、热力学中的一些基本概念*绝热过程:体系与环境之间的能量传递只有功传递的过程。
Q=0例如:系统被一绝热壁所包围或体系内发生一极快的过程(爆炸、压缩机内空气被压缩等);*可逆过程:将在后面讨论;*循环过程:体系由始态出发经历一系列变化过程又回到始态的过程。
很明显经历一循环过程后,体系的所有状态函数的增量均为零。
∮U=0*恒外压过程:P外=常数*自由膨胀过程:P外=0三、热力学中的一些基本概念*热和功热(heat):由于温度不同,而在体系与环境之间产生的能量传递。
以Q表示。
如:相变热、溶解热、化学反应热等。
特点:热是一过程量,传递中的能量,而不是体系的性质,即不是体系的状态函数。
三、热力学中的一些基本概念热产生的微观原因:热运动是一种无序运动,所以热量是体系和环境的内部质点因无序运动的平均强度不同而交换的能量,而不是指物体冷热的“热”。
取号规则:由于能量传递具有方向性,所以用Q值的正负表示方向,规定体系吸热Q为正,Q > 0, 反之Q为负,Q < 0。
单位:能量单位为焦耳Joule,简写J。
三、热力学中的一些基本概念功(work):除热以外,其它各种被传递的能量称为功,以符号W表示。
如:体积功(We)、电功、表面功(Wf)等。
特点:功也是一过程量,不是体系的性质,它不是体系的状态函数三、热力学中的一些基本概念功产生的微观原因:功是大量质点以有序运动而传递的能量。
取号规则:系统对环境作功,W<0;环境对系统作功,W>0单位:能量单位为焦耳,简写J 。
三、热力学中的一些基本概念相同点:① 体系状态发生变化时与环境交换的能量,量纲均为J,KJ;② 两者均不是状态函数,其数值与过程有关。
其微分不是全微分,以δQ和δW表示;③ 两者均有大小,也有方向。
热力学规定:体系吸热为正,放热为负;体系对外环境功为负,环境对体系做功为正。
三、热力学中的一些基本概念不同点:① 热是由温差引起的体系与环境之间的能量交换,而功则是除热以外体系与环境之间的能量交换形式;② 微观上,热是对大量分子无序热运动强度的度量,而功则是大量分子有序运动强度的度量。
三、热力学中的一些基本概念体积功的计算:如右图所示:气体体积变化为:dV=A·dl活塞移动时抵抗外力为:F外=P外A在此过程中体系克服外力所做的功为:δWe =-F外×dl=-P外Adl=-P外dV一定量的功为:We =-∫P外dV当P外恒定时We = -P外⊿V= -P外 (V2-V1 )三、热力学中的一些基本概念注意:*体积功都用-P外dV表示,而不用-PdV表示。
P—内部压力, P外—指外压(Pe )。
*从公式δWe =-P外dV看,功的大小决定于P外及dV的大小,其中任一项为零,则功为零第二节热力学第一定律*热力学第一定律与热力学能*热力学第一定律的数学表达式一、热力学第一定律与热力学能一、热力学第一定律与热力学能*热力学第一定律能量守恒定律:到1850年,科学界公认能量守恒定律是自然界的普遍规律之一。
能量守恒与转化定律可表述为:自然界的一切物质都具有能量,能量有各种不同形式,能够从一种形式转化为另一种形式,但在转化过程中,能量的总值不变。
热力学第一定律是能量守恒与转化定律在热现象领域内所具有的特殊形式。
一、热力学第一定律与热力学能热力学第一定律的另外一种表达形式:第一类永动机是不能实现的。
所谓第一类永动机是一种循环作功的机器,它不消耗任何能量或燃料而能不断对外作功。
*热力学能系统总能量通常有三部分组成:(1)系统整体运动(机械运动)的动能(2)系统在外力场中的位能(电磁场、重力场等)(3)热力学能,也称为内能一、热力学第一定律与热力学能热力学能 U 是指系统内部能量的总和,包括分子运动的平动能、分子内的转动能、振动能、电子能、核能以及各种粒子之间的相互作用位能等。
热力学中一般只考虑静止的系统,无整体运动,不考虑外力场的作用,所以只注意热力学能。
一、热力学第一定律与热力学能注意:*内能是状态函数*内能是体系的性质,且是体系的广度性质;*内能的绝对值不可求,只能求出它的变化值。