完整人教版七年级上有理数全章总复习及试题
人教版七年级数学上册 有理数单元复习练习(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.列方程解应用题如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3;2(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有,解得.答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙【解析】【解答】解:(1)设两只蜗牛相向而行,经过x秒相遇,依题意有,解得..答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.【分析】(1)可设两只蜗牛相向而行,经过x秒相遇,根据等量关系:两只蜗牛的速度和时间,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差时间,列出方程求解即可.3.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c(1)填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等① 当b2=16时,求c的值② 求b、c之间的数量关系③ P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x+a|的值保持不变,求b的值【答案】(1)<;>;>(2)解:① 且 , ,且 , .∵点B到点A,C的距离相等,∴∴ ,∴②∵ , ∴ ,③依题意,得∴原式=∵∴原式= 【此处不取-2没关系】∵当 P 点在运动过程中,原式的值保持不变,即原式的值与无关∴ ,∴【解析】【解答】解:(1)由题中的数轴可知,a<0<b<c,且∴abc<0,a+b>ac,ab-ac>0,故答案为:<,>,>;【分析】(1)根据数轴上的点所表示的数的特点得出a<0<b<c,且,从而根据有理数的乘法法则,加法法则、减法法则及有理数大小的比较方法即可一一判断得出答案;(2)①根据数轴上点的位置及绝对值的意义、有理数的乘方确定a、b的取值,进而根据点B到点A,C的距离相等,即即可求解;②根据数轴上两个点之间的距离及点B到点A,C的距离相等,即,即可得结论;③根据绝对值的意义把算式化简,再根据当P点在运动过程中,原式的值保持不变,即原式的值与无关列出方程,求解即可.4.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.5.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上运动,点A在数轴上表示的数是-12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________,线段BC的长=________;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,当BC=6(单位长度),求t的值;(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为________.【答案】(1)-10;14;24(2)解:当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为14-2t,∴BC=|t-10-(14-2t)|=|3t-24|,∵BC=6,∴|3t-24|=6,解得:t1=6,t2=10.答:当BC=6(单位长度)时,t的值为6或10(3)【解析】【解答】(1)解:∵AB=2,点A在数轴上表示的数是-12,∴点B在数轴上表示的数是-10,∵CD=1,点D在数轴上表示的数是15,∴点C在数轴上表示的数是14,∴BC=14-(-10)=24,故答案为:-10;14;24( 3 )解:当运动时间为t秒时,点A在数轴上表示的数为-t-12,点B在数轴上表示的数为-t-10,点C在数轴上表示的数为14-2t,点D在数轴上表示的数为15-2t,∵0<t<24,∴点C一直在点B的右侧,∵M为AC中点,N为BD中点,∴点M在数轴上表示的数为,点N在数轴上表示的数为,∴MN= - = .故答案为:【分析】(1)根据AB、CD的长度结合点A、D在数轴上表示的数,即可找出点B、C在数轴上表示的数,再根据两点间的距离公式可求出线段BC的长度;(2)找出运动时间为t秒时,点B、C在数轴上表示的数,利用两点间的距离公式结合BC=6,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)找出运动时间为t秒时,点A、B、C、D在数轴上表示的数,进而即可找出点M、N在数轴上表示的数,利用两点间的距离公式可求出线段MN的长.6.数轴上,,三个点对应的数分别为,,,且,到所对应的点的距离都等于7,点在点的右侧,(1)请在数轴上表示点,位置, ________, ________;(2)请用含的代数式表示 ________;(3)若点在点的左侧,且,点以每秒2个单位长度的速度沿数轴向右运动,当且点在的左侧时,求点移动的时间.【答案】(1);6(2)(3)解:点在点的左侧,且,,.设点移动的时间为秒.当点在点的左侧时,,解得:,此时点对应的数为14,在点的右侧,不合题意,舍去;当点在点的右侧且在点的左侧时,,解得:.点移动的时间为秒.【解析】【解答】(1)解:(1)根据题意得:,,,,将其表示在数轴上,如图所示.故答案为:;62)解:根据题意得:.故答案为:【分析】(1)由,到所对应的点的距离都等于7,点在点的右侧,可得出关于,的一元一次方程,解之即可得出,的值;(2)由点,对应的数,利用两点间的距离公式可找出的值;(3)由点在点的左侧及的值可得出的值,设点移动的时间为秒,分点在点的左侧和点在点的右侧且在点的左侧两种情况考虑,由,找出关于的一元一次方程,解之即可得出结论.7.阅读下列材料:我们给出如下定义:数轴上给定两点,以及一条线段,若线段的中点在线段上(点可以与点或重合),则称点与点关于线段径向对称.下图为点与点关于线段径向对称的示意图.解答下列问题:如图1,在数轴上,点为原点,点表示的数为-1,点表示的数为2.(1)①点,,分别表示的数为-3,,3,在,,三点中,________与点关于线段径向对称;②点表示的数为,若点与点关于线段径向对称,则的取值范围是________;(2)在数轴上,点,,表示的数分别是-5,-4,-3,当点以每秒1个单位长度的速度向正半轴方向移动时,线段同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为()秒,问为何值时,线段上至少存在一点与点关于线段径向对称.【答案】(1)点C和点D;1≤x≤5(2)解:移动时间t(t>0)秒时,点H,K,L表示的数分别是-5+t,-4+3t,-3+3t,此时,线段HK的中点设为R1,表示的数为,线段HL的中点设为R2,表示的数为,当线段R1R2,在线段OM上运动时,线段KL上至少存在一点与点H关于线段OM径向对称,当R2经过点O时,2t-4=0时,t=2,当R1经过点M时,时,,所以当时,线段R1 R2在OM上运动,所以当时,线段KL上至少存在一点与点H关于线段OM径向对称.【解析】【解答】解:(1)①与点A点关于线段径向对称需要满足:这个点与A点的中点在线段OM上,点B表示的数是-3,与点A表示的-1的中点是-2,不在线段OM上,所以点B不是;点C表示的数,与点A表示的-1的中点是,在线段OM上,所以点C 是;点D表示的3与点A表示的-1的中点是1,在线段OM上,所以点D是;综上,答案为点C,点D;②结合数轴可知当点x与点A的中点落在点O与点M之间时(包括端点O与M)正确,即,解得,故答案为;【分析】(1)根据题干中给出的径向对称的定义,进行验证解答即可;(2)根据题干中给出的径向对称的定义,列出点x与点A中点的取值范围,即可求出答案;(3)用含t的代数式分别表示出点H,K,L和线段HK与线段HL的中点列式计算即可.8.观察下面的等式:回答下列问题:(1)填空:________ ;(2)已知,则的值是________;(3)设满足上面特征的等式最左边的数为,则的最大值是________,此时的等式为________ .【答案】(1)-4(2)0或-4(3)4;【解析】【解答】解:根据观察可以知道,所有的式子符合的形式,所以(1)中此时2-a=6,解得a=-4,故答案为-4;所以(2)中a=2,故2-2=0,所以x的值为0;根据绝对值的意义将原式化简可得,求得x=0或x=-4,所以x的值为0或-4;(3)根据,可知,整理得,所以,所以y的最大值为4,此时的式子是.【分析】(1)根据即可求解;(2)由(1)的规律即可求解;(3)由(1)可得进行整理,根据绝对值意义求解即可.9.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.【答案】(1)7(2)(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;即:(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,第一种情况:2+2x=2(5-3x),解得:x=1第二种情况:2+2x=2(3x-5),解得:x=3答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.【解析】【解答】解:(1)故答案为:7(2)【分析】(1)根据两点间距离公式求解即可;(2)根据两点间距离公式求解即可;(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.10.先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =.解决问题:根据上述规律完成下列各题:(1)到表示数50和数150距离相等的点表示的数是________(2)到表示数和数距离相等的点表示的数是________(3)到表示数 12和数 26距离相等的点表示的数是________(4)到表示数a和数b距离相等的点表示的数是________【答案】(1)100(2)(3)-14(4)【解析】【解答】解:(1)由题意得:到表示数50和数150距离相等的点表示的数为:(2)到表示数和数距离相等的点表示的数为:(3)到表示数 -12 和数 -26 距离相等的点表示的数为:(4)到表示数a和数b距离相等的点表示的数为: .故答案为:100,, -14,.【分析】根据题中的叙述分别表示出数轴上这些到两点之间距离相等的点,最后得出规律到两点之间距离相等的点的数等于这两点坐标之和除以2, 即x=.11.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=________,AC=________,BE=________;(2)当线段CE运动到点A在C、E之间时,①设AF长为 x,用含 x 的代数式表示BE的值(结果需化简);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.【答案】(1)16;6;2(2)解:∵点F是AE的中点,∴AF=EF,设AF=EF=x,∴CF=8﹣x,∴BE=16﹣2x=2(8﹣x),∴BE=2CF.故答案为① 16-2x,② BE=2CF.(3)解:①当0<t≤6时,P对应数:-6+3t,Q对应数-4+2t,,解得:t=1或3;②当6<t≤8时,P对应数, Q对应数-4+2t,,解得:或;故答案为t=1或3或或【解析】【解答】(1)数轴上A、B两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F是AE的中点,∴AF=EF=7,,∴AC=AF﹣CF=6,BE=AB﹣AE=16﹣7×2=2,故答案为16,6,2;【分析】(1)由数轴上A、B两点对应的数分別是-4、12,可得AB的长;由CE=8,CF=1,可得EF的长,由点F是AE的中点,可得AF的长,用AB的长减去2倍的EF的长即为BE 的长;(2)设AF=FE=x,则CF=8-x,用含x的式子表示出BE,即可得出答案(3)分①当0<t≤6时;②当6<t≤8时,两种情况讨论计算即可得解12.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.【答案】(1)解:根据数轴上点的位置得:;(2)解:根据题意得:a+b<0,b-1<0,a-c<0,则;(3)解:根据题意得:b<0,a<0,c>0,m=-1-c,∴原式 .【解析】【分析】(1)根据数轴上点的位置判断即可;(2)由数轴可得a+b<0,b-1<0,a-c<0,然后利用绝对值的代数意义化简即可;(3)根据b<0,a<0,c>0,m=-1-c,进行计算即可.。
人教版七年级上册数学第一章《有理数》单元复习整合练(含答案)

人教版七年级上册数学《有理数》单元复习整合练考点一:正负数的意义一.知识点回顾:二.典型习题1.如果收入100元记作+100元,那么支出100元记作( )A.-100元B.+100元C.-200元D.+200元2.如果电梯上升5层记为+5,那么电梯下降2层应记为( )A.+2层B.-2层C.+5层D.-5层3.大米包装袋上(10±0.1)kg的标识表示此袋大米重( )A.(9.9~10.1)kgB.10.1 kgC.9.9 kgD.10 kg4.纽约、悉尼与北京的时差如表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是( )A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时考点二:有理数的相关概念知识点回顾:(1)绝对值为正数的有理数有两个;(2)0没有倒数;(3)倒数为本身的数有1,-1;(4)相反数为本身的数为0.典型习题1. -的相反数是( )A.6B.-6C.D.-2.-15的绝对值为()A.-15B.15C.-D.3.-的倒数是( )A.-2B.C.2D.14.-a一定是( )A.正数B.负数C.0D.以上选项都不正确5.如图,点A所表示的数的绝对值是()A.3B.-3C.D.-6.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2 019+2 020n+c2 019的值为.考点三:有理数的比较与计算知识点回顾:有理数运算的四个“注意事项”1.熟记有理数的运算顺序;2.正确运用有理数运算法则;3.灵活运用运算律;4.时刻注意符号问题.典型习题1.下列各数中,比-3小的数是( )A.-5B.-1C.0D.12.计算(-3)×9的结果等于( )A.-27B.-6C.27D.63.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( )A.|a|>4B.c-b>0C.ac>0D.a+c>04.计算下列各式,值最小的是( )A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-95.计算:÷= .6.计算: (1)16-(-18)+(-9)-15; (2)×24-;(3)-32+(-2)2×(-5)-|-6|.考点四:科学记数法,近似数知识点回顾:1.用科学记数法把有理数表示为“a×10n”的形式,a的条件是:1≤|a|<10;2.比较有理数a×10n和b×10m的大小,不仅要比较a和b的大小,更要比较m和n的大小.典型习题1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m,约为149 600 000 km.将数149 600 000用科学记数法表示为( )A.14.96×107B.1.496×107C.14.96×108D.1.496×1082. -268 000用科学记数法表示为( )A.-268×103B.-268×104C.-26.8×104D.-2.68×1053. 2020年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为( )A.6×104B.0.6×105C.6×106D.6×1054.近似数5.0×102精确到( )A.十分位B.个位C.十位D.百位人教版七年级上册数学《有理数》单元复习整合练(解析版)考点一:正负数的意义一.知识点回顾:正负数意义的本质区别正数和负数意义的本质区别是表示具有相反意义的量,通过正(负)数表示的意义,从而确定负(正)数表示的意义.二.典型习题1.如果收入100元记作+100元,那么支出100元记作( A)A.-100元B.+100元C.-200元D.+200元2.如果电梯上升5层记为+5,那么电梯下降2层应记为( B)A.+2层B.-2层C.+5层D.-5层3.大米包装袋上(10±0.1)kg的标识表示此袋大米重( A)A.(9.9~10.1)kgB.10.1 kgC.9.9 kgD.10 kg4.纽约、悉尼与北京的时差如表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):城市悉尼纽约时差/时+2 -13当北京6月15日23时,悉尼、纽约的时间分别是( A)A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时考点二:有理数的相关概念知识点回顾:(1)绝对值为正数的有理数有两个;(2)0没有倒数;(3)倒数为本身的数有1,-1;(4)相反数为本身的数为0.典型习题1. -的相反数是( C)A.6B.-6C.D.-2.-15的绝对值为( B )A.-15B.15C.-D.3.-的倒数是( A)A.-2B.C.2D.14.-a一定是( D)A.正数B.负数C.0D.以上选项都不正确5.如图,点A所表示的数的绝对值是(A)A.3B.-3C.D.-6.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2 019+2 020n+c2 019的值为0.考点三:有理数的比较与计算知识点回顾:有理数运算的四个“注意事项”1.熟记有理数的运算顺序;2.正确运用有理数运算法则;3.灵活运用运算律;4.时刻注意符号问题.典型习题1.下列各数中,比-3小的数是( A)A.-5B.-1C.0D.12.计算(-3)×9的结果等于( A)A.-27B.-6C.27D.63.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( B)A.|a|>4B.c-b>0C.ac>0D.a+c>04.计算下列各式,值最小的是( A)A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-95.计算:÷= -.6.计算: (1)16-(-18)+(-9)-15; (2)×24-;(3)-32+(-2)2×(-5)-|-6|.【解析】(1)原式=16+18-9-15=10;(2)原式=×24+×24-×24-=-4+14-9-=;(3)原式=-9+4×(-5)-6=-9-20-6=-35.考点四:科学记数法,近似数知识点回顾:1.用科学记数法把有理数表示为“a×10n”的形式,a的条件是:1≤|a|<10;典型习题1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m,约为149 600 000 km.将数149 600 000用科学记数法表示为( D)A.14.96×107B.1.496×107C.14.96×108D.1.496×1082. -268 000用科学记数法表示为( D)A.-268×103B.-268×104C.-26.8×104D.-2.68×1053. 2020年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为( D)A.6×104B.0.6×105C.6×106D.6×1054.近似数5.0×102精确到( C)A.十分位B.个位C.十位D.百位。
人教版七年级数学上册有理数章节期末专题复习(含答案)

人教版七年级数学上册有理数章节期末专题复习(含答案)有理数有理数章节期末专题章节期末专题章节期末专题复习复习复习【课标要点】1.理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.2.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算.4.理解有理数的运算律,并能运用运算律简化运算.5.能运用有理数的运算解决简单的问题.6.能对含有较大数字的信息作出合理的解释和推断. 【知识网络】第1讲有理数的基本概念有理数的基本概念有理数的基本概念【知识要点】1. 掌握有理数的意义及其分类方法,会比较有理数的大小.2. 掌握数轴的三要素及有理数与数轴的关系,有理数可以用数轴上的点表示,但数轴上的点并不都表示有理数.3. 理解倒数与相反数都是成对出现的及零没有倒数,但是它有相反数的意义.4. 借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.本节重点是有理数有关概念的理解,难点是负数﹑绝对值概念的理解及应用,关键是对于有理数的基本概念,要能从不同角度去理解、认识.【典型例题】例1 -3的相反数是 ;-5的倒数是 ;-3的绝对值是 .分析:本例主要考查相反数﹑倒数﹑绝对值的概念. 解:(1)3 (2)-15(3)3 例2 比较-87与-98的大小.分析:比较几个负数的大小,一般先求它们的绝对值,再把这几个数用小数或同分母(或同分子)的数来表示,用小数或分数比较大小的方法进行比较,最后用"两个负数相比较,绝对值大的反而小"作出结论.解:解法一:作差比较.-87-(-98)=-87+98=721>0∴-87>-98解法二:把分母化为相同∵|-87|=87=7263,|-98|=7264,又∵7263<7264,∴-87>-98 解法三:把分子化为相同.∵|-87|=87=6456,|-98|=98=6356又∵6456<6356,∴-87>-98 解法四:作商比较∵|-87|=87,|-98|=98,而9887=6463<1∴87<98,∴-87>-98 例3 适合关系式|x +32|+|x -34|=2的整数解x 的个数是()A、1B、2C、3D、0分析:已知等式的意义理解为数轴上的表示x的点到表示-32和34的点的距离和为2,如图所示:从数轴上看出符合条件的整数x只有0和1解:B.a b【知识运用】一、选择题选择题::1.点A 为数轴上表示-2的动点,当A点沿数轴移动4个单位长度到达点B时,点B表示的数是()A .2B .-6C .2或-6D .不同于以上答案 2.|-3|的相反数是()A.-3B.-13C.3D. ±33.若两个有理数a 和b 在数轴上的对应位置如图所示,则下列各式中正确的是()A. a b >B. ||||a b >C. ?D. ||b a4.质检员抽查某种零件的质量,超过规定长度的记为正数,短于规定长度的记为负数,检查结果如下:第一个为0.13毫米,第二个为–0.12毫米,第三个为–0.15毫米,第四个为0.11毫米,则质量最差的零件是()A .第一个B .第二个C .第三个D .第四个二、填空题填空题::5.与数轴上表示-2的点相距3个单位,则此点表示的数是_____.6.某地气象资料表明,高度每增加1000米,气温就下降大约6℃,现在10000米高空的气温是-23℃,则地面气温约为_____.7. 12的相反数的倒数是三、解答题解答题::8.如图,加工一种轴,直径在299.5毫米到300.2毫米之间的产品都是合格品,在生产图纸上通常用2.05.0300+?φ来表示这种轴的加工要求,这里300φ表示直径是300毫米,+0.2表示最大限度可以比300毫米多0.2毫米,–0.5表示最大限度可以比300毫米少0.5毫米.加工一根轴,图上标明的加工要求是03.004.045+?φ,如果加工成的轴的直径是44.8毫米,它合格吗?第2讲有理数的运算有理数的运算【知识要点】1.牢固掌握有理数的加法、有理数的碱法、有理数的乘法、有理数的乘方及有理数的混合运算.2.在有理数的运算中灵活运用加法运算律、乘法运算律.3.掌握有理数混合运算顺序,提高运算的速度、准确率.本节重点是有理数的混合运算,难点是提高运算的速度、准确率,关键是正确地运用各种法则,同时掌握运算顺序,并能适当地利用运算定律简化运算. 【典型例题】例1下列计算正确的是()A .-3+2=1 B.2×(-5)=-10 C. |-3|=-3 D.21=1分析:本例综合考查有理数的运算及绝对值的意义,考查起点低,但考查知识点多. 解:B 例2 计算:(1)554-[261+(-4.8)-(-465)](2)-24-3×22×(31-1)÷(-131).分析:在进行有理数的混合运算时,一要注意运算顺序的正确;二要注意符号的变化;三要注意用运算性质时不要出现错误解:(1)554-[261+(-4.8)-(-465)] =554-[261-4.8+465] =554-[7-4.8] =554-2.2=353 (2)解法一:-24-3×22×(31-1)÷(-131) =-16-12×(32)÷(-34) =-16+8×(-43)=-16-6=-22解法二:-24-3×22×(31-1)÷(-131)=-16-12×(31-1)×(-43) =-16-(4-12)×(-43) =-16+(3-9)=-22例3 有一张厚度是0.1mm 的纸,如果将它连续对折20次,会有多厚?有多少层楼高?(假设1层楼高3m )分析分析::此题与细胞分裂道理一样,1张纸叠一次得2张,折叠2次得4张,折叠3次得8张,折叠4次得16张,…,2242821621234====,,,,…由此总结可知对折20次得220张,由一张的厚度可求220的厚度.解:对折1次厚度为201×.mm ;对折2次厚度为2012×.mm ;……对折20次后,厚度为201104857620×=..mm ,即104.8576m.约为105m ,105335÷=(层)答:对折20次的厚度为105m ,有35层楼高.【知识运用】一、选择题1.如果两数的和是负数,那么一定不可能的是() A. 这两个数都是负数B. 这两个一个是负数,一个是零C. 这两个数中一个是正数,另一个是负数,且负数的绝对值较大D. 这两个数都是正数 2.对于有理数a,b 有下面说法:(1)若a+b=0,则a 与b 是互为相反数的数;(2)若a b +<0,则a 与b 异号;(3)若a b +>0,且a 与b 同号,则a>0,b>0;(4)若||||a b >,且a,b 异号,则a b +>0;(5)若||a b <,则a b +>0;其中,正确的说法有() A. 4个B. 3个C. 2个D. 1个3.如果一个整数减去-6是正数,减去-4是负数,则这个数减去9等于() A. -4B. 4C. -14D. 144.若120m n ++?=,则23m n ?+的值是() A 、73?B 、 13?C 、113D 、23二、填空题5.如果|x |-2=4,则x =______,如果x =3,则|x |-1=______.6.观察下列算式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;28=256;……通过观察,用你所发现的规律写出811的末位数字是.三、解答题:7.计算(1) 13)18()14(20+? (2)433615431653++?(3)(-3)0 +(-21)-2÷|-2| (4)|31-41|+|41-51|+……+|201-191|8.试一试,玩数学游戏于“金字塔数字”数学游戏(1).先研究数学模型,然后在你观察的基础上填写问题的答案12 = 1 112 = 121 1112 = 12321 11112 = 1234321 111112 =123454321 ……1111111112=(2).先研究下列各个数学模型,然后在你观察的基础上填写问题的答案已知6×7 = 42 66×67 = 4422 666×667 = 444222 6666×6667 = 4444222266666×66667 =第3讲有理数的应用有理数的应用【知识要点】有理数的出现是为了满足实际生活的需要,可见有理数在日常的生产、生活中应用的广泛,纵观近年各地中考题,“用数学的意识”及开放性的问题受到普遍关注,涉及应用数学知识解决联系实际问题的“应用题”数量增多,教学重点、难点:将生活实际问题抽象为数学问题解决【典型例题】例1 股民吉姆上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)星期一二三四五六每股涨跌+4+4.5-1-2.5-6+2(1)星期三收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价多少元?(3)已知吉姆买进股票时,付了0.15%的手续费,卖出时还需付成交额0.15%的手续费和0.1%的交易税,如果吉姆在星期六收盘前将全部股票卖出,他的收益情况如何?分析:每天每股价格是买进时每股价格与当天及该天前各天涨跌价的代数和;收益是卖出时的成交额除去手续费和交易税及买进所付的总额.解:(1)星期三收盘时,每股价为:274451345++?=..(元)(2)本周内每天每股的价格为:星期一:274315+=.(元)星期二:27445355++=..(元)星期三:274451345++?=..(元)星期四:2744512532++??=..(元)星期五:27445125626++=..(元)星期六:274451256228+++=..(元)故本周内每股最高价为35.5(元);最低价是每股26(元). (3)由(2)知星期六每股卖出价是28(元).共收益()()2810001015%01%2710001015%8895××××+=....(元)所以吉姆共收益889.5元.例2 有一种“二十四点”的游戏,其游戏的规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只有一次)进行加减乘除四则运算,使其结果等于24. 例如1,2,3,4可作运算:()123424++×=.(注意上述运算与()4123×++应视作相同方法的运算).现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:(1)_______________________ (2)_______________________ (3)_______________________另有四个数3,-5,7,-13.可通过运算式(4)_______________________使其结果等于24.分析:本题属结论开放性试题,对能力的要求较高,解这类试题,一般要经过多次的尝试、探索,解这类题的能力一定要从平时做起.解:(1)()[]34106×++? (2)()()10436??×? (3)()10364×÷?? (4)()()[] ×?+÷13573。
人教版七年级上册《有理数》章节知识点总结及七套配套试卷

.七年级数学《有理数》单元复习题有理数有关概念复习✍一、知识小结:1. 学习了正数、负数的知识后,大的可以说成小,小的可以说成大。
支出可以说成 。
可以说成增加等。
如“弟弟比哥哥小3岁。
”可以说成是“弟弟比哥哥大 岁”。
又如,小明的爸爸做生意亏损5000元,可以说成是“小明的爸爸做生意盈利 元”。
2. 大于零的数叫 , 在正数前加一个“- ”号的数叫做 , 既不是正数,也不是负数.3. 和 统称为有理数. 有理数的分类为:特别注意:下面分类是否有错误?并请你指出错误的原因。
(1)0⎧⎪⎨⎪⎩正数有理数负数 (2)0⎧⎪⎨⎪⎩整数有理数分数(3)⎧⎪⎨⎪⎩整数有理数小数分数 (4)⎧⎪⎨⎪⎩正有理数有理数负有理数4. 规定了 、 和 的直线叫数轴。
所有的有理数都可以用数轴上的 表示,但并不是所有的点都表示有理数.数轴上的原点表示数________,原点左边的数表示 ,原点及原点右边的数表示 .在原点右边,越靠近原点的点表示的数越 (填“大”或“小”),在原点左边,越靠近原点的点表示的数越 (填“大”或“小”)。
5. 有理数的大小比较:⑴在数轴上表示的两个数,右边的数总比左边的数 .⑵正数都 0,负数都 0,正数 一切负数; ⑶两个负数比较大小, .6. 数a 的相反数是 . 的相反数大于它本身, 的相反数小于它本身,的相反数等于它本身. 的倒数等于它本身.7. 一个数a 的绝对值是指数轴上表示数a 的点与 距离,记作 .①一个正数的绝对值是 ; 即:如果a >0,则|a | = ; ②一个负数的绝对值是 ; 如果a <0,则|a | = ;③0的绝对值是 . 如果a = 0,则|a | = .反之:若一个数的绝对值是它本身,则这个数是 ;若一个数的绝对值是它相反数,则这个数是 ;即若||a a =,则a 0;若||a a =-,则a 0.二、练习:8. 绝对值最小的有理数是 ,最大的负整数是 ,最小的正整数是 ;9. 在数轴上距离原点4个单位的数是 ,距离表示-1的点有3个单位的数是 ;⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎧⎧⎫⎨⎪⎪⎩⎪⎪⎪⎪⎨⎬⎪⎪⎧⎪⎪⎨⎪⎪⎭⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数12()有限小数;()无限循环小数..10. 数轴上的点A 所对应的数是4,点B 所对应的数是-2,则A 、B 两点之间的距离是 .11. 写出所有比-5大的非正整数为 , 比5小的非负整数 ,到原点的距离不大于3的所有整数有 .12. 绝对值等于3的数是 ;绝对值小于3的整数是 ;绝对值小于2011的所有整数的和等于 ;绝对值不大于100的所有整数的和等于 。
人教版七年级上册数学 有理数单元复习练习(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.我们知道,在数轴上,表示数表示的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点A、B,分别对应数a,b,那么A、B两点间的距离为:如图,点A在数轴上对应的数为a,点B对应的数为b,且a,b满足:(1)求a,b的值;(2)求线段AB的长;(3)如图①,点C在数轴上对应的数为x,且是方程的解,在数轴上是否存在点M使?若存在,求出点M对应的数;若不存在,说明理由. (4)如图②,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,当N在B的右侧运动时,请直接判断的值是不变的还是变化的,如果不变请直接写出其值,如果是变化的请说明理由.【答案】(1)解:,,且,解得,,;(2)解:(3)解:存在.设M点对应的数为m,解方程,得,点C对应的数为,,,即,①当时,有,解得,;②当时,有,此方程无解;③当时,有,解得, .综上,M点对应的数为:或4.(4)解:设点N对应的数为n,则,,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,,,,点Q对应的数为:,点P对应的数为:,,①当时,,此时的值随N点的运动而变化;②当时,,此时的值随N点的运动而不变化.【解析】【分析】(1)根据“若非负数和等于0,则非负数均为0”列出方程进行解答便可;(2)根据数轴上两点的距离公式进行计算便可;(3)根据已知线段的关系式,列出绝对值方程进行解答便可;(4)用N点表示的数n,列出关于n的代数式进行讨论解答便可.3.已知 , , 三点在数轴上对应的位置如图如示,其中点对应的数为2,, .(1)点对应的数是________,点对应的数是________;(2)动点,分别同时从,两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点为的中点,点在上,且,设运动时间为 .①请直接用含的代数式表示点,对应的数;②当时,求的值.【答案】(1)-12;5(2)解:① 对应的数是,对应的数是;② ,,,,由,得,由,得,故当秒或秒时, .【解析】【解答】解:(1)点对应的数为,,,点对应的数是:;点对应的数是:;故点对应的数为,点对应的数是 .【分析】(1)根据点对应的数,由的长确定出点表示的数,再根据的长确定出点表示的数;(2)①根据题意表示出点、的数即可;②列出含t的、的代数式,得出方程,求出方程的解即可.4.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|﹣4+6|=________;|﹣2﹣4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于﹣4与6之间,求|a+4|+|a﹣6|的值;(4)当a=________时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是________;(5)当a=________时,|a﹣1|+|a+2|+|a﹣3|+|a+4|+|a﹣5|+…+|a+2n|+|a﹣(2n+1)|的值最小,最小值是________.【答案】(1)2;6(2)解:此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,故当-2≤x≤1的时候即可满足条件,又因为x是整数,所以x的值可以为:-2,-1,0,1.(3)解:∵数轴上表示数a的点位于﹣4与6之间,∴a+4>0,a﹣6<0,∴|a+4|+|a﹣6|=a+4-a+6=10;(4)1;9(5)1;2n2+3n【解析】【解答】(1)|﹣4+6|=|2|=2,|﹣2﹣4|=|-6|=6;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是1的时候,|a﹣1|+|a+5|+|a﹣4|的值最小,当a=1的时候,|a﹣1|+|a+5|+|a﹣4|=|1﹣1|+|1+5|+|1﹣4|=9;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1当a=1时原式=3+2+5+4+……+(2n+1)+2n=2+3+4+5+……+2n+(2n+1)== 2n2+3n故:答案为1, 2n2+3n .【分析】(1)由于绝对值符号具有括号的作用,先按有理数的加减法法则算出绝对值符号里面的,再根据绝对值的意义去掉绝对值符号即可;(2)此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,从而找出1到-2 的整数即可;(3)根据有理数的加减法法则,首先判断出a+4>0,a﹣6<0,再根据绝对值的意义去掉绝对值符号合并同类项即可;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是介于4和-5之间的数1的时候,即可使其值最小,然后将a=1代入再根据绝对值的意义化简即可;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。
人教版七年级数学上册知识点复习及试题全册

人教版七年级数学上册知识点大全1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0⇔a 是非负数;a ≤0 ⇔ a 是负数或0⇔a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
最新人教版七年级数学上册 有理数单元复习练习(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.2.如图1,A、B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16(2)解:设点P表示的数为x.分两种情况:①当点P在线段AB上时,∵AP= PB,∴x+12=(4﹣x),解得x=﹣8;②当点P在线段BA的延长线上时,∵AP= PB,∴﹣12﹣x=(4﹣x),解得x=﹣20.综上所述,点P表示的数为﹣8或﹣20(3)解:分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP=4OQ,∴12﹣5t=4(4﹣2t),解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP=4OQ,∴|12﹣5t|=4×3(t﹣2),∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,解得t=,符合题意;或t=,不符合题意舍去.综上所述,当OP=4OQ时的运动时间t的值为或秒【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.3.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)解:AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.4.[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.[问题情境]已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).[综合运用](1)运动开始前,A、B两点的距离为________;线段AB的中点M所表示的数________.(2)点A运动t秒后所在位置的点表示的数为________;点B运动t秒后所在位置的点表示的数为________;(用含t的代数式表示)(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B 两点重合,则中点M也与A,B两点重合)【答案】(1)18;-1(2)﹣10+3t;8﹣2t(3)解:设它们按上述方式运动,A、B两点经过x秒会相遇,根据题意得﹣10+3x=8﹣2x,解得x= ,﹣10+3x= .答:A、B两点经过秒会相遇,相遇点所表示的数是;(4)解:由题意得, =0,解得t=2,答:经过2秒A,B两点的中点M会与原点重合.M点的运动方向向右,运动速度为每秒个单位长度.故答案为18,﹣1;﹣10+3t,8﹣2t.【解析】【解答】解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示的数为 =﹣1;(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;【分析】(1)根据A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b及线段AB的中点M表示的数为即可求解;(2)点A运动t秒后所在位置的点表示的数=运动开始前A点表示的数+点A运动的路程,点B运动t秒后所在位置的点表示的数=运动开始前B点表示的数﹣点B运动的路程;(3)设它们按上述方式运动,A、B两点经过x秒会相遇,等量关系为:点A运动的路程+点B运动的路程=18,依此列出方程,解方程即可;(4)设A,B按上述方式继续运动t秒线段AB的中点M能否与原点重合,根据线段AB的中点表示的数为0列出方程,解方程即可.5.若有理数在数轴上的点位置如图所示:(1)判断代数式的符号;(2)化简:【答案】(1)解:因为所以(2)解:因为所以原式.【解析】【分析】(1)根据有理数的加减法,可得答案;(2)根据绝对值的性质,可化简去掉绝对值,根据合并同类项,可得答案.6.阅读材料:在数轴上,点 A 在原点 0 的左边,距离原点 4 个单位长度,点 B 在原点的右边,点 A 和点B 之间的距离为 14个单位长度.(1)点 A 表示的数是________,点 B 表示的数是________;(2)点 A、B 同时出发沿数轴向左移动,速度分别为 1 个单位长度/秒,3 个单位长度/秒,经过多少秒,点 A 与点 B重合?(3)点 M、N 分别从点 A、B 出发沿数轴向右移动,速度分别为 1 个单位长度/秒、2 个单位长度/秒,点 P 为 ON 的中点,设 OP-AM 的值为 y,在移动过程中,y 值是否发生变化?若不变,求出 y 值;若变化,说明理由.【答案】(1)-4;10(2)解:由题意知,此时为速度问题里面的追击问题,则由速度差×相遇时间=相距距离可知:设经过x秒后重合,即x秒后AB相遇.则(3-1)x=14解得:x=7故7秒后点A,B重合.(3)解:y不发生变化,理由如下:设运动时间为x秒,则AM=x而OP=则y=OP-AM=故y为定值,不发生变化.【解析】【解答】解:(1)由A在原点左边4个单位长度可知A点表示的数是-4,由B 在原点右边且与点A距离14个单位长度可知,-4+14=10,则B点表示的数是10.【分析】(1)由A在原点左边4个单位长度可知A点表示的数是-4,再根据B 在原点右边且与点A距离14个单位长度,可由-4+14=10可得B点表示的数.(2)把A,B看成距离为14个单位长度的追击问题,由速度差×相遇时间=相距距离列出等式求解.(3)设移动时间为x秒,用含有x的代数式表示出OP与AM的长度,然后根据y= OP-AM列出关系式判断,若式中不含x项则不发生变化,含x项则发生变化.7.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为,所以的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.⑴发现问题:代数式的最小值是多少?⑵探究问题:如图,点分别表示的是,.∵的几何意义是线段与的长度之和∴当点在线段上时, ;当点点在点的左侧或点的右侧时∴的最小值是3.⑶解决问题:①. 的最小值是 ________ ;②.利用上述思想方法解不等式:________③.当为何值时,代数式的最小值是2________.【答案】6;设A表示-3,B表示1,P表示x,∴线段AB的长度为4,则,的几何意义表示为PA+PB,∴不等式的几何意义是PA+PB>AB,∴P 不能在线段AB上,应该在A的左侧或者B的右侧,即不等式的解集为或.故答案为:或.;设A表示-a,B表示3,P表示x,则线段AB 的长度为,的几何意义表示为PA+PB,当P在线段AB上时PA+PB取得最小值,∴∴或,即或;故答案为:或 .【解析】【解答】解:(3)①设A表示的数为4,B表示的数为-2,P表示的数为x ,∴表示数轴上的点P到4的距离,用线段PA表示,表示数轴上的点P到-2的距离,用线段PB表示,∴的几何意义表示为PA+PB,当P在线段AB上时取得最小值为AB,且线段AB的长度为6,∴的最小值为6.故答案为:6.【分析】(3)①根据绝对值的几何意义可知,变成数轴上的点到-2的距离和到4的距离之和的最小值;②根据题意画出相应的图形,确定出所求不等式的解集即可;③根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.8.已知:是最大的负整数,且、b、c满足(c﹣5)2+| +b|=0,请回答问题.(1)请直接写出、b、c的值: =________,b=________,c=________.(2)、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到1之间运动时(即0≤x≤1时),请化简式子:|x+1|﹣|x﹣1|+2|x-5|(请写出化简过程). (3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-1;1;5(2)解:当0≤x≤1时x+1>0,x﹣1≤0,x-5 0则|x+1|﹣|x﹣1|+2|x-5|=x+1﹣(1﹣x)+2(5-x)=x+1﹣1+x+10-2x=10(3)解:BC﹣AB的值不随的变化而改变,总为2秒时,点A表示的数为,点B表示的数为,点C表示的数为,此时,BC=()-()= ,AB=()-()= ,所以BC-AB=()-()=2∴BC﹣AB的值不随着时间t的变化而改变,总为2.【解析】【解答】解:(1)∵是最大的负整数,∴ =﹣1∵(c﹣5)2+| +b|=0∴c-5=0;a+b=0∴b=1;c=5【分析】(1)根据绝对值和完全平方式的非负性求值即可;(2)由0≤x≤1得出x+1>0;x﹣1≤0;x-5 0,然后根据绝对值的意义进行化简;(3)分别表示出t秒后,点A,B,C 所表示的数,然后根据两点间的距离求得BC,AB的长度,然后进行计算并化简.9.阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.【答案】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4②数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3.③根据题意得x+1≥0且x-2≤0,则-1≤x≤2;④解方程|x+1|+|x﹣2|=5.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.所以答案为:3或-2.【解析】【分析】①②直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运用绝对值即可求任意两点间的距离.③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围.④根据题意分三种情况:当x≤﹣1时,当﹣1<x≤2时,当x>2时,分别求出方程的解即可.10.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【答案】(1)1(2)解:设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R(3)解:线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.【解析】【解答】解:(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,【分析】(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.11.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{2,3},{4,5,6},…,我们称之为集合,其中每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2019−x也必是这个集合的元素,这样的集合我们又称为黄金集合,例如{0,2019}就是一个黄金集合,(1)集合{2019}________黄金集合,集合{−1,2020}________黄金集合.(填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4019,则该集合是否存在最小的元素?如果存在,请求出这个最小元素,否则说明理由;(3)若一个黄金集合中所有元素之和为整数M,且16150<M<16155,则该黄金集合中共有多少个元素?请说明你的理由.【答案】(1)不是;是(2)解:一个黄金集合中最大的一个元素为4019,则该集合存在最小的元素,该集合最小的元素是−2000.∵2019−a中a的值越大,则2019−a的值越小,∴一个黄金集合中最大的一个元素为4019,则最小的元素为:2019−4019=−2000.(3)解:该集合共有16个元素。
第一章 有理数 全章 练习题 2023—2024学年人教版数学七年级上册

第一章《有理数》全章练习题(含答案)一、选择题1.2024的倒数是()A.2024B.2024-C.12024-D.120242.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为()A.84410⨯B.84.410⨯C.94.410⨯D.104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是()A.0a >B.0ab >C.0a b ->D.0a b +<4.下列几种说法中,不正确的有()个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A.4B.3C.2D.15.若|m ﹣2|+(n +3)2=0,则m ﹣的值为()A.﹣5B.﹣1C.1D.56.如图是嘉淇同学的练习题,他最后得分是()A.20分B.15分C.10分D.5分6.如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b ->;④||||0a b -<,⑤220a b -<.其中正确的有()A.1个B.2个C.3个D.4个8.如图是一个数值转换机,若输入x 的值是1-,则输出的结果y 为()A.7B.8C.10D.129.观察1211-=,2213-=,3217-=,42115-=,52131-=,⋯,归纳各计算结果中的个位数字的规律,猜测202221-的个位数字是()A.1B.3C.7D.510.计算1111111111131422363524⎡⎤⎛⎫⎛⎫-+÷÷-⨯+-÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为()A.2514B.2514-C.114D.114-二、填空题(本大题共6小题)11.-56____-67(填>,<,=)12.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13.数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14.若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+-+= ⎪⎝⎭.15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16.已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为.18.若x 是不等于1的实数,我们把11x-称为x 的差倒数,如2的差倒数是1112=--,-1的差倒数为()11112=--,现已知113x =-,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x =.三、解答题19.把下列各数填在相应的括号里:﹣8,0.275,227,0,﹣1.04,﹣(﹣3),﹣13,|﹣2|正数集合{…}负整数集合{…}分数集合{…}负数集合{…}.20画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5-,0,-2,-(-4),-3.5,321.(1)(-534)+(+237)+(-114)-(-47)(2)()155********⎛⎫-+-⨯-⎪⎝⎭(3)-14+14×[2×(-6)-(-4)2](4)(-2)3×(-34)+30÷(-5)-│-3│22.已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值..23.已知x 是最小正整数,y ,z 是有理数,且有|y﹣2|+|z+3|=0,计算:(1)求x,y,z 的值.(2)求3x﹢y﹣z 的值.24.某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车依先后次序记录如下:(单位:km)+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为;(2)如果点P 到点M 、点N 的距离相等,那么x 的值是:;(3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参考解答:一、选择题1.D.2.C 3.D4.C5.D6.B7.D8.A .9.B.10..C 二、填空题11.>12.-3分13.1或-714.015.-2或216.m <﹣n <n <﹣m 17.990018.4三、解答题19.解:正数集合{0.275,227,()3--,2-…};负整数集合{8-…};分数集合{0.275,227, 1.04-,13-…};负数集合{8-, 1.04-,13-…}.20解:()2.5 2.5,44,-=--= 在数轴上表示各数如下:∴ 3.5-<2-<0< 2.5-<3<()4--21.解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫-+-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦734=-+=-(2)()155********⎛⎫-+-⨯-⎪⎝⎭()()()()15573636363629612=⨯--⨯-+---182030217=-+-+=-(3)-14+14×[2×(-6)-(-4)2]()1112164=-+⨯--()178=-+-=-(4)(-2)3×(-34)+30÷(-5)-│-3│()38634⎛⎫=-⨯-+-- ⎪⎝⎭6633=--=-22.解: a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯--+⨯=++=或原式=()()2201314130⨯---+⨯=-++=.23.解:(1)∵x 是最小正整数∴x=1∵|y﹣2|≥0,|z+3|≥0,且|y﹣2|+|z+3|=0∴|y﹣2|=0,|z+3|=0∴y﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x﹢y﹣z=3×1+2-(-3)=3+2+3=8.24.解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+-⨯=(元),答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上有理数全章总复习及试题1.1正数与负数一、必记概念:0既 _______________ ,也_____________________ 。
在实际生活中,常常用正数和负数表示具有_____________ 意义的量。
如果上升10米记作+10米,那么下降5米记作__________ 。
二、练习:1. 下列结论中错误的是()A. 零是整数B. 零不是正数C. 零是偶数D. 零不是自然数2. 如果顺时针旋转30。
记作-30。
,那么逆时针旋转45°记作________________ 。
3. 某人向东走5米,又回头向西走5米,此人实际距原地______________ 米。
4. 如果中午以后的2小时记作+2小时,那么+2小时前3小时应记作_____________ 。
5. 观察下面依次排列的一列数,你能发现它们排列的规律是什么吗?后面空格内的三个数是什么,试把它写出来。
(1)2、-3、4、-5、6、________ 、 ______ 、______ 、…(2)1、2、3、5、8、 ______ 、_______ 、________ 、…6. “一个数前面加‘-',它一定是负数”对吗?1.2有理数1.2.1 有理数一、必记概念:1. 正整数、零和负整数统称为 _________ ;正分数和负分数统称为____________________________ 和__________ 统称为有理数。
2. 把一些数放在一起,就组成一个数的 ___________ ,简称数集。
3.零和正数统称为,零和负数统称为。
4.正整数和零统称为,又统称为;零和负整数统称为二、练习:(一)把下列各数填在相应的集合中: 313-1、-0.4、一、0、—、6、9、1-、114、-19537正数集合:{负数集合:{整数集合:{分数集合:{非正数集合:{非负数集合:{非正整数集合:{非负整数集合:{(二)判断题:1. 一个有理数不是正数就是分数。
()2. 一个有理数不是整数就是分数。
()3. 有限小数和无限小数都是有理数。
()4. 0 C表示没有温度。
()(三)选择题:5. 下列说法:(1)零是正数;(2)零是整数;(3)零是有理数;(4)零是非负数;(5)零是偶数。
其中正确的说法的个数为()A. 2 个B. 3 个C. 4 个D. 5 个6. 下列说法正确的是()A. 一个有理数不是正数就是负数B. 一个有理数不是整数就是分数C. 有理数是指整数、分数、正有理数、零、负有理数这五类D. 以上结论都不对7.X 表示的数是()A. 负数B. 正数C. 正数或负数D. 以上答案都不对8. 对于有理数a ,下面说法正确的是()A.a 表示正有理数 B.a 表示负有理数C. a 与a 中必有一个是负有理数D.以上答案都不对(四) 填空题:10. 非负整数与正整数的区别是非负整数包括 ___________ ,而正整数不包括 _____ 11. 自然数包括 ____________ 和 _________________ 。
12. 从负有理数集合中去掉负分数,得到 _________________ 集合。
1.2.2数轴一、 必记概念:1. 规定了 _________ 、 __________ 禾廿 _________ 的 __________ 线叫做数轴。
2. 数轴三要素是 ___________ 、 _______________ 、 _____________ 。
3. 任何一个有理数都可以用数轴上的 ___________ 来表示。
二、 练习: (一) 判断题:1. 所有的有理数都可以用数轴上的点来表示;反过来,数轴上的点都表示有理数。
()(二) 选择题:2. 下列说法中:①在 3和4之间没有正数;②在 0和-1之间没有负数;③在 9和10之间有无穷个正分数;④在0.6和0.7之间没有正分数。
其中正确的是( )A.③B. ④C. ①②③D. ③④ 3.在数轴上,原点和原点左边的点所表示的数是( ) A. 正数 B. 负数 C. 非正数 D. 非负数4. 一个点从数轴上的原点开始, 先向右移动3个单位长度,再向左移动7个单位长度,这时点所对应的数是( )A. 3B. 1C. -2D. -4 5. 下列说法中错误的是( )9. 在数轴上,原点左侧的点表示 ________ 数,原点和原点右侧的点表示 ________ 。
10. 在数轴上,到原点的距离不超过3个单位长度但表示整数的点有 _____________________________ 个,它们分别表示数 __________________________ 。
11. 在数轴上,与表示-2的点相距5个单位长度的点表示的数是 _________________ 。
A. C. 所有的有理数都可以用数轴上的点来表示 数轴上点A 表示-3,从A 出发,沿数轴移动 在数轴上表示-3和2的两点的距离是 5)B. 数轴上的原点表示 0 2个单位长度到达 B 点,则点B 表示-1D. 6.下列说法中,错误的是( A. 数轴上表示-3的点离开原点3个单位长度 有理数0在数轴上表示的点是原点D.40千米,然后再向西行驶站东10千米 站西70千米C.7. 一辆汽车从A 站出发向东行驶 A. A 站东70千米 B. AC. A 站西10千米 (三) 填空题:8. 数轴上表示-5的点距离原点 示的数是B. 规定了原点、正方向和单位长度的直线叫做数轴 表示十万分之一的点在数轴上不存在 30千米,此时汽车的位置是(D. A个单位长度;在数轴上与原点相距5个单位长度的点由个,表.、必记概念:1. 在数轴上,如果表示两个数的点到原点的 ____________ ,它们分别在对称。
2. 只有________ 的_____ 个数互为相反数,即其中一个数是另一个数的_的相反数,-2是______ 的相反数。
二、必记公式:3.一般地a和互为相反数,且在数轴上表示a和的两点到原点的距离,它们分别在。
4.特别规定:0的相反数是。
5.在任意一个数前面添上“- 号,新数表示原数的,在任意一个数前面添上“+”号,新数表示原数的。
三、必记性质:6.一个正数的相反数是数;一个负数的相反数是数;0的相反数是。
四、练习:( - -)判断题:1.符号不同的两个数是相反数,零的相反数是零。
()2. 只有符号不同的两个数是互为相反数。
()3. 一个数的相反数- -定是负数。
()4. 如果两个非零的数互为相反数,那么在数轴上表示这两个数的点一定在原点的两旁。
()(二)选择题:5. 数轴上表示互为相反数a与a的点到原点的距离是()A. 表示数a的点距原点较远B. 表示数a的点距原点较远C. 相等D. 无法比较6. 下列叙述中不正确的是()A. 正数的相反数是负数,负数的相反数是正数B. 和原点距离相等的两个点所表示的数一定是互为相反数C. 符号不同的两个数互为相反数D. 两个数互为相反数,这两个数有可能相等7. 在一个数前面加一个"-”就可以得到一个(A. 负数B. 非负数C. 非正数D.8. a b的相反数是()A. a bB. a bC. a bD. a b9.卜列说法错误的是()A. 1的倒数的相反数是-1B. 0 的相反数是0C. 1的相反数等于它的倒数D. 1 的相反数与1的倒数互为相反数(三)填空题:10. 3的相反数是;- -(-6 )的相反数是;x y的相反数是11.如果m与丄互为相反数,则m。
412.如果一个数的相反数是它本身, 则这个数是;若XX,则x 。
13.若a 3.2,则a若1;右a -,则a;若a 1,则a ;若a 5,则a6 14.若a1,则a 。
15.若a是负数,贝Ua是;若a是非负数,贝Ua是123相反数____ 左右,我们就说这两点关于,如2和-2互为相反数,那么2是)原数的相反数16.简化下列各数:1 .2;2 .15--;3 .7.82 -4 .3_;5 .1(四) 解答题:17•已知X 3,求x的相反数。
18.已知数轴上,点A和点B分别表示互为相反数的两个数a、b,并且A、B两点间的距离是14,求a、b的值。
1.2.4绝对值一. 必记概念:1. 一般地,数轴上表示数a的点,与_____________________ 叫做数a的绝对值,记作________________ ;如:在数轴上表示数10的点,到原点的距离为_________ ,所以10的绝对值为_______________ ,记作: ______________ 。
二. 必记计算依据:2. 一个正数的绝对值是 ______________ ,一个负数的绝对值是 ________________ ,0的绝对值是_______________ 。
三. 必记性质:3. 当a是正数时,a ________ ;当a是负数时,a ________ ;当a=0时,a ________4. 一个数的绝对值总是 ______________ 数。
四. 必记原理:5. 两个正分数比较大小,如果分母相同,则_________________ 的分数大,如果分子相同,则分母如果是异分母分子的分数比较,首先化为________________ ,再比较大小。
7. 在数轴上表示任何一个有理数的绝对值的点的位置,只能在数轴上的()A. 原点及原点左边B.原点右边C.原点左边D.原点及原点右边8. 一个有理数的绝对值等于本身的数有()个。
A. 0B. 1C. 2D.无数个9.下列结论中,正确的是()X牛日彳匕yr?来什Q X 1 J _斗日倍粉A. X 定是负数B.定是非正数C.定是正数D.X 定是负数10.卜列说法止确的是(A. 0 是最小的有理数B.在所有的负数中,-1最小C. 0 时最小的整数D.既没有最小的有理数也没有最大的有理数的反而小。
6.正数0 , 0负数,正数7.两个负数,大的反而小。
五.练习:(一)判断题:1.右a为任意有理数,则| a a。
()2.3.一个数总比它的相反数大。
( ) 5.(二)选择题:6.卜列说法错误的是(A. 一个正数的绝对值一定是. 正数B.C. 任何数的绝对值都是正数D.负数。
若a b,则a b。
()一个数的绝对值比它的相反数大。
()一个负数的绝对值- -定是正数4.如果a p 0,那么a 和它的相反数的差的绝对值等于()A. aB. 0C.a D. 2a,绝对值;最小的17.已知X 的相反数是-2 ,求X18.已知 x 5 y 80,求―的值。
xy1.3有理数的加减法:一、 必记法则:(一) 有理数的加法法则:1. 同号两数相加,取 _________ 符号,并把 ________________ 相加。