函数单调性和奇偶性的综合应用题

合集下载

函数单调性和奇函数性质的综合应用题

函数单调性和奇函数性质的综合应用题

函数单调性和奇函数性质的综合应用题题目描述给定函数 $f(x) = x^3 - 3x^2 + 2x + 1$,请回答以下问题:1. 函数 $f(x)$ 的定义域是什么?2. 函数 $f(x)$ 的奇偶性如何?3. 在开区间 $(0, 3)$ 上,函数 $f(x)$ 的单调性如何?4. 在闭区间 $[-1, 2]$ 上,函数 $f(x)$ 的最大最小值分别是多少?解答1. 函数 $f(x)$ 的定义域是所有实数集 $(-\infty, +\infty)$,因为对任意实数 $x$,$f(x)$ 的定义都存在。

2. 函数 $f(x)$ 的奇偶性是奇函数。

为了验证函数的奇偶性,我们需要检查函数是否满足 $f(-x) = -f(x)$。

对于函数 $f(x) = x^3 -3x^2 + 2x + 1$,我们有 $f(-x) = (-x)^3 - 3(-x)^2 + 2(-x) + 1 = -x^3 +3x^2 - 2x + 1$。

可以看到 $f(-x) = -f(x)$ 成立,所以函数 $f(x)$ 是奇函数。

3. 在开区间 $(0, 3)$ 上,函数 $f(x)$ 是递增函数。

为了验证函数的单调性,我们需要检查函数在该区间上的导数是否大于等于零。

计算函数的导数 $f'(x)$,我们有 $f'(x) = 3x^2 - 6x + 2$。

将其带入$0 < x < 3$,我们可以看到 $f'(x) > 0$。

因此,函数 $f(x)$ 在开区间$(0, 3)$ 上是递增的。

4. 在闭区间 $[-1, 2]$ 上,函数 $f(x)$ 的最大值是 $f(2) = 11$,最小值是 $f(-1) = -1$。

为了找出最大最小值,我们可以求函数在该区间内的驻点和区间的端点处的函数值。

计算导数 $f'(x) = 3x^2 -6x + 2$ 的根,可得 $x = 1 \pm \frac{\sqrt{3}}{3}$。

函数单调性、奇偶性、周期性的综合应用

函数单调性、奇偶性、周期性的综合应用

函数单调性、奇偶性、周期性的综合应用一、单选题1.已知()f x 是R 上的奇函数 且满足(6)()f x f x += 当(0,4)x ∈时 2()2f x x = 则f (2021)等于( ) A .-2B .-98C .98D .22.已知()()()1f x x x b =+-是偶函数 且其定义域为[]21,a a - 则a b +的值是 ( )A .13-B .43C .23D .23-3.已知函数321()21x x f x x -=++ 则不等式(2)(1)0f a f a +->的解集为( )A .(0,)+∞B .[1,)-+∞C .(1,)-+∞D .(1,0)-4.函数y =f (x )在区间[0 2]上单调递增 且函数f (x +2)是偶函数 则下列结论成立的是( )A .57(1)22f f f⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭ B .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .57(1)22f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭5.已知函数()f x 的定义域为R ()54f = ()3f x +是偶函数 任意[)12,3,x x ∈+∞满足()()12120f x f x x x ->- 则不等式()314f x -<的解集为( )A .2,33⎛⎫⎪⎝⎭B .()2,2,3⎛⎫-∞+∞ ⎪⎝⎭C .()2,3D .2,23⎛⎫ ⎪⎝⎭6.已知函数()f x 为R 上的奇函数 且()(2)f x f x -=+ 当[0,1]x ∈ ()22x xaf x =+则(2019)(2022)f f +的值为( )A .32-B .0C .32D .2147.已知函数()(ln sin 2f x a x b x =++ 若()37f -= 则()3f ( )A .等于7-B .等于5-C .等于3-D .无法确定8.设()'f x 是奇函数()f x 的导函数 (1)0f -= 当0x >时 ()2()xf x f x '> 则使得()0f x <成立的x 的取值范围是( ) A .(1- 0)(0⋃ 1) B .(-∞ 1)(1-⋃ )+∞ C .(1- 0)(1⋃ )+∞D .(-∞ 1)(0-⋃ 1)1.定义在R 上的函数()f x 满足()()0f x f x 且(1)()f x f x +=-.当(0,1)x ∈时3()31xxf x =+. (1)求()f x 在[1,1]-上的解析式;(2)若关于x 的方程()2f x m =在区间[0,1]上有实数解 求实数m 的取值范围.2.函数()f x 对于任意实数m n 有()()()f m n f m f n +=+ 当0x >时 ()0f x >. (1)求证:()f x 在(),-∞+∞上是增函数;(2)若()11f = ()22log 2f x x m +⎡⎤⎣⎦-<对任意实数[]0,2x ∈恒成立 求实数m 的取值范围.3.定义在R 上的函数()f x 满足:①()00f ≠;②当0x >时 ()1f x >;③对任意实数xy 都有()()()f x y f x f y +=⋅.(1)证明:当0x <时 ()01f x <<; (2)判断()f x 在R 上的单调性; (3)解不等式()()221f x f x x ⋅->.4.已知定义域为R 的函数()1221x af x =-++是奇函数.(1)求a 的值 并判断函数()f x 的单调性(只需简单说明 不需证明);(2)若关于 m 的不等式()()222120f m m f m mt -+++-≤在()1,2m ∈有解 求实数t 的取值范围参考解析1.A【解析】∵(6)()6f x f x T +=⇒= ()()()()20213366551f f f f =⨯+==- 又∵()f x 是R 上的奇函数 ∴()()()2021112f f f =-=-=-.故选:A. 2.B【解析】()()21f x x b x b =+-- 因为函数是偶函数 所以满足()()f x f x -= 得1b =偶函数的定义域关于原点对称 所以210a a -+= 得13a = 所以43a b +=.故选:B3.C【解析】332121()()2121x x x x f x x x f x -----=-=--=-++ 则函数()f x 为奇函数32()121x f x x =+-+ 则函数()f x 在R 上单调递增(2)(1)f a f a >-- (2)(1)f a f a ∴>- 即21a a >- 1a >- 故选:C4.B【解析】因为函数f (x +2)是偶函数 所以f (x +2)=f (-x +2) 即函数f (x )的图象关于x =2对称 又因为函数y =f (x )在区间[0 2]上单调递增 所以函数y =f (x )在区间[2 4]上单调递减.因为()()13f f =75322>> 所以()75322f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭ 即()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭故选:B. 5.D【解析】因为()3f x +是偶函数 所以()f x 的图像关于直线3x =对称 则()()514f f == 因为任意[)12,3,x x ∈+∞满足()()12120f x f x x x ->-所以()f x 在[)3,+∞上单调递增 在(),3-∞上单调递减 故()314f x -<等价于1315x <-< 解得223x <<.故选:D 6.A【解析】根据题意,函数()f x 为R 上的奇函数 则(0)=0f 又由[0,1]x ∈时()22xxaf x =+则有(0)10f a =+= 解可得:a =-1 则有1()22x xf x =-.又由()(2)f x f x -=+即()()2f x f x +=- 则有()()()42f x f x f x +=-+= 即函数()f x 是周期为4的周期函数. 则3(2019)(14505)(1)(1)2f f f f =-+⨯=-=-=-(2022)(24505)(2)(0)(0)0f f f f f =+⨯==-==所以33(2019)(2022)=0=22f f +-+-.故选:A7.C【解析】设(()ln g x x = 显然定义域为R又((22()()ln ln ln ln10g x g x x x x ⎛⎫+-=+-+=-==⎪⎝⎭则()()g x g x -=- 所以(()ln g x x =是R 上的奇函数;又sin y x =也是R 上的奇函数 所以()2f x -也是R 上的奇函数 因此()(3)2(3)2f f --=-- 则(3)4(3)473f f =--=-=-.故选:C. 8.D【解析】令2()()f x g x x =则3()2(())xf x x x f x g '-=' 当0x >时 有()2()xf x f x '> 即()2()0xf x f x '-> ()0g x '∴>即函数()g x 在(0,)+∞上单调递增.又()f x 是R 上的奇函数 ()()f x f x ∴-=-2()()()f x g x g x x -∴-==- 故函数()g x 为奇函数 由奇函数的对称性可得()g x 在(),0-∞上单调递增. 又()10f = ()10f ∴-= ()(1)101f g == ()()110g g ∴-=-=. 所以当1x >时()0g x > 当01x <<时()0g x < 当10x -<<时()0g x > 当1x <-时()0g x < 由()0f x <可得 2()()f x g x x=即要使()0f x <成立 只需()0<g x 成立; 所以()0f x <的解集为()(),10,1-∞-⋃。

高中数学:函数单调性和奇偶性的综合练习及答案

高中数学:函数单调性和奇偶性的综合练习及答案

高中数学:函数单调性和奇偶性的综合练习及答案1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|2.f(x)=x2+|x|()A.是偶函数,在(-∞,+∞)上是增函数B.是偶函数,在(-∞,+∞)上是减函数C.不是偶函数,在(-∞,+∞)上是增函数D.是偶函数,且在(0,+∞)是增函数3.已知函数f(x)=3x-(x≠0),则函数()A.是奇函数,且在(0,+∞)上是减函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是增函数D.是偶函数,且在(0,+∞)上是增函数4.定义在R上偶函数f(x)在[1,2]上是增函数,且具有性质f(1+x)=f(1-x),则函数f(x)()A.在[-1,0]上是增函数B.在[-1,-]上增函数,在(-,0]上是减函数C.在[1,0]上是减函数D.在[-1,-]上是减函数,在(-,0]上是增函数5.f(x)是定义在R上的增函数,则下列结论一定正确的是()A.f(x)+f(-x)是偶函数且是增函数B.f(x)+f(-x)是偶函数且是减函数C.f(x)-f(-x)是奇函数且是增函数D.f(x)-f(-x)是奇函数且是减函数6.已知偶函数f(x)在区间[0,+∞)上的解析式为f(x)=x+1,下列大小关系正确的是()A.f(1)>f(2)B.f(1)>f(-2)C.f(-1)>f(-2)D.f(-1)<f(2)7.已知f(x)是偶函数,对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,则下列关系式中成立的是()A.f<f(-1)<f(2)B.f(-1)<f<f(2)C.f(2)<f(-1)<fD.f(2)<f<f(-1)8.定义在区间(-∞,+∞)上的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)上的图象与f (x)的图象重合.设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是()A.①与④B.②与③C.①与③D.②与④9.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)·[f(x2)-f (x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)10.若函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,则x·f(x)<0的解集是()A.(-2,0)∪(0,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)11.已知定义在R上的函数f(x)在(-∞,-2)上是减函数,若g(x)=f(x-2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(-∞,-2]∪[2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-4]∪[-2,+∞)D.(-∞,-4]∪[0,+∞)12.设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则x·f(x)<0的解集为()A.(-1,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)13.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调增区间为()A.(-∞,0]B.[0,+∞)C.(-∞,+∞)D.[1,+∞)14.已知函数f(x)=x|x|-2x,则下列结论正确的是________.(填写序号)①f(x)是偶函数,递增区间是(0,+∞);②f(x)是偶函数,递减区间是(-∞,1);③f(x)是奇函数,递减区间是(-1,1);④f(x)是奇函数,递增区间是(-∞,0).15.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,设f=m,f=n,则m,n的大小关系是________.16.已知函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的单调递增区间是________.17.已知函数y=f(x)的图象关于原点对称,且当x>0时,f(x)=x2-2x+3.(1)试求f(x)在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.18.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式.19.已知函数f(x)=-x3+3x.求证:(1)函数f(x)是奇函数;(2)函数f(x)在区间(-1,1)上是增函数.20.已知函数f(x)=ax++c(a,b,c是常数)是奇函数,且满足f(1)=,f(2)=. (1)求a,b,c的值;(2)试判断函数f(x)在区间上的单调性并证明.21.设定义域为R的函数f(x)=(1)在平面直角坐标系内作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);(2)若方程f(x)+2a=0有两个解,求出a的取值范围(只需简单说明,不需严格证明);(3)设定义为R的函数g(x)为奇函数,且当x>0时,g(x)=f(x),求g(x)的解析式.22.已知函数f(x)=ax+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.答案1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|【答案】B【解析】∵y=x3在定义域R上是奇函数,∴A不对;y=-x2+1在定义域R上是偶函数,但在(0,+∞)上是减函数,故C不对;D中y=2-|x|=|x|虽是偶函数,但在(0,+∞)上是减函数,只有B对.2.f(x)=x2+|x|()A.是偶函数,在(-∞,+∞)上是增函数B.是偶函数,在(-∞,+∞)上是减函数C.不是偶函数,在(-∞,+∞)上是增函数D.是偶函数,且在(0,+∞)是增函数【答案】D3.已知函数f(x)=3x-(x≠0),则函数()A.是奇函数,且在(0,+∞)上是减函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是增函数D.是偶函数,且在(0,+∞)上是增函数【答案】C【解析】因为f(-x)=-3x+=-(3x-)=-f(x),又因为f(x)在(0,+∞)上是增函数,所以f(x)是奇函数,且在(0,+∞)上是增函数.4.定义在R上偶函数f(x)在[1,2]上是增函数,且具有性质f(1+x)=f(1-x),则函数f(x)()A.在[-1,0]上是增函数B.在[-1,-]上增函数,在(-,0]上是减函数C.在[1,0]上是减函数D.在[-1,-]上是减函数,在(-,0]上是增函数【答案】A【解析】因为f(1+x)=f(1-x),所以函数f(x)的图象关于直线x=1对称,又f(x)为偶函数,且在[1,2]上是增函数,所以f(x)在[-1,0]上是增函数.5.f(x)是定义在R上的增函数,则下列结论一定正确的是()A.f(x)+f(-x)是偶函数且是增函数B.f(x)+f(-x)是偶函数且是减函数C.f(x)-f(-x)是奇函数且是增函数D.f(x)-f(-x)是奇函数且是减函数【答案】C【解析】A错误.设f(x)=x,是增函数,但f(x)+f(-x)=x-x=0是常数函数;同理B错误;C正确.设g(x)=f(x)-f(-x),则g(-x)=f(-x)-f(x)=-[f(x)-f(-x)]=-g(x),函数g(x)是奇函数.任取x1,x2∈R,且x1<x2,则-x1>-x2,g(x1)=f(x1)-f(-x1),g(x2)=f(x2)-f(-x2),因为f(x)是定义在R上的增函数,所以f(x1)<f(x2),f(-x1)>f(-x2),即-f(-x1)<-f(-x2).所以f(x1)-f(-x1)<f(x2)-f(-x2),即g(x1)<g(x2).所以函数g(x)=f(x)-f(-x)是增函数;D错误.故选C.6.已知偶函数f(x)在区间[0,+∞)上的解析式为f(x)=x+1,下列大小关系正确的是()A.f(1)>f(2)B.f(1)>f(-2)C.f(-1)>f(-2)D.f(-1)<f(2)【答案】D【解析】∵当x≥0时,f(x)=x+1是增函数,∴f(1)<f(2),又∵f(x)为偶函数,∴f(1)=f(-1),f(2)=f(-2),7.已知f(x)是偶函数,对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,则下列关系式中成立的是()A.f<f(-1)<f(2)B.f(-1)<f<f(2)C.f(2)<f(-1)<fD.f(2)<f<f(-1)【答案】B【解析】∵对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,∴函数f(x)在(-∞,-1]上单调递减,∴f(-2)>f>f(-1).又∵f(x)是偶函数,∴f(-2)=f(2).∴f(-1)<f<f(2).8.定义在区间(-∞,+∞)上的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)上的图象与f (x)的图象重合.设a>b>0,给出下列不等式()①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是()A.①与④B.②与③C.①与③D.②与④【答案】C【解析】因为函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,所以函数g(x)在[0,+∞)上是增函数,在(-∞,0)上是减函数.a>b>0,f(a)>f(b),g(a)>g(b),所以f(a)+g(a)>f(b)+g(b);对于①:f(b)-f(-a)>g(a)-g(-b),即f(b)+f(a)>g(a)-g(b).正确;则②错误;对于③:f(a)-f(-b)>g(b)-g(-a),即f(a)+f(b)>g(b)-g(a).正确;则④错误.9.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)·[f(x2)-f (x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)【答案】C【解析】由(x2-x1)[f(x2)-f(x1)]>0,得f(x)在x∈(-∞,0]上为增函数.又f(x)为偶函数,∴f(x)在x∈[0,+∞)上为减函数.又f(-n)=f(n)且0≤n-1<n<n+1,∴f(n+1)<f(n)<f(n-1),即f(n+1)<f(-n)<f(n-1).10.若函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,则x·f(x)<0的解集是()A.(-2,0)∪(0,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】A【解析】因为函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,所以可画出符合条件的奇函数f(x)的图象,如图所示.因为x·f(x)<0,所以或结合图象,得到答案为A.11.已知定义在R上的函数f(x)在(-∞,-2)上是减函数,若g(x)=f(x-2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(-∞,-2]∪[2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-4]∪[-2,+∞)D.(-∞,-4]∪[0,+∞)【答案】C【解析】g(x)=f(x-2)是把函数f(x)向右平移2个单位得到的,且g(2)=f(0),f(-4)=g (-2)=-g(2)=0,f(-2)=g(0)=0,所以函数f(x)的图象关于点(-2,0)对称,所以当x ≤-4或x≥-2时xf(x)≤0成立.12.设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则x·f(x)<0的解集为()A.(-1,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)【答案】C【解析】因为函数f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,所以函数f(x)在(0,+∞)内也是减函数,且f(2)=0.则不等式x·f(x)<0可化为或解得x<-2或x>2.13.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调增区间为()A.(-∞,0]B.[0,+∞)C.(-∞,+∞)D.[1,+∞)【答案】A【解析】因为函数为偶函数,所以a+2=0,a=-2,即该函数为f(x)=-2x2+1,所以函数的单调增区间为(-∞,0].14.已知函数f(x)=x|x|-2x,则下列结论正确的是________.(填写序号)①f(x)是偶函数,递增区间是(0,+∞);②f(x)是偶函数,递减区间是(-∞,1);③f(x)是奇函数,递减区间是(-1,1);④f(x)是奇函数,递增区间是(-∞,0).【答案】③【解析】将函数f(x)=x|x|-2x去掉绝对值得f(x)=画出函数f(x)的图象,如图,观察图象可知,函数f(x)的图象关于原点对称,故函数f(x)为奇函数,且在(-1,1)上单调递减.15.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,设f=m,f=n,则m,n的大小关系是________.【答案】m≥n【解析】因为a2+2a+=(a+1)2+≥,又f(x)在[0,+∞)上是减函数,所以f≤f=f.16.已知函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的单调递增区间是________.【答案】(-∞,0]【解析】∵f(x)为偶函数,∴图象关于y轴对称,即k=1,此时f(x)=-x2+3,其单调递增区间为(-∞,0].17.已知函数y=f(x)的图象关于原点对称,且当x>0时,f(x)=x2-2x+3.(1)试求f(x)在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.【答案】(1)因为函数f(x)的图象关于原点对称,所以f(x)为奇函数,则f(0)=0.设x<0,则-x>0,因为x>0时,f(x)=x2-2x+3.所以f(x)=-f(-x)=-(x2+2x+3)=-x2-2x-3.于是有f(x)=(2)先画出函数在y轴右侧的图象,再根据对称性画出y轴左侧的图象,如图.由图象可知函数f(x)的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1).18.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式. 【答案】∵f(x)是偶函数,g(x)是奇函数,∴f(-x)=f(x),g(-x)=-g(x),由f(x)+g(x)=2x+x2.①用-x代替x得f(-x)+g(-x)=-2x+(-x)2,∴f(x)-g(x)=-2x+x2,②(①+②)÷2,得f(x)=x2;(①-②)÷2,得g(x)=2x.19.已知函数f(x)=-x3+3x.求证:(1)函数f(x)是奇函数;(2)函数f(x)在区间(-1,1)上是增函数.【答案】(1)显然f(x)的定义域是R.设任意x∈R,因为f(-x)=-(-x)3+3(-x)=-(-x3+3x)=-f(x),所以函数f(x)是奇函数.(2)在区间(-1,1)上任取x1,x2,且x1<x2,则f(x2)-f(x1)=-(x2-x1)(+x2x1+)+3(x2-x1)=(x2-x1)(3--x2x1-).因为-1<x1<x2<1,所以x2-x1>0,(3--x2x1-)>0,所以f(x2)>f(x1).所以函数f(x)=-x3+3x在区间(-1,1)上是增函数.20.已知函数f(x)=ax++c(a,b,c是常数)是奇函数,且满足f(1)=,f(2)=. (1)求a,b,c的值;(2)试判断函数f(x)在区间上的单调性并证明.【答案】(1)∵f(x)为奇函数,∴f(-x)=-f(x),∴-ax-+c=-ax--c,∴c=0,∴f(x)=ax+.又∵f(1)=,f(2)=,∴∴a=2,b=.综上,a=2,b=,c=0.(2)由(1)可知f(x)=2x+.函数f(x)在区间上为减函数.证明如下:任取0<x1<x2<,则f(x1)-f(x2)=2x1+-2x2-=(x1-x2)=(x1-x2).∵0<x1<x2<,∴x1-x2<0,2x1x2>0,4x1x2-1<0.∴f(x1)-f(x2)>0,f(x1)>f(x2).∴f(x)在上为减函数.21.设定义域为R的函数f(x)=(1)在平面直角坐标系内作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);(2)若方程f(x)+2a=0有两个解,求出a的取值范围(只需简单说明,不需严格证明);(3)设定义为R的函数g(x)为奇函数,且当x>0时,g(x)=f(x),求g(x)的解析式.【答案】(1)如图.单调增区间:[-1,0],[1,+∞),单调减区间(-∞,-1],[0,1].(2)在同一坐标系中同时作出y=f(x),y=-2a的图象,由图可知f(x)+2a=0有两个解,须-2a=0或-2a>1,即a=0或a<-.(3)当x<0时,-x>0,所以g(-x)=(-x)2-(-2x)+1=x2+2x+1,因为g(x)为奇函数,所以g(x)=-g(-x)=-x2-2x-1,且g(0)=0,所以g(x)=22.已知函数f(x)=ax+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.【答案】(1)定义域(-∞,0)∪(0,+∞),关于原点对称.当a=0时,f(x)=,满足对定义域上任意x,f(-x)=f(x),∴当a=0时,f(x)是偶函数;当a≠0时,f(1)=a+1,f(-1)=1-a,若f(x)为偶函数,则a+1=1-a,a=0矛盾;若f(x)为奇函数,则1-a=-(a+1),1=-1矛盾,∴当a≠0时,f(x)是非奇非偶函数.(2)任取x1>x2≥3,f(x1)-f(x2)=ax1+-ax2-=a(x1-x2)+=(x1-x2)(a-). ∵x1-x2>0,f(x)在[3,+∞)上为增函数,∴a>,即a>+在[3,+∞)上恒成立.∵x1>x2≥3,+<+=,∴a≥.。

函数单调性和奇偶性的综合应用题

函数单调性和奇偶性的综合应用题

函数单调性和奇偶性应用【巩固练习】⑴函数y=(2k+1)x+b 在R 上是减函数,则实数k 的取值范围是 ______⑵函数f(x)=2x 2-mx+3当x ∈[2,+∞)时是增函数,则实数m 的取值范围 _____⑶设f (x)=ax 7+bx +5,已知f(-7)=-17,求f(7)的值。

⑷已知f (x)是奇函数,g(x)是偶函数,且f (x )-g(x )= ,求f(x)、g(x).【学习探究】 一、函数单调性的判断及应用 例1、试讨论函数 上的单调性【变式训练】试讨论函数f(x) 上的单调性,其中a 为非零常数.例2、函数f (x)=x 2-2ax -3在区间[1,2]上单调,则( )A .a ∈(-∞,1]B .a ∈[2,+∞)C .a ∈[1,2]D .a ∈(-∞,1]∪[2,+∞)【变式训练】 已知函数f (x)=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,求实数a 的取值范围.例3、已知f (x)是定义在[-1,1]上的增函数,且f (x -2)〈f (1-x ),求x的取值范围二、函数奇偶性的判断和应用例4.判断下列函数的奇偶性(1)f (x)=5x+3 (2)f (x)=x -2+x 4(3) (4)【例5】已知)(x f 是定义域R 为的奇函数,当0<x 时,2)(2-+=x x x f , 求11+x ),0()0(,)(+∞≠+=在a x a x x f )在(1,1-12-=x ax 2211)(x x x f -++=⎪⎩⎪⎨⎧>++-=<-+=)0(32)0(0)0(32)(22x x x x x x x x f的解析式.三、单调性和奇偶性的的综合应用例1: 设函数()f x 为定义在R 上的偶函数,且()f x 在[0,)+∞为减函数,则(2),(),(3)f f f π--的大小顺序练习:1:()y f x =在(0,2)上是增函数,(2)y f x =+是偶函数,则157(),(),()222f f f 的大小关系2:若函数2()f x x mx n =++,对任意实数x ,都有(1)(3)f x f x -=+成立,试比较(1),(2),(4)f f f - 的大小关系3、已知函数21()4f x ax bx a b=+++是定义在[1,2]a a -上的奇函数,且(1)5f =,求a 、b4、若2()(2)(1)3f x K x K x =-+-+是偶函数,则()f x 的递减区间是 。

函数的奇偶性和单调性综合训练

函数的奇偶性和单调性综合训练

偶函数
如果对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=f(x)$,则 称$f(x)$为偶函数。
奇函数和偶函数的性质
奇函数的图像关于原点对称,即当$x$取任意值时,其对应的$y$ 值都是关于原点对称的。
偶函数的图像关于y轴对称,即当$x$取任意值时,其对应的$y$ 值都是关于y轴对称的。
利用奇偶性和单调性解题
利用奇偶性求函数值
对于奇函数,有$f(-x) = -f(x)$;对于偶函数, 有$f(-x) = f(x)$。
利用单调性比较函数值大小
在单调递增区间内,如果$x_1 < x_2$,则$f(x_1) < f(x_2)$;在单调递减区间内,如果$x_1 < x_2$,则 $f(x_1) > f(x_2)$。
奇偶性的判断方法
定义法
根据奇偶函数的定义来判断。
图像法
通过观察函数的图像来判断。
代数法
通过代入特殊值来判断。
单调性的定义
单调递增
如果对于函数$f(x)$的定义域内的任意两个数$x_1$和$x_2$($x_1<x_2$),都有$f(x_1)<f(x_2)$,则 称函数$f(x)$在定义域内单调递增。
函数的奇偶性和单调性综合训 练

CONTENCT

• 函数的奇偶性 • 函数的单调性 • 奇偶性与单调性的关系 • 综合训练题 • 总结与回顾
01
函数的奇偶性
奇函数和偶函数的定义
奇函数
如果对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=-f(x)$, 则称$f(x)$为奇函数。
100%
导数法
通过求函数的导数并判断导数的正 负来判断。如果导数大于0,则为 增函数;如果导数小于0,则为减 函数。

函数的单调性奇偶性综合应用练习

函数的单调性奇偶性综合应用练习

函数的单调性、奇偶性综合应用一、利用函数单调性求函数最值例1、已知函数y=f(x)对任意x,y ∈R 均为f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)= -32. (1)判断并证明f(x)在R 上的单调性;(2)求f(x)在[-3,3]上的最大、小值。

思维分析:抽象函数的性质要紧扣定义,并同时注意特殊值的应用。

解:(1)令x=y=0,f(0)=0,令x=-y 可得:f(-x)= -f(x),在R 上任取x 1<x 2,则x 2-x 1>0,所以f(x 2) -f(x 1)=f(x 2)+f(-x 1)=f(x 2-x 1).因为x 1<x 2,所以x 2-x 1>0。

又因为x>0时f(x)<0,所以f(x 2-x 1)<0,即f(x 2)<f(x 1).由定义可知f(x)在R 上是减函数.(2)因为f(x)在R 上是减函数,所以f(x)在[-3,3]上也是减函数.所以f(-3)最大,f(3)最小。

所以f(-3)= -f(3)=2即f(x)在[-3,3]上最大值为2,最小值为-2。

二、复合函数单调性例2、求函数y=322--x x 的单调区间,并对其中一种情况证明。

思维分析:要求出y=322--x x 的单调区间,首先求出定义域,然后利用复合函数的判定方法判断.解:设u=x 2-2x -3,则y=u .因为u ≥0,所以x 2-2x -3≥0.所以x ≥3或x ≤-1.因为y=u 在u ≥0时是增函数,又当x ≥3时,u 是增函数,所以当x ≥3时,y 是x 的增函数。

又当 x ≤-1时,u 是减函数,所以当x ≤-1时,y 是x 的减函数。

所以y=322--x x 的单调递增区间是[3,+ ∞),单调递减区间是(-∞,-1]。

证明略三、利用奇偶性,讨论方程根情况例3、已知y=f(x)是偶函数,且图象与x 轴四个交点,则方程f(x)=0的所有实根之和是( )A.4B.2C.0D.不知解析式不能确定 思维分析:因为f(x)是偶函数且图象与x 轴有四个交点,这四个交点每两个关于原点一定是对称的,故x 1+x 2+x 3+x 4=0.答案:C四、利用奇偶性,单调性解不等式例4、设f(x)是定义在[-2,2]上的偶函数,当x ≥0时,f(x)单调递减,若f(1-m)<f(m)成立,求m 的取值范围。

有关函数单调性、奇偶性的综合应用

有关函数单调性、奇偶性的综合应用

有关函数单调性、奇偶性的综合应用函数的单调性是对于函数定义域内某个子区间而言的“局部”性质,它反映了函数()f x 在区间上函数值的变化趋势;函数的奇偶性是相对于函数的定义域来说的“整体”性质,主要讨论的是函数的对称性.作为函数的两个最重要的性质,我们往往将二者结合起来研究.本文将针对这一方面的综合应用举例说明.例1 已知()y f x =是奇函数,它在(0,)+∞上是增函数,且()0f x <,试问1()()F x f x =在(,0)-∞上是增函数还是减函数?证明你的结论. 【分析】根据函数的单调性的定义,可以设210x x x ∆=-<,进而判断21()()Y F x F x ∆=-2111()()f x f x =-=1212()()()()f x f x f x f x - 的正负号. 【解析】任取12(,0)x x ∈-∞、,且210x x x ∆=-<,则有21()()0x x x -∆=--->. ()y f x =在(0,)+∞上是增函数,且()0f x <,∴12()()0f x f x ---<,又 ()y f x =是奇函数,∴()()f x f x -=-所以12()()0f x f x ->.于是21()()Y F x F x ∆=-2111()()f x f x =-=1212()()()()f x f x f x f x - 0>, ∴1()()F x f x =在(,0)-∞上是减函数. 【评析】本题最容易发生的错误是一开始就在(0,)+∞内任取21x x <,展开证明,这样就不能保证12,x x --在(,0)-∞内的任意性而导致错误.例2 已知函数()y f x =,(1,1)x ∈-,即是偶函数又是减函数,解不等式(1)(23)0f x f x -+-<.【解析】先求(1)(23)f x f x -+-的定义域:1111231x x -<-<⎧⎨-<-<⎩得0212x x <<⎧⎨<<⎩,∴定义域为{|12}x x <<∴不等式(1)(23)0f x f x -+-<即可写为:(1)[(23)]0f x f x ----<, 因为函数()y f x =是偶函数,有(23)(23)f x f x --=-,原不等式就是(1)(23)0f x f x ---<,已知函数是减函数,所以(1)(23)0x x x ∆=--->,即43x <, 由于x ∈{|12}x x <<,所以原不等式解集为:4{|1}3x x <<. 【评析】利用函数的性质,将不等式(1)(23)0f x f x -+-<中函数符号f 去掉,化为普通的不等式,同时要注意函数的定义域对x 的限制.。

函数单调性与奇偶性的综合应用

函数单调性与奇偶性的综合应用
【例2】定义在(-1,1)上的奇函数f(x)在整个定义域上是减 函数,若f(1-a)+f(1-3a)<0,求实数a的取值范围.
解:原不等式化为 f(1-3a)<-f(1-a). ∵f(x)是奇函数,∴-f(1-a)=f(a-1). ∴原不等式化为 f(1-3a)<f(a-1). ∵f(x)是减函数,且定义域为(-1,1),
三、抽象函数的奇偶性与单调性的综合
【例3】已知函数f(x),当x,y∈R时,恒有 f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)如果 x∈R+,f(x)<0,并且 f(1)=-12, 试求 f(x)在区间[-2,6]上的最值.
三、抽象函数的奇偶性与单调性的综合
跟踪训练 3 已知函数 f(x),当 x,y∈R 时,恒有 f(x+y)=f(x)+f(y). (1)求证:f(x)是奇函数; (2)如果 x∈R+,f(x)<0,并且 f(1)=-12,试求 f(x)在区间[-2,6]上的最值.
递减.若f(a)<f(2),求实数a的取值范围.
迁移与应用 1.B 解析:∵f(x)是偶函数,
∴f(-2)=f(2). 又 f(x)在[0,+∞)上单调递增,∴f(2)>f(1)>f(0), 即 f(-2)>f(1)>f(0). 2.解:∵y=f(x)是偶函数,∴f(a)=f(|a|). ∵f(a)<f(2),∴f(|a|)<f(2), ∵y=f(x)在[0,+∞)上是减函数, ∴|a|>2,即 a>2 或 a<-2. ∴实数 a 的取值范围是 a<-2 或 a>2.
(1)证明 ∵函数定义域为R,其定义域关于原点对称. ∵f(x+y)=f(x)+f(y),令y=-x, 则f(0)=f(x)+f(-x).令x=y=0, 则f(0)=f(0)+f(0),得f(0)=0. ∴f(x)+f(-x)=0,得f(-x)=-f(x), ∴f(x)为奇函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数单调性和奇偶性
【巩固练习】
⑴函数y=(2k+1)x+b 在R 上是减函数,则实数k 的取值范围是 ______ ,实数b 的取值范围是 _____
⑵函数f(x)=2x 2-mx+3当x ∈[2,+∞)时是增函数,则实数m 的取值范围 _____ ⑶设f(x)=ax 7
+bx +5,已知f(-7)=-17,求f(7)的值.
⑷已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=
,求f(x)、g(x).
一、函数单调性的判断及应用 例1、试讨论函数 上的单调性
【变式训练】试讨论函数f(x) 上的单调性,其中a 为非零常数。

例2、函数f(x)=x 2-2ax -3在区间[1,2]上单调,则( )
A .a ∈(-∞,1]
B .a ∈[2,+∞)
C .a ∈[1,2]
D .a ∈(-∞,1]∪[2,+∞)
【变式训练】已知函数f(x)=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,求实数a 的取值范围.
例3、已知f(x)是定义在[-1,1]上的增函数,且f(x -2)<f(1-x),求x 的取值范围
11+x ),0()0(,)(+∞≠+=在a x a x x f )在(1,1-12-=x ax
二、函数奇偶性的判断和应用
例4.判断下列函数的奇偶性
(1)f(x)=5x+3 (2)f(x)=x -2+x 4
【例5】已知)(x f 是定义域R 为的奇函数,当0<x 时,2)(2-+=x x x f , 求的解析式.
三、单调性和奇偶性的的综合应用
例1: 设函数()f x 为定义在R 上的偶函数,且()f x 在[0,)+∞为减函数,则(2),(),(3)f f f π--的大小顺序
练习:
1:()y f x =在(0,2)上是增函数,(2)y f x =+是偶函数,则157(),(),()222
f f f 的大小关系
2:若函数2()f x x mx n =++,对任意实数x ,都有(1)(3)f x f x -=+成立,试比较(1),(2),(4)f f f - 的大小关系
3、已知函数21()4f x ax bx a b
=+++是定义在[1,2]a a -上的奇函数,且(1)5f =,求a 、b
4、若2()(2)(1)3f x K x K x =-+-+是偶函数,则()f x 的递减区间是 。

例2:已知()y f x =在定义域(1,1)-上是增函数且为奇函数,(1)(21)0f t f t -+-<,求实数t 的取值范围.
例3:已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,
求()f x 的解析式.
例4:函数()y f x =是[2,2]-上的偶函数,当[0,2]x ∈时,()f x 是减函数,解不等式(1)()f x f x -<。

练习:已知()f x 是定义在(1,1)-的偶函数,且在(0,1)上为增函数,若(2)(3)f a f a -<-,求a 的取值范围。

例5:已知函数()f x 是R 上的奇函数且是增函数,解不等式(45)0f x -+>。

练习:1.()f x 是定义在(0,)+∞上的增函数,且()()()x f f x f y y
=-。

(1)求(1)f 的值; (2)若(6)1f =,解不等式1(3)()23
f x f +-<。

2.R +上的增函数满足()()()f xy f x f y =+,且(8)3f =,解不等
式(2)(2)f f x +-≥6
【课后作业】
1.若2(3)21f x x =-,则()f x 的解析式为 。

2.求函数定义域(1)5()||3
x f x x -=- (2)11y x x =-+- 3.已知2211()1f x x x x
-=++,则函数()f x 的解析式 4.函数822+--=x x y 的单调增区间为
5.已知函数2()(2)(1)3f x m x m x =-+-+是偶函数,则实数m 的值
6.已知函数53()8f x x ax bx =++-若(2)10f -=,则(2)f 的值
7.定义在实数集上的函数()f x ,对任意x y R ,∈,有f x y f x y f x f y ()()()()++-=2且
f ()00≠.(1)求证f ()01=;
(2)求证:y f x =()是偶函数。

8.已知定义在R 上的偶函数()f x 在区间[0,)+∞上是单调增函数,若(1)(lg )f f x <,求x 的取值
范围.
9. 函数2()1ax b f x x +=+是定义在(1,1)-上的奇函数,且12()25
f =. (1)确定函数()f x 的解析式;
(2)用定义证明()f x 在(1,1)-上是增函数;
(3)解不等式(1)()0f t f t -+<.
例6:定义在(-1,1)上的奇函数f(x)在整个定义域上是减函数,若f(1-a)+f(1-3a)<0,求实数a 的取值范围.
【变式练习】
已知f(x)是奇函数,且在[3,7]是增函数且最大值为4,那么f(x)在[-7,-3]上是 ____ 函数,且最_____值是_________ .
【课后作业】
1.已知函数f (x)是定义在(0,+∞)上的增函数,且f (2)=1,且f (x+5)<1,求x的取值范围
2.已知函数f (x)是R上的偶函数,在[0,+∞)上是减函数,且f (2)=0,求不等
式x f (x)<0的解.
3.已知函数f (x)是定义在[-2,2]上的减函数,且f (3x)<f (x+1),求x的取值范围.。

相关文档
最新文档