人工智能导论
《人工智能导论》教学大纲(2024版)

人工智能导论课程教学大纲一、课程基本信息课程编号:课程中文名称:人工智能导论课程性质:学院基础课程、专业核心课程开课学期:3课内学时:32学时,其中授课32学时课外学时:32学时学分:2学分主要面向专业:自动化、测控、电气、机器人工程二、先修课程高等数学、概率论、线性代数、生命科学导论三、课程目标人工智能导论是面向理工科专业的重要基础课程。
课程以学科基础、技术基础、重点方向与领域、行业应用、伦理与法律五维知识体系为主要内容,经典与现代人工智能知识结构模块化,具有广阔的思想和技术背景。
通过课程学习,使学生系统性掌握人工智能基本概念、方法、技术,把握人工智能重点方向及领域;掌握机器学习、深度神经网络等基本方法;初步具备利用人工智能技术解决问题的基本能力;初步理解人工智能伦理及其对人工智能技术发展的重要意义。
为进一步学习相关的专业基础课程和专业课程打下必要的理论和实践基础。
(1)从大历史观角度使学生理解人工智能发展的历史和思想脉络,使学生认识到人工智能的本质和内涵,思考人之为人的价值和意义,勇于承担社会发展责任。
(2)充分发挥人工智能多学科、多领域理论、知识交叉的特点和优势,培养学生多学科知识交叉思维和创新意识。
(3)激发学生学习人工智能的热情和人机协同创新思维,为后续人工智能+X专业学习、创新创业、竞赛、就业等奠定基础。
(4)系统理解机器智能实现技术和方法,认识到机器智能对人类智能补充与增强作用,学会利用人机协同技术和方法及解决各类问题。
(5)使学生充分理解人工智能对未来人类社会经济、科技和文明发展的重要作用,具备未来能社会发展需要的人工智能人才素质。
四、教学内容与教学方法五、考核方式六、参考教材及学习资源(一)参考教材:[1]莫宏伟,徐立芳.人工智能导论.第2版.[2]莫宏伟,徐立芳.人工智能伦理导论.。
《人工智能导论》第1章-绪论

20世纪80年代 中期至今
稳步增长期
形成及第一个兴旺期
20世纪50年代中 期至60年代中期
第二个兴旺期
20世纪70年代中 期至80年代中期
1.2.1 孕育期 (20世纪50年代中期以前)
人工智能的孕育期大致可以认为是1956年以前的时期。这个 时期的主要成就是数理逻辑、自动机理论、控制论、信息论、神 经计算、电子计算机等学科的建立和发展,为人工智能的诞生准 备了理论和物质的基础。
1.1.2 人工智能的定义
人工智能(AI)是一门正在发展中的综合性前沿学科,它由 计算机科学、控制论、信息论、神经生理学、心理学、语言学 等多种学科相互渗透而发展起来。
人工智能研究的近期目标是:使现有的计算机不仅能做一般 的数值计算及非数值信息的数据处理,而且能运用知识处理问 题,能模拟人类的部分智能行为。
过高预言的失败,给AI造成重大伤害
“20 年内,机器将能做人所能做的一切。”
——西蒙,1965
“在3~8年时间里,我们将研制出具有普通人智力的计算机。这 样的机器能读懂莎士比亚的著作,会给汽车上润滑油,会玩弄政治 权术,能讲笑话,会争吵。……它的智力将无以伦比。”
——明斯基,1977
1.2.3 萧条波折期 (20世纪60年代中期至70年代中期)
➢ 1955 年年末,纽厄尔和西蒙编写了一个 名为“逻辑专家”的程序,被许多人认为 是第一个人工智能程序。它将问题表示成 一个树形模型,然后选择最可能得到正确 结论的那一支来求解问题。
1.2.2 形成及第一个兴旺期 (20世纪50年代中期至60年代中期)
AI诞生于一次历史性的聚会——达特茅斯会议
1956年夏季,由美国学者麦卡锡、 明斯基、朗彻斯特和香农共同发起,在 美国达特茅斯大学举办了一次长达2个 多月的研讨会,讨论用机器模拟人类智 能的问题。会上,首次使用了“人工智 能”这一术语。这是人类历史上第一次 人工智能研讨会,标志着人工智能学科 的诞生,具有十分重要的历史意义。
人工智能导论

人工智能导论在当今科技飞速发展的时代,人工智能(Artificial Intelligence,简称 AI)无疑是最引人瞩目的领域之一。
它已经逐渐渗透到我们生活的方方面面,从智能手机中的语音助手,到医疗领域的疾病诊断,再到交通系统的智能调度,人工智能的身影无处不在。
然而,对于大多数人来说,人工智能仍然是一个充满神秘色彩的概念。
那么,究竟什么是人工智能?它是如何工作的?又将如何影响我们的未来呢?要理解人工智能,首先我们需要明确它的定义。
简单来说,人工智能是指让计算机模拟人类的智能行为,例如学习、推理、解决问题、理解语言等。
它的目标是创造出能够像人类一样思考和行动的智能机器。
人工智能的发展并非一蹴而就,而是经历了漫长的历程。
早在 20世纪 50 年代,科学家们就开始了对人工智能的探索。
然而,由于当时计算机技术的限制以及对智能本质的理解不足,早期的研究进展缓慢。
但随着计算机性能的不断提升,以及算法和理论的不断完善,人工智能在近年来取得了突飞猛进的发展。
那么,人工智能是如何实现智能行为的呢?这主要依赖于机器学习和深度学习这两种技术。
机器学习是让计算机通过数据学习规律和模式,从而能够进行预测和决策。
例如,通过分析大量的医疗影像数据,机器学习算法可以帮助医生诊断疾病。
深度学习则是机器学习的一个分支,它使用多层神经网络来模拟人脑的神经元网络,从而能够处理更加复杂的数据和任务。
比如,图像识别、语音识别等领域都广泛应用了深度学习技术。
人工智能的应用场景十分广泛。
在医疗领域,人工智能可以帮助医生进行疾病诊断、制定治疗方案,甚至进行手术操作。
在金融领域,它可以进行风险评估、投资决策,预防欺诈行为。
在交通领域,人工智能可以优化交通流量,提高交通运输的效率和安全性。
在教育领域,它可以为学生提供个性化的学习方案,提高学习效果。
然而,人工智能的发展也带来了一些挑战和问题。
例如,人工智能可能会导致部分工作岗位的消失,从而引发就业结构的调整。
人工智能导论第一章绪论

人工智能学科结构
计算原理 算法分析
控制理论 空间研究
自动程序设计
机器人 工业自动化
逻辑 数学
系统程序设计
心理学 图示学
认识论
心理学
逻辑学 自动定理证明 有关学科
图示学
运筹学
知识的模型化 和表示
机器视觉 计算机语言
光学
模式识别 声学 语音学
教学、科学和 工程辅助
3 知识与推理
知识是智能的基础和源泉。 推理是人脑的一个基本功能和重要功能,因此,
在知与交流
感知与交流指计算机对外部信息的直接感知和人 机之间、智能体之间的直接信息交流。
机器感知就是计算机直接“感觉”周围世界,就 像人一样通过“感觉器官”直接从外界获取信息 ,如通过视觉器官获取图形、图像信息,通过听 觉器官获取声音信息。
智能是多种能力的综合:
感知能力:人类获取外界信息的基本途径 行为能力:对感知到的外界信息的反应,包含:
简单的直接反应 复杂情况通过大脑思维反应
推理能力:根据当前掌握的信息,得出适当结论的能 力
问题求解能力: 学习与自适应能力—是人类的一种本能 社交能力:与他人交往的能力 创造力:智能中最难以理解和实现的部分
人工智能技术的发展对社会的进步具有重 要意义,与能源技术、空间技术并称为三 大尖端技术。
人类对人工智能的研究刚刚起步,有很多 关于人工智能根本性问题还有待于探索。
1.1 智能
从工程上讲,人工智能就是人造智能,不清楚什 么是智能,就难以真正理解和实现人工智能。
智能是人们认识和改造客观世界的综合能力,是 人类区别于其他事物的本质特征。
• 美国数学家Mauchly,1946发明了电子数字计算机ENIAC • 美国神经生理学家McCulloch,建立了第一个神经网络数学模型。 • 美国数学家Shannon(香农),1948年发表了《通讯的数学理
人工智能导论全套

学习既可能是自觉的、有意识的,也可能是不自觉的、无意识 的;既可以是有教师指导的,也可以是通过自己实践的。
4. 行为能力(表达能力)
人们的感知能力:用于信息的输入。
行为能力:信息的输出。
9
1.1.3 人工智能
人工智能:用人工的方法在机器(计算机)上实现的智能; 或者说是人们使机器具有类似于人的智能。
1956年以后,人工智能的研究在机器学习、定理证 明、模式识别、问题求解、专家系统及人工智能语 言等方面都取得了许多引人瞩目的成就 。 1969 年 , 成 立 了 国 际 人 工 智 能 联 合 会 议 ( International Joint Conferences on Artificial Intelligence,IJCAI)。 1970年,创刊了国际性的人工智能杂志(Artificial Intelligence)。
“The spirit is willing but the flesh is weak”心有余而力不足。
俄语
“The wine is good but the meat is spoiled”酒是好的但肉变质了。
28
1.4 人工智能的主要研究领域
6. 智能信息检索
智能信息检索系统的功能: (1) 能理解自然语言。 (2) 具有推理能力。 (3) 系统拥有一定的常识性知识。
20世纪三大科学技术成就:
空间技术
原子能技术
人工智能
3
第1章 绪论
1.1 人工智能的基本概念 1.2 人工智能的发展简史 1.3 人工智能研究的基本内容 1.4 人工智能的主要研究领域
4
第1章 绪论
✓ 1.1 人工智能的基本概念
1.2 人工智能的发展简史 1.3 人工智能研究的基本内容 1.4 人工智能的主要研究领域
人工智能导论第1章人工智能概述

星蓝海学习网
近年人工智能主要事件
2011年 2013年 2014年
• IBM Waston参加智力游戏《危险边缘》,击败最高奖 金得主Brad Rutter和连胜纪录保持者Ken Jennings;
• 苹果发布语音个人助手Siri
• 深度学习算法在语音和视觉识别率获得突破性进展
微软亚洲研究院发布人工智能小冰聊天机器人和语音助手 Cortana 发布Deep Speech语音识别系统
星蓝海学习网
人工智能的未来与展望
人工智能的发展的终极目标是类人脑思考。目前的人工智能 已经具备学习和储存记忆的能力,人工智能最难突破的是人脑的 创造能力。而创造力的产生需要以神经元和突触递质传递为基础 的一种化学环境。目前的人工智能是以芯片和算法框架为基础。 若在未来能再模拟出类似于大脑突触传递的化学环境,计算机与 化学结合后的人工智能,将很可能带来另一番难以想象的未来世 界。
人工智能概述
第一部分 人工智能概述
第二部分 人工智能的社会
价值
第三部分 人工智能的应用
领域
第四部分 人工智能的未来
与展望
星蓝海学习网
星蓝海学习网
人工智能概述
案例引入
人工智能时代即将来 临,你准备好了吗?
阿尔法鹰眼,情绪识别的 人工智能,让谎言无处可藏
阿里鹿班让设计更美好!
星蓝海学习网
厦门无人驾驶巴士 在软件园上路!
• 苹果在WWDC上发统,无人驾
驶平台Apollo1.0自动驾驶平台
• 华为发布全球第一款AI移动芯片麒麟970 • iPhone X配备前置 3D 感应摄像头(TrueDepth),脸
部识别点达到3W个,具备人脸识别、解锁和支付等功 能
人工智能导论全书课件完整版ppt全套教学教程最全电子教案教学设计最新

人工智能是研究使计算机模拟人类的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。
人工智能的特点
人工智能经历了六十多年的发展,现在已进入AI 2.0阶段
人工智能的分类
斯图尔特·罗素
斯图尔特·罗素(Stuart Russell),世界经济论坛(WEF)人工智能委员会副主席、加州大学伯克利分校人工智能中心创始人。
斯蒂芬·威廉·霍金
斯蒂芬·威廉·霍金(Stephen William Hawking),著名物理学家,被誉为继爱因斯坦之后最杰出的理论物理学家。他曾经指出:强大的人工智能的崛起,要么是人类历史上最好的事,要么是最糟的。
自1956年诞生以来,人工智能研究已经取得了许多令人兴奋的成果,并在多个领域得到了广泛的应用,极大地改变了人们的社会生活。本节将对人工智能的概念作简单的介绍。
人工智能(Artificial Intelligence,AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
2017年8月3日,腾讯公司正式发布了人工智能医学影像产品——腾讯觅影。同时,还宣布成立人工智能医学影像联合实验室。
2017年10月11日,阿里巴巴首席技术官张建锋宣布成立全球研究院——达摩院。达摩院的成立,代表着阿里巴巴正式迈入全球人工智能等前沿科技的研发行列。
从细分的研究领域来看,最受国际人工智能人才青睐的领域为机器学习、数据挖掘和模式识别,中国人工智能人才则倾向于投入遗传算法、神经网络和故障诊断方面。
1950年,一位名叫马文·明斯基(Marvin Lee Minsky,后被称为“人工智能之父”)的大四学生与他的同学邓恩·埃德蒙(Dean Edmunds)一起,建造了世界上第一台神经网络计算机,被看作是人工智能的一个起点。
人工智能导论课件第1章人工智能概述

1.6.6 自动程序设计 自动程序设计就是让计算机设计程序。具体来讲,就
是只要给出关于某程序要求的非常高级的描述,计算机就 会自动生成一个能完成这个要求目标的具体程序。所以, 这相当于给机器配置了一个“超级编译系统”,它能够对高 级描述进行处理,通过规划过程,生成所需的程序。但这 只是自动程序设计的主要内容,它实际是程序的自动综合 。自动程序设计还包括程序自动验证,即自动证明所设计 程序的正确性。
但在现有机器上无法实施或无法完成的困难问题,包括 智力性问题中的难题和现实中复杂的实际问题和工程问 题。在这些难题中,有些是组合数学理论中所称的NP( Nondeterministic Polynomial 非确定型多项式)问题或 NP完全(Nondeterministic Polynomial Complete, NPC )问题。NP问题是指那些既不能证明其算法复杂度超出 多项式界,但又未找到有效算法的一类问题。而NP完全 问题又是NP问题中最困难的一种问题。
1.1.5 统计智能和交互智能 1. 统计智能(Statistical Intelligence) 利用样例数据并采用统计、概率和其他数学方法
而实现的人工智能称为统计智能。 2. 交互智能(Interactional Intelligence) 通过交互方式而实现的人工智能称为交互智能。
1.2 为什么要研究人工智能
从人脑的宏观心理层面入手,以智能行为的心理模型为依据,将 问题或知识表示成某种逻辑网络,采用符号推演的方法,模 拟人脑的逻辑思维过程,实现人工智能。
1.5.2 生理模拟,神经计算
从人脑的生理层面,即微观结构和工作机理入手,以智能行 为的生理模型为依据,采用数值计算的方法,模拟脑神经网 络的工作过程,实现人工智能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脑智能和群智能是属于不同层次的智能:
脑智能是一种个体智能(Individual Intelligence, II); 群智能是一种社会智能(Social Intelligence, SI), 或者说系统智能(System Intelligence, SI)。
1.1.4 符号智能和计算智能 1. 符号智能
符号智能就是符号人工智能,它是模拟脑智能的人 工智能,也就是所说的传统人工智能或经典人工智能。 符号智能以符号形式的知识和信息为基础,主要通过逻 辑推理,运用知识进行问题求解。符号智能的主要内容 包括知识获取(knowledge acquisition)、知识表示 (knowledge representation)、知识组织与管理和知 识运用等技术(这些构成了所谓的知识工程 (Knowledge Engineering, KE))以及基于知识的智 能系统等。
1.1 什么是人工智能
◆人工智能(Artificial Intelligence”,AI)
1.1.1 人工智能概念的一般描述
◆部分学者对人工智能概念的描述: —— 人工智能是那些与人的思维相关的活动,诸如决 策、问题求解和学习等的自动化(Bellman, 1978);
—— 人工智能是一种计算机能够思维,使机器具有智 力的激动人心的新尝试(Haugeland, 1985);
1.7.11 1.7.12 1.7.13 1.7.14 1.7.15 1.7.16 1.7.17 1.7.18 1.7.19 1.7.20
2. 计算智能
计算智能就是计算人工智能,它是模拟群智能的人 工智能。计算智能以数值数据为基础,主要通过数值计 算,运用算法进行问题求解。计算智能的主要内容包括: 神经计算(Neural Computation, NC)、进化计算 (亦称演化计算,Evolutionary Computation,EC,包 括遗传算法(Genetic Algorithm,GA)、进化规划 (Evolutபைடு நூலகம்onary Planning,EP)、进化策略 (Evolutionary Strategies,ES)等)、免疫计算 (immune computation)、粒群计算(Particle Swarm Algorithm,PSA)、蚁群算法(Ant Colony Algorithm, ACA)、自然计算(Natural Computation,NC)以及人 工生命(Artificial Life,AL)等。
人工智能导论
(廉师友 编制)
西安石油大学计算机学院
第1章 人工智能概述
1.1 什么是人工智能 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 人工智能的研究意义、目标和策略 人工智能的学科范畴 人工智能的研究内容 人工智能的研究途径与方法 人工智能的基本技术 人工智能的应用 人工智能的分支领域与研究方向 人工智能的发展概况
1.4 人工智能的研究内容
1.5.1 搜索与求解
1.5.2 学习与发现 1.5.3 知识与推理 1.5.4 发明与创造 1.5.5 感知与交流 1.5.6 记忆与联想 1.5.7 系统与建造
1.5.8 应用与工程
1.5 人工智能的研究途径与方法
1.5.1 心理模拟,符号推演
1.5.2 生理模拟,神经计算
1.5.3 行为模拟,控制进化 1.5.4 群体模拟,仿生计算 1.5.5 博采广鉴,自然计算 1.5.6 原理分析,数学建模
1.6 人工智能的基本技术
表示
运算
搜索
1.7 人工智能的应用
1.7.1 难题求解 1.7.2 自动规划、调度与配置 1.7.3 机器定理证明 1.7.4 自动程序设计 1.7.5 机器翻译 1.7.6 智能控制 1.7.7 智能管理 1.7.8 智能决策 1.7.9 智能通信 1.7.10 智能仿真
1.1.2 图灵测试和中文屋子
◆ 图灵测试”(Turing Test)
◆约翰.西尔勒(John Searle)的 “中文屋子”
1.1.3 脑智能和群智能
脑(主要指人脑)的宏观心理层次的智能表现 称为脑智能(Brain Intelligence, BI)。 由群体行为所表现出的智能称为群智能(Swarm Intelligence, SI)。
1.3 人工智能的学科范畴
人工智能已构成信息技术领域的一个重要学 科。当前的人工智能既属于计算机科学技术的一 个前沿领域,也属于信息处理和自动化技术的一 个前沿领域。还涉及到智能科学、认知科学、心 理科学、脑及神经科学、生命科学、语言学、逻 辑学、行为科学、教育科学、系统科学、数理科 学以及控制论、科学方法论、哲学甚至经济学等 众多学科领域。人工智能实际上是一门综合性的 交叉学科和边缘学科。
——人工智能是研究如何让计算机做现阶段只有人才能 做得好的事情(Rich Knight,1991);
—— 人工智能是那些使知觉、推理和行为成为可 能的计算的研究(Winston, 1992); —— 广义地讲,人工智能是关于人造物的智能行 为,而智能行为包括知觉、推理、学习、交流 和在复杂环境中的行为(Nilsson,1998)。 —— Stuart Russell和Peter Norvig则把已有的 一些人工智能定义分为4类:像人一样思考的系 统、像人一样行动的系统、理性地思考的系统、 理性地行动的系统(2003)。
1.2 人工智能的研究意义、目标和策略
1.2.1 为什么要研究人工智能
■
使当前的电脑更好用,更有用,以扩大和延 伸人类智能; 信息化社会的迫切要求; 自动化发展的必然趋势; 有益于探索人类自身智能的奥秘。
■ ■ ■
1.2.2 人工智能的研究目标和策略
研究目标就是制造智能机器和智能系统,实现智能化 社会。具体来讲,就是要使计算机不仅具有脑智能和 群智能,还要具有看、听、说、写等感知和交流能力。 研究策略则是先部分地或某种程度地实现机器的智能, 并运用智能技术解决各种实际问题特别是工程问题, 从而使现有的计算机更灵活、更好用和更有用,成为 人类的智能化信息处理工具,而逐步扩展和不断延伸 人的智能,逐步实现智能化。